Skip to main content

Table 4 Model performance of nine model combinations between SGCN and GCN on two independent test sets

From: An end-to-end method for predicting compound-protein interactions based on simplified homogeneous graph convolutional network and pre-trained language model

 

Model

Accuracy

Precision

Recall

F1-Score

AUC

AUPR

BindingDB

GCN

0.8493

0.8370

0.8669

0.8516

0.9261

0.9276

GCN + GCN

0.8243

0.7966

0.8697

0.8316

0.9084

0.9065

GCN + SGCN

0.8563

0.8426

0.8754

0.8587

0.9296

0.9273

GCN + GCN + GCN

0.8386

0.8152

0.8748

0.8440

0.9201

0.919

GCN + SGCN + SGCN

0.8691

0.8476

0.8993

0.8727

0.9433

0.9425

SGCN + SGCN + SGCN

0.9805

0.9763

0.9847

0.9805

0.9979

0.9979

GCN + GCN + SGCN

0.8394

0.8129

0.8808

0.8455

0.9202

0.9162

GCN + GCN + GCN + GCN

0.8197

0.8066

0.8399

0.8229

0.8906

0.8989

GCN + SGCN + GCN + SGCN

0.8618

0.8369

0.8938

0.8658

0.9375

0.9358

PubChem

GCN

0.8151

0.0419

0.6208

0.0785

0.7741

0.0558

GCN + GCN

0.8246

0.0406

0.5666

0.0758

0.7676

0.0681

GCN + SGCN

0.8436

0.0510

0.6433

0.0945

0.8147

0.0771

GCN + GCN + GCN

0.8211

0.0407

0.6643

0.0856

0.7934

0.0701

GCN + SGCN + SGCN

0.8380

0.0508

0.6659

0.0944

0.8331

0.1156

SGCN + SGCN + SGCN

0.9948

0.7754

0.8262

0.8000

0.9875

0.8709

GCN + GCN + SGCN

0.8031

0.0431

0.6840

0.0810

0.8010

0.0998

GCN + GCN + GCN + GCN

0.8032

0.0401

0.5632

0.0743

0.7849

0.0695

GCN + SGCN + GCN + SGCN

0.8364

0.0537

0.6623

0.0934

0.8321

0.1121