Skip to main content

Table 5 Results of SPVec-SGCN model performance compared with machine learning- and deep learning-based models on BindingDB and PubChem test sets

From: An end-to-end method for predicting compound-protein interactions based on simplified homogeneous graph convolutional network and pre-trained language model

Testset

Methods

Accuracy

Precision

Recall

F1-Score

AUC

AUPR

BindingDB

Ours

0.9805

0.9763

0.9847

0.9805

0.9979

0.9979

GNB

0.6354

0.6236

0.6789

0.6500

0.6822

0.6615

RF

0.7747

0.8072

0.7205

0.7614

0.8689

0.8745

GBDT

0.6868

0.6524

0.7964

0.7172

0.7751

0.7733

DNN

0.751

0.7412

0.7694

0.755

0.8222

0.807

PubChem

Ours

0.9948

0.7754

0.8262

0.8000

0.9875

0.8709

GNB

0.5954

0.1558

0.5757

0.3708

0.6070

0.1672

RF

0.8246

0.0466

0.6460

0.0835

0.7648

0.1940

GBDT

0.5538

0.0207

0.7359

0.0402

0.6949

0.0244

DNN

0.6003

0.0202

0.6411

0.0391

0.6374

0.0179