Skip to main content

Table 6 Classification results of SPVec-SGCNs model compared with four state-of-the-art models on BindingDB and PubChem test sets

From: An end-to-end method for predicting compound-protein interactions based on simplified homogeneous graph convolutional network and pre-trained language model

Testset

Methods

Accuracy

Precision

Recall

F1-Score

AUC

AUPR

BindingDB

Ours

0.9805

0.9763

0.9847

0.9805

0.9979

0.9979

PMFCPI

0.8218

0.8189

0.8501

0.8234

0.8962

0.9044

GraphCPI

0.7237

0.7478

0.7016

0.7223

0.7697

0.7734

STCPI

0.8234

0.7965

0.7999

0.8228

0.8752

0.8745

GcForest

0.862

0.8523

0.8547

0.8678

0.8956

0.8957

CCL-DTI

0.8749

0.8594

0.8782

0.8631

0.9021

0.8954

SgCPI

0.8334

0.8348

0.8329

0.8335

0.8521

0.8545

PubChem

Ours

0.9948

0.7754

0.8262

0.8000

0.9875

0.8709

PMFCPI

0.6967

0.1893

0.6743

0.4461

0.7880

0.2243

GraphCPI

0.6253

0.0587

0.6227

0.1048

0.7653

0.2540

STCPI

0.8439

0.6261

0.7359

0.6007

0.8949

0.7244

GcForest

0.6003

0.0202

0.6411

0.0391

0.6374

0.2037

CCL-DTI

0.6482

0.1467

0.5649

0.3732

0.8036

0.1734

SgCPI

0.8679

0.0573

0.6557

0.1064

0.8278

0.0693