Skip to main content

Table 2 Benchmarking BarlowDTI against other models using Koh et al. splits [16]

From: Barlow Twins deep neural network for advanced 1D drug–target interaction prediction

Dataset

Split

Model

ROC AUC

PR AUC

BioSNAP

Unseen protein

BarlowDTI 

0.9572

0.9679

DrugBAN [16, 44]

0.7327

0.7971

PSICHIC [16]

0.8819

0.9071

STAMP-DPI [16, 45]

0.8372

0.8738

XGBoost

0.8506

0.8794

Random split

BarlowDTI 

0.9718

0.9755

DrugBAN [16, 44]

0.9089

0.9159

PSICHIC [16]

0.9246

0.9226

STAMP-DPI [16, 45]

0.8993

0.9056

XGBoost

0.9146

0.9242

Unseen ligand

BarlowDTI 

0.9666

0.9706

DrugBAN [16, 44]

0.8775

0.8843

PSICHIC [16]

0.9019

0.9030

STAMP-DPI [16, 45]

0.8902

0.8915

XGBoost

0.8909

0.9026

BindingDB

Unseen protein

BarlowDTI 

0.6939

0.5791

DrugBAN [16, 44]

0.6523

0.5295

PSICHIC [16]

0.7537

0.6241

STAMP-DPI [16, 45]

0.6828

0.5735

XGBoost

0.6460

0.5233

Random split

BarlowDTI 

0.9640

0.9513

DrugBAN [16, 44]

0.9640

0.9539

PSICHIC [16]

0.9503

0.9280

STAMP-DPI [16, 45]

0.9318

0.9085

XGBoost

0.9582

0.9462

Unseen ligand

BarlowDTI 

0.9456

0.9263

DrugBAN [16, 44]

0.9409

0.9188

PSICHIC [16]

0.9264

0.8975

STAMP-DPI [16, 45]

0.9027

0.8683

XGBoost

0.9374

0.9141

Human

Unseen protein

BarlowDTI 

0.9630

0.9693

DrugBAN [16, 44]

0.9298

0.9417

PSICHIC [16]

0.9503

0.9595

STAMP-DPI [16, 45]

0.8563

0.8748

XGBoost

0.8961

0.9171

Random split

BarlowDTI 

0.9917

0.9905

DrugBAN [16, 44]

0.9841

0.9753

PSICHIC [16]

0.9861

0.9840

STAMP-DPI [16, 45]

0.9659

0.9582

XGBoost

0.9813

0.9782

Unseen ligand

BarlowDTI 

0.9346

0.9348

DrugBAN [16, 44]

0.9459

0.9387

PSICHIC [16]

0.9500

0.9371

STAMP-DPI [16, 45]

0.9156

0.8980

XGBoost

0.9391

0.9337

  1. Performance was evaluated against three established benchmarks, and the mean of the BarlowDTI performance of five replicates are presented. All other metrics are taken from Koh et al. Best result per benchmark and split is highlighted in bold. Koh et al. does not present replicates or sample-correlated predictions [16]