From: Positional embeddings and zero-shot learning using BERT for molecular-property prediction
PE | Data | Sequence | Aver. loss | Aver. accuracy | Aver. precision | Aver. recall | Aver. F1-score |
---|---|---|---|---|---|---|---|
Absolute | Malaria | SMILES | 0.5364 ± 0.01 | 0.7332 ± 0.01 | 0.7227 ± 0.04 | 0.6203 ± 0.01 | 0.6672 ± 0.02 |
DeepSMILES | 0.5662 ± 0.01 | 0.7130 ± 0.02 | 0.7189 ± 0.02 | 0.5510 ± 0.02 | 0.6234 ± 0.02 | ||
COVID | SMILES | 0.5640 ± 0.02 | 0.7973 ± 0.04 | 0.8472 ± 0.06 | 0.7530 ± 0.06 | 0.7959 ± 0.05 | |
DeepSMILES | 0.5316 ± 0.01 | 0.7716 ± 0.04 | 0.8010 ± 0.04 | 0.7560 ± 0.05 | 0.7770 ± 0.04 | ||
Cocrystals | SMILES | 0.5795 ± 0.01 | 0.6953 ± 0.02 | 0.6888 ± 0.03 | 0.6286v0.04 | 0.6560 ± 0.02 | |
DeepSMILES | 0.5723 ± 0.02 | 0.6807 ± 0.03 | 0.6692 ± 0.04 | 0.6188 ± 0.05 | 0.6418 ± 0.03 | ||
RKQ | Malaria | SMILES | 0.5025 ± 0.01 | 0.7616 ± 0.01 | 0.7542 ± 0.02 | 0.6647 ± 0.02 | 0.7062 ± 0.01 |
DeepSMILES | 0.5546 ± 0.01 | 0.7263 ± 0.01 | 0.7669 ± 0.04 | 0.5288 ± 0.04 | 0.6244 ± 0.02 | ||
COVID | SMILES | 0.4777 ± 0.02 | 0.8432 ± 0.02 | 0.9079 ± 0.03 | 0.7818 ± 0.03 | 0.8398 ± 0.03 | |
DeepSMILES | 0.4408 ± 0.04 | 0.8068 ± 0.03 | 0.8752 ± 0.01 | 0.7385 ± 0.06 | 0.8002 ± 0.04 | ||
Cocrystals | SMILES | 0.5247 ± 0.03 | 0.7197 ± 0.02 | 0.7127 ± 0.02 | 0.6633 ± 0.03 | 0.6867 ± 0.02 | |
DeepSMILES | 0.5154 ± 0.03 | 0.7416 ± 0.02 | 0.7323 ± 0.03 | 0.7041 ± 0.07 | 0.7151 ± 0.03 |