Skip to main content

Table 4 Performance of fine-tuned BERT with relative_key_query PE on various datasets

From: Positional embeddings and zero-shot learning using BERT for molecular-property prediction

Task

Data

Sequence

Test loss

Accuracy

Precision

Recall

F1-score

Classification

Malaria

SMILES

0.4858

0.8017

0.8118

0.6866

0.7439

DeepSMILES

0.5203

0.7495

0.7793

0.5622

0.6532

COVID

SMILES

0.5851

0.7568

0.8484

0.6829

0.7568

DeepSMILES

0.4855

0.7568

0.8485

0.6829

0.7568

COVID-19

SMILES

0.4855

0.7885

0.7881

0.7561

0.7718

DeepSMILES

0.5171

0.7462

0.7568

0.6829

0.7179

Cocrystals

SMILES

0.6089

0.6463

0.6102

0.5070

0.5538

DeepSMILES

0.6011

0.6402

0.5882

0.5634

0.5755

BBBP\(^{c_w}\)

SMILES

0.5876

0.7171

0.8039

0.8146

0.8092

DeepSMILES

0.5422

0.7756

0.8571

0.8344

0.8456

BBBP

SMILES

0.4679

0.7512

0.7475

1.0000

0.8555

DeepSMILES

0.5592

0.7366

0.7366

1.0000

0.8483

ClinTox

SMILES

0.4511

0.9262

0.9262

1.0000

0.9617

DeepSMILES

0.4561

0.9262

0.9262

1.0000

0.9617

Tox21\(^{c_w}\)

SMILES

0.6579

0.9040

0.9426

0.9560

0.9493

DeepSMILES

0.6685

0.8419

0.9357

0.8931

0.9139

Tox21

SMILES

0.3477

0.9394

0.9394

1.0000

0.9688

DeepSMILES

0.2884

0.9394

0.9394

1.0000

0.9688

  1. Bold values denote the best-achieved performance for clarity and emphasis
  2. \({c_w}\) class-weighted function, DeepSMILES the zero-shot learning analysis of BERT