Skip to main content

Table 7 Performance of fine-tuned BERT with “relative_key” PE on various datasets

From: Positional embeddings and zero-shot learning using BERT for molecular-property prediction

Task

Data

Sequence

Test loss

Accuracy

Precision

Recall

F1-score

Classification

Malaria

SMILES

0.4643

0.7787

0.7568

0.6965

0.7254

DeepSMILES

0.5220

0.7557

0.7360

0.6517

0.6913

COVID

SMILES

0.4617

0.7973

0.8824

0.7317

0.8000

DeepSMILES

0.4425

0.8108

0.9091

0.7317

0.8180

COVID-19

SMILES

0.4526

0.7962

0.7917

0.7724

0.7819

DeepSMILES

0.4986

0.7808

0.7750

0.7561

0.7654

Cocrystals

SMILES

0.5827

0.7134

0.6935

0.6056

0.6466

DeepSMILES

0.5249

0.7012

0.6410

0.7042

0.6711

BBBP\(^{c_w}\)

SMILES

0.5651

0.7707

0.8210

0.8808

0.8498

DeepSMILES

0.5436

0.7902

0.8913

0.8146

0.8512

BBBP

SMILES

0.2910

0.8585

0.8861

0.9272

0.9061

DeepSMILES

0.2836

0.8780

0.8938

0.9470

0.9196

ClinTox

SMILES

0.0804

0.9799

1.0000

0.7857

0.8800

DeepSMILES

0.0421

0.9866

1.0000

0.8571

0.9231

Tox21

SMILES

0.3964

0.9380

0.9393

0.9984

0.9680

DeepSMILES

0.2282

0.9394

0.9394

1.0000

0.9688

  1. Bold values denote the best-achieved performance for clarity and emphasis
  2. \({c_w}\) class-weighted function, DeepSMILES zero-shot learning analysis of BERT