Skip to main content

Table 1 A summary of recent models used to predict aqueous solubility

From: A unified approach to inferring chemical compounds with the desired aqueous solubility

S. no

Model

# datasets

Descriptor information (size)

Software

\(\text{R}^2\) Min, Max

1

RF [3]

1

Deterministic 2D, 3D (200)

MOE

0.89

2

MLR, RF, SVM [4]

1

Non-deterministic (21)

Hybot, Dragon, Sybyl, VolSurf

0.701, 0.736

3

RF [5]

1

Non-deterministic (16)

PaDEL-Caret package

0.82

4

LASSO, PLS, RF, LightGBM [6]

1

Non-deterministic (317)

Dragon

N/A

5

MLR, RF [7]

1

Deterministic 2D, 3D

Mordred package

0.80, 0.98

6

MLR [8]

5

Deterministic 2D, 3D (58)

Sybyl, Amber

0.4, 0.9

7

MLR [9]

7

Deterministic (2, 3, 8)a

Gaussian09 program, Sybyl, BioPPSy

0.47, 0.87

8

PLS, BPN, SVR [10]

1

Deterministic (28)

Dragon

0.69, 0.735

9

CNN, RNN, DNN, SNN [11]

N/A

Non-deterministic (N/A)

N/A

N/A

10

GNN [12]

1

Non-deterministic 2D, 3D (839)

Mordred, Pybel, RDKit

0.76

11

BCSA [13]

5

Non-deterministic

Within model

0.83, 0.88

12

STN [14]

5

Deterministic (25)

RDKit

0.65, 0.89

13

GCNN [15]

1

Non-deterministic 2D, 3D (839)

Mordred, Pybel, RDKit

0.86

14

CS-LightGBM [16]

1

Non-deterministic

RDKit

0.8575

15

SAMPN [17]

1

Deterministic

MPN

N/A

  1. aDifferent numbers of descriptors generated by different software