Skip to main content

Table 1 Hyperparameters used of BNN and training

From: Molecular property prediction using pretrained-BERT and Bayesian active learning: a data-efficient approach to drug design

 

Hyperparameter

Values

BNN

Activation

[ReLU]

Batch normalization

[True]

Skip connection

[True]

Input layer

[768, 1024]

hidden layer dim

[128]

Number of hidden layers

[1]

Dropout probability

[0.3]

Training

Optimizer

[Adam]

Learning rate

[\(10^{-3}\)]

Weight decay

[1e-2]

Scheduler

[CosineAnnealingLR]

T-max (LR cycle)

[10]

Batch size

[16]

Epochs

[110]

num. Forward pass

[20]