Skip to main content

Table 2 Toxicity prediction performances on seven toxicity benchmark datasets

From: Fate-tox: fragment attention transformer for E(3)-equivariant multi-organ toxicity prediction

 

BBBP

DILI

Skin Rxn

Carcinogens

SIDER

ClinTox

Single-task learning

 RF

67.75 (1.04)

88.29 (1.98)

67.71 (2.07)

75.10 (3.15)

–

–

 SVM

68.65 (0.00)

89.70 (0.00)

73.12 (0.02)

78.27 (0.12)

–

–

 MLP

63.81 (0.55)

87.68 (0.50)

49.93 (13.81)

78.27 (0.24)

62.50 (1.11)

71.95 (1.88)

 MolCLR

65.09(0.94)

81.45 (0.77)

45.05 (6.17)

74.00 (3.78)

59.87 (2.89)

82.96 (4.24)

 GraphMVP

64.24 (1.27)

89.65 (0.19)

61.32 (3.50)

79.51 (4.72)

61.32 (0.71)

71.38 (1.49)

 MAT

69.08 (4.68)

89.77 (0.99)

65.92 (1.13)

82.99 (3.47)

62.69 (1.54)

91.09 (0.41)

 Molformer

68.60 (4.64)

88.98 (0.07)

64.28 (1.63)

73.04 (0.21)

51.41 (0.97)

71.72 (4.63)

 Uni-Mol

68.76 (2.04)

88.20 (1.69)

69.48 (4.76)

82.20 (3.47)

60.23 (0.91)

91.11 (3.61)

 FATE-Tox\(_{\textbf{STL}}\)

70.15 (1.44)

90.53 (0.52)

73.33 (0.61)

84.16 (2.09)

63.29 (0.71)

91.37 (1.53)

Multi-task learning

 FATE-Tox\(_{\textbf{MTL}}\)

71.16 (1.84)

91.86 (0.59)

74.10 (0.84)

84.78 (0.32)

–

–

  1. The performances are measured in AUROC % (higher is better \(\uparrow\)). The mean and standard deviation of three trials for each model are provided. Additionally, we evaluate the results in a multi-task learning setting for organ-specific toxicity datasets, excluding datasets that are primarily provided as multi-task (e.g., SIDER, ClinTox). Best performances are marked in bold and second-best are underlined