
SOFTWARE Open Access

AMBIT RESTful web services: an implementation
of the OpenTox application programming
interface
Nina Jeliazkova* and Vedrin Jeliazkov

Abstract

The AMBIT web services package is one of the several existing independent implementations of the OpenTox
Application Programming Interface and is built according to the principles of the Representational State Transfer
(REST) architecture. The Open Source Predictive Toxicology Framework, developed by the partners in the EC FP7
OpenTox project, aims at providing a unified access to toxicity data and predictive models, as well as validation
procedures. This is achieved by i) an information model, based on a common OWL-DL ontology ii) links to related
ontologies; iii) data and algorithms, available through a standardized REST web services interface, where every
compound, data set or predictive method has a unique web address, used to retrieve its Resource Description
Framework (RDF) representation, or initiate the associated calculations.
The AMBIT web services package has been developed as an extension of AMBIT modules, adding the ability to
create (Quantitative) Structure-Activity Relationship (QSAR) models and providing an OpenTox API compliant
interface. The representation of data and processing resources in W3C Resource Description Framework facilitates
integrating the resources as Linked Data. By uploading datasets with chemical structures and arbitrary set of
properties, they become automatically available online in several formats. The services provide unified interfaces to
several descriptor calculation, machine learning and similarity searching algorithms, as well as to applicability
domain and toxicity prediction models. All Toxtree modules for predicting the toxicological hazard of chemical
compounds are also integrated within this package. The complexity and diversity of the processing is reduced to
the simple paradigm “read data from a web address, perform processing, write to a web address”. The online
service allows to easily run predictions, without installing any software, as well to share online datasets and
models. The downloadable web application allows researchers to setup an arbitrary number of service instances for
specific purposes and at suitable locations. These services could be used as a distributed framework for processing
of resource-intensive tasks and data sharing or in a fully independent way, according to the specific needs. The
advantage of exposing the functionality via the OpenTox API is seamless interoperability, not only within a single
web application, but also in a network of distributed services. Last, but not least, the services provide a basis for
building web mashups, end user applications with friendly GUIs, as well as embedding the functionalities in
existing workflow systems.

Background
Most of the common tasks in toxicity prediction consist
of several typical steps, such as access to datasets,
descriptor calculation and validation procedures.
Usually, the components that implement these steps are
developed from scratch for every new predictive applica-
tion and this often leads to undesirable duplication of

effort and/or lack of interoperability. The availability of
a universal set of interoperable components could facili-
tate the implementation of new specialized applications
that combine algorithms in the most appropriate way
and allow fast and rigorous model development and
testing.
The OpenTox framework [1] is being built as a colla-

borative effort by the partners in the OpenTox EC FP7
project, and is an attempt to design and implement a
framework of web accessible components, solving

* Correspondence: jeliazkova.nina@gmail.com
Ideaconsult Ltd., Angel Kanchev Str 4, Sofia 1000, Bulgaria

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

© 2011 Jeliazkova and Jeliazkov; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:jeliazkova.nina@gmail.com
http://creativecommons.org/licenses/by/2.0

common tasks in chemical properties prediction. The
design objectives were to build a component based sys-
tem, independent of programming languages and oper-
ating systems, where the components could interoperate
between themselves and with external software
packages, being able to aggregate data from different
sources and staying open for future extensions. Open-
Tox made two major technological choices in order to
keep the developments within these constraints: (i) the
REpresentational State Transfer (REST) software archi-
tecture style allowing platform and programming lan-
guage independence and facilitating the implementation
of new data and processing components; (ii) a formally
defined common information model, based on the W3C
Resource Description Framework (RDF) [2] and com-
munication through well-defined interfaces ensuring
interoperability of the web components.
REST is a software architecture style for network

based applications, defined by Roy T. Fielding by analyz-
ing the properties of the World Wide Web and other
network architectures, and deriving the architectural
constraints that made the WWW successful [3]. There
is a plethora of information on RESTful design princi-
ples [4], development frameworks and examples. The
REST architecture can be briefly summarized as
Resource Oriented and the essential architectural con-
straints are as follows. Every important information
entity or collection of entities is considered a resource
and is named and addressable (i.e. its content can be
retrieved by its address) and supports limited number of
operations (e.g. read and write). Any information entity
or collection of entities could be considered a resource.
A resource may return its content in different formats.
The content is regarded as resource “representation”.
Some operations are safe (have no side effects - e.g.
reading a resource) and idempotent (have same effect if
executed multiple times), while others are not (e.g.
creating new resources). The RESTful API design
includes a specification of the allowed representation
formats for each resource/operation pair. Another
important design constraint is the usage of hyperlinks. It
is considered good practice if all resources could be
reached via a single or minimum number of entry
points. Thus, the representation of a resource should
return links to the related resources.
The REST style web services became a popular alter-

native of SOAP based services and they are considered
lighter and easier to use. Contrary to the established
WS-* [5] standards, there are currently no standards for
RESTful applications, but merely design guides. While
the most widely deployed REST applications use the
HTTP protocol (and therefore HTTP URIs as identi-
fiers, HTTP methods as operations, and MIME types to
specify representation formats), the architecture itself is

protocol independent, therefore REST systems that do
not use the HTTP protocol could exist, and vice versa.
A RESTful application is characterized by complying
with the architectural constraints, which are selected to
ensure a set of particular properties of a distributed sys-
tem. It is worthwhile to recall that the REST architec-
ture is envisioned to be a collection of independently
deployed and interacting distributed software entities,
much like as there are millions of independent web ser-
vers, which constitute the WWW. Multiple independent
and interacting deployments, is also the intended usage
of the OpenTox REST API and AMBIT services as one
of its implementations, rather than being a web applica-
tion made available by a single authority or service
provider.
The design of a REST system, based on the HTTP

protocol, starts by identifying the domain objects, fol-
lowed by mapping the objects to resources and defining
identifiers (URI patterns) and operations (HTTP verbs)
on each resource. In the case of OpenTox, the mini-
mum set of domain objects, identified collaboratively by
the partners [1], consists of chemical compounds, prop-
erties of chemical compounds, datasets of chemical
compounds and their properties (measured or calcu-
lated), algorithms (including descriptor calculation,
regression, classification, structural alerts, quantum
chemistry algorithms, etc.), predictive models (e.g. a
model, obtained by applying a machine learning algo-
rithm to a training dataset), validation algorithms, and
reports. In addition, tasks are introduced as special
resources to allow representation and handling of long
running asynchronous jobs. Every resource is identified
by a unique web address, following an agreed pattern,
specific to the resource type (e.g./algorithm/{id} for algo-
rithms,/compound/{id} for compounds, etc.). The
resources can be created (HTTP POST), updated
(HTTP PUT) and deleted (HTTP DELETE), or their
representations retrieved (HTTP GET). While there are
diverging opinions whether POST or PUT should be
used for creating resources in a REST application, our
view (supported by [3]) is that this issue is irrelevant for
the characterisation of a system as RESTful, as the
design goals of the REST software architecture style
(scalability, statelessness, cacheability, uniformity) are
not violated by either choice. The particular choice of
using POST for creating subordinate resources is a
pragmatic one, as it is supported by popular REST fra-
meworks, the HTTP protocol specification [6], and the
Atom Publishing Protocol [7], which is often cited as a
reference implementation of a REST system. Two addi-
tional features of POST’s standard defined behaviour
have been also accounted for as desirable properties in
our design: (i) non-idempotent, meaning that multiple
identical requests would probably result in the creation

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 2 of 18

of separate subordinate resources with identical infor-
mation [4], and (ii) the URIs of the newly created
resources are determined by the server, rather than spe-
cified by the client. On the other hand, updates of exist-
ing resources (PUT) require the client to specify the
resource URI, again in full compliance with the HTTP
protocol specification [6].
The common information model of the OpenTox

domain objects is based on the Resource Description
Framework (RDF) and described by the OpenTox ontol-
ogy [8]. It should be noted that the initial design of the
OpenTox API (version 1.0) was based on a XML
schema, but it was later decided to adopt RDF as a
more powerful approach to describe objects and their
relationships, as well as to facilitate the reuse of ongoing
ontology developments in bioinformatics. Any entity
could be described in RDF as a collection of triples (or
statements), each triple consisting of a subject, a predi-
cate, and an object. The predicate (also called a prop-
erty) denotes the relationship between two objects (e.g.
Model1 has_training_dataset Dataset1). The objects are
modelled in RDF as Classes (rdf:Class), and Classes have
specific Instances. Relationships are modelled with Prop-
erties (rdf:Property).
Thus, the Resource Description Framework allows

defining a data model (how the data is organized),
instead of specifying data format (how the data is writ-
ten into a file). Once a data model is defined, it could
be serialized into different formats, for example RDF/
XML [9], N3 [10], TURTLE [11]. The OWL Web
Ontology Language [12] is built on top of RDF, and,
compared to RDF, imposes restrictions on what is
allowed to be represented. Because of such restrictions,
the OWL subsets OWL-Lite and OWL-DL (Description
Logic) allow performing automated machine reasoning.
In OWL, there are Object properties and Data proper-
ties (owl:Property, which is a subclass of rdf:Property).
An Object property specifies a relation between
Instances, while a Data property specifies a relation
between an Instance and a simple data value (string,
integer, etc.). Properties cannot be used as Classes and
vice versa.
Both REST and RDF technologies encourage data

model development and consider assigning resource
identifiers important. However, there are differences, as
REST identifiers are used as addresses of the underlying
protocol (e.g. HTTP URIs) and it is essential that URIs
are dereferenceable. While the RDF representation
allows HTTP URIs as resource identifiers, these are con-
sidered names, not addresses, and are not necessarily
dereferenceable. HTTP URIs are hierarchical, while RDF
does not exploit the hierarchy, and splits HTTP URIs
into a prefix and identifier instead. REST resources
define clear boundaries between information entities,

while data, represented via RDF, is usually perceived as
one linked graph. The common usage of RDF for data
integration is to convert data coming from diverse
sources into a (typically read only) single triple storage
and provide a query interface (SPARQL endpoint). On
the contrary, web services provide distributed and dyna-
mically generated information. Most REST services
define data formats [13] as a means for communication,
rather than an explicit data model. The simultaneous
use of RDF and REST is not yet widespread and there
are ongoing debates on various related topics. Neverthe-
less, there is an added value of merging both technolo-
gies for independent deployments of multiple services,
able to dynamically generate linked data with derefer-
enceable links. This could lead to an enrichment of the
information space and scalability, in a manner similar to
a deployment of many web servers that provide hyper-
text documents.
The OpenTox framework integrates both technologies

into a distributed web services framework, where both
data and processing resources are described by ontolo-
gies: either existing ones, or developed within the pro-
ject. The framework consists of simple modules,
developed by different partners and with different pro-
gramming languages, running on a set of geographically
dispersed servers, and communicating via Internet. The
modules can be used to build more complex use cases,
embed OpenTox web services into workflows, build web
mashups, consume the web services via rich client appli-
cations, etc.
This paper describes a particular implementation of a

subset of OpenTox web services, based on the AMBIT
[14,15] project. AMBIT is an open source software for
chemoinformatics data management, which consists of a
database and functional modules, allowing a variety of
queries and data mining of the information stored in a
MySQL [16] database. The modules were initially
designed and developed to serve as building blocks of a
desktop application (AmbitXT), as per the requirements
of a CEFIC LRI [17] contract. The AmbitXT application
features a Swing graphical user interface, and provides a
set of functionalities to facilitate the evaluation and
registration of chemicals according to the REACH
requirements: for example workflows for analogue iden-
tification and assessment of Persistence, Bioaccumula-
tion, and Toxicity (PBT). The downloadable installer
includes a large database, covering all REACH registered
chemicals, as well as several publicly available datasets
featuring toxicity data. Users can also import their own
sets of chemical structures and data. Downloading and
running the application locally on the user machine is
usually considered an advantage, especially when hand-
ling confidential data. On the other hand, with the
growing popularity of the Web browser as a platform

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 3 of 18

for applications, cumbersome downloads of custom
desktop solutions are becoming less convenient nowa-
days and are even considered obsolete sometimes.
The AMBIT software was considerably enhanced

within the framework of the OpenTox project, not only
by providing an OpenTox API compliant REST web ser-
vice interface to most of its functionalities, but also by
adding the ability to describe data, algorithms, and
model resources via corresponding ontologies and to
build QSAR models. AMBIT REST web services are dis-
tributed as web archive (war file) and can be deployed
in an Apache Tomcat [18] application server or any
other compatible servlet [19] container. All Toxtree
[20,21] modules for predicting the toxicological hazard
of chemical compounds are also integrated within this
package and available as REST web services via the
OpenTox model API. In addition, a separate project
[22], implementing an OpenTox Ontology service, has
been created. It consists of a simple implementation of
a triple storage, exposing a SPARQL endpoint, and
allowing RESTful updates via HTTP POST and DELETE
commands.

Implementation
AMBIT is implemented in Java, uses a MySQL database
as backend, and relies on The Chemistry Development
Kit [23-25] for cheminformatics functionality. The
OpenTox API implementation introduces two additional
major dependencies, namely, the Restlet [26] library for
implementation of REST services, and the Jena [27]
RDF API. Apache Maven [28] is used for software pro-
ject management (organizing dependencies and building
of executables). The source code is available in a Sub-
version repository at the SourceForge site [29]. There
are two top level Maven projects, ambit2-all and
ambit2-apps, consisting of several sub-modules. The
first is used to organize and build modules, while
ambit2-apps uses these modules as dependencies and
builds the end user applications. The Toxtree source
code [30] also includes dependencies on some of the
ambit-all modules, and, on the other hand, is itself a
dependency of the end user applications, in which it has
been incorporated, such as AmbitXT and REST web
services. The entire package currently consists of 30
Maven modules. The larger number of modules (30,
compared to 21, as reported in the previous publication
[15] that describes the standalone application), is mostly
due to refactoring towards better organization of depen-
dencies and introduction of new algorithms. The REST
services implementation is organized in two modules,
ambit2-rest and ambit2-www; the first one contains gen-
eric REST and RDF functionality, while the second is an
implementation of the OpenTox API and builds the
web application used to run AMBIT REST services.

Table 1 provides a non-exhaustive overview of the
most important objects and operations of the OpenTox
API, implemented by the AMBIT services. The com-
plete description of the API [1] includes specifications
of the input parameters and the result codes. An up-to-
date version is available from the dedicated wiki at the
OpenTox web site [31]. Currently, there is no AMBIT
implementation of the OpenTox validation and report-
ing services; however, remote validation and reporting
services are compatible, and can be used to validate
models created via AMBIT services. Incorporation of
the Authentication and Authorization API is under
development.
The RDF representation of OpenTox objects is

defined by the OpenTox ontology. The current version
is available at http://www.opentox.org/api/1.1/opentox.
owl The namespace prefix used in this paper is “ot:”, e.
g. ot:Model refers to the http://www.opentox.org/api/
1.1/opentox.owl#Modelclass. OpenTox REST resources
are instances of the relevant RDF classes (e.g. http://
apps.ideaconsult.net:8080/ambit2/model/9 is an instance
of the ot:Model class). Appendixes 1 and 2 provide
examples how to retrieve the representations of an
OpenTox model and algorithm, respectively. As a conse-
quence of being exposed as REST web services, all
OpenTox objects URIs are dereferenceable. The exam-
ples provided in the Appendixes rely on the cURL [33]
command line tool for transferring data with URI syntax,
which supports all HTTP operations (as well as other
protocols). Any tool or programming language library,
supporting the HTTP protocol, can be used to communi-
cate with the OpenTox REST services. The examples use
live demo instances of the AMBIT implementation of the
services, but are also applicable, with minor trivial
changes, to any OpenTox compliant service.

Appendix 1: An example how to retrieve the
representation of an OpenTox model
curl -H “Accept:text/n3” http://apps.ideaconsult.
net:8080/ambit2/model/9
@prefix ot: <http://www.opentox.org/api/1.1#>.
@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-

schema#>.
<http://apps.ideaconsult.net:8080/ambit2/model/9>
a ot:Model ;
dc:title “XLogP” ;
ot:algorithm

<http://apps.ideaconsult.net:8080/ambit2/algorithm/
org.openscience.cdk.qsar.descriptors.molecular.
XLogPDescriptor>;

ot:predictedVariables
<http://apps.ideaconsult.net:8080/ambit2/feature/

22114>.

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 4 of 18

http://www.opentox.org/api/1.1/opentox.owl
http://www.opentox.org/api/1.1/opentox.owl
http://www.opentox.org/api/1.1/opentox.owl#Modelclass
http://www.opentox.org/api/1.1/opentox.owl#Modelclass
http://apps.ideaconsult.net:8080/ambit2/model/9
http://apps.ideaconsult.net:8080/ambit2/model/9
http://apps.ideaconsult.net:8080/ambit2/model/9
http://apps.ideaconsult.net:8080/ambit2/model/9
http://www.opentox.org/api/1.1#
http://purl.org/dc/elements/1.1/
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://apps.ideaconsult.net:8080/ambit2/model/9
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://apps.ideaconsult.net:8080/ambit2/feature/22114
http://apps.ideaconsult.net:8080/ambit2/feature/22114

<http://apps.ideaconsult.net:8080/ambit2/feature/
22114>.

a ot:Feature.
<http://apps.ideaconsult.net:8080/ambit2/algorithm/

org.openscience.cdk.qsar.descriptors.molecular.
XLogPDescriptor>

a ot:Algorithm

Appendix 2: An example how to retrieve the
representation of an OpenTox algorithm
curl -H “Accept:text/n3” \
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.

openscience.cdk.qsar.descriptors.molecular.
XLogPDescriptor
@prefix ot: <http://www.opentox.org/api/1.1#>.
@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-

schema#>.
@prefix bo: <http://www.blueobelisk.org/ontologies/

chemoinformatics-algorithms/#>.
@prefix xsd: <http://www.w3.org/2001/

XMLSchema#>.
@prefix ota: <http://www.opentox.org/algorithm-

Types.owl#>.
<http://apps.ideaconsult.net:8080/ambit2/algorithm/

org.openscience.cdk.qsar.descriptors.molecular.
XLogPDescriptor>

a ot:Algorithm, ota:DescriptorCalculation ;
dc:title “XLogP"^^xsd:string ;
bo:instanceOf bo:xlogP.

The examples provided in Appendixes 3 and 4 illus-
trate how processing is performed via HTTP operations.
The dataset_uri parameter refers to the ToxCast [34]
dataset, which consists of 320 chemicals, and is essen-
tially an example of batch processing via the OpenTox
API.

Appendix 3: An example of launching XLogP prediction
for a dataset
curl -H “Accept:text/uri-list” -X POST -d “dataset_ur-
i=http://apps.ideaconsult.net:8080/ambit2/dataset/112“ \
http://apps.ideaconsult.net:8080/ambit2/model/9 -v
< HTTP/1.1 202 Accepted
http://apps.ideaconsult.net:8080/ambit2/task/

232289a2-2ce8-4f2e-9a62-8db02887577b
Note that both the dataset and the models are accessed

indirectly via URIs, so the only data transferred on input
and output are those URIs, not actual content. The result
is a Task URI, and the HTTP return code 202 Accepted
is an indicator that the processing has not been com-
pleted yet. In case processing was completed, the return
code would have been OK 200 and the returned URI -
an ot:Dataset, where results could be retrieved.

Appendix 4: An example of polling the status of
asynchronous job (Task URI)
curl -i -H “Accept:text/uri-list” \
http://apps.ideaconsult.net:8080/ambit2/task/

232289a2-2ce8-4f2e-9a62-8db02887577b
HTTP/1.1 200 OK
http://apps.ideaconsult.net:8080/ambit2/dataset/112?

feature_uris[]=http%3A%2F%2Fapps.ideaconsult.net%
3A8080 %2Fambit2%2Fmodel%2F9%2Fpredicted
Finally, we retrieve the prediction results from the

URI shown in Appendix 4. The prediction results
(Appendix 5) are represented as ot:Dataset (e.g. table
with variable number of columns), which consists of
data entries (ot:DataEntry) relating compounds (e.g.
rows) to features (columns, ot:Feature). The table
“cells” are represented as instances of the ot:FeatureVa-
lue class. A short excerpt, consisting of only two data
entries (out of the total of 320 data entries included in
this particular dataset), is shown in Appendix 5.

Appendix 5: An example of prediction results retrieval by
HTTP GET command on URI, received as shown in
Appendix 4
curl -H “Accept:text/n3” \
“http://apps.ideaconsult.net:8080/ambit2/dataset/112?

feature_uris%5B%5D=http%3A%2F%2Fapps.ideaconsult.
net%3A8080%2Fambit2%2Fmodel%2F9%2Fpredicted“
@prefix ot: <http://www.opentox.org/api/1.1#>.
@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix: <http://apps.ideaconsult.net:8080/ambit2/>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-

schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix xsd: <http://www.w3.org/2001/

XMLSchema#>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syn-

tax-ns#>.
@prefix otee: <http://www.opentox.org/echaEnd-

points.owl#>.
[] a ot:Dataset ;
ot:dataEntry
[a ot:DataEntry ;
ot:compound http://apps.ideaconsult.net:8080/

ambit2/compound/147678/conformer/419677> ;
ot:values
[a ot:FeatureValue ;
ot:feature <http://apps.ideaconsult.net:8080/

ambit2/feature/22114> ;
ot:value “2.74"^^xsd:double
]

] ;
ot:dataEntry
[a ot:DataEntry ;

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 5 of 18

http://apps.ideaconsult.net:8080/ambit2/feature/22114
http://apps.ideaconsult.net:8080/ambit2/feature/22114
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://www.opentox.org/api/1.1#
http://purl.org/dc/elements/1.1/
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2001/XMLSchema#
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://apps.ideaconsult.net:8080/ambit2/dataset/112
http://apps.ideaconsult.net:8080/ambit2/model/9
http://apps.ideaconsult.net:8080/ambit2/task/232289a2-2ce8-4f2e-9a62-8db02887577b
http://apps.ideaconsult.net:8080/ambit2/task/232289a2-2ce8-4f2e-9a62-8db02887577b
http://apps.ideaconsult.net:8080/ambit2/dataset/112?feature_uris[]=http%3A%2F%2Fapps.ideaconsult.net%3A8080 %2Fambit2%2Fmodel%2F9%2Fpredicted
http://apps.ideaconsult.net:8080/ambit2/dataset/112?feature_uris[]=http%3A%2F%2Fapps.ideaconsult.net%3A8080 %2Fambit2%2Fmodel%2F9%2Fpredicted
http://apps.ideaconsult.net:8080/ambit2/dataset/112?feature_uris[]=http%3A%2F%2Fapps.ideaconsult.net%3A8080 %2Fambit2%2Fmodel%2F9%2Fpredicted
http://apps.ideaconsult.net:8080/ambit2/dataset/112?feature_uris%5B%5D=http%3A%2F%2Fapps.ideaconsult.net%3A8080%2Fambit2%2Fmodel%2F9%2Fpredicted
http://apps.ideaconsult.net:8080/ambit2/dataset/112?feature_uris%5B%5D=http%3A%2F%2Fapps.ideaconsult.net%3A8080%2Fambit2%2Fmodel%2F9%2Fpredicted
http://apps.ideaconsult.net:8080/ambit2/dataset/112?feature_uris%5B%5D=http%3A%2F%2Fapps.ideaconsult.net%3A8080%2Fambit2%2Fmodel%2F9%2Fpredicted
http://www.opentox.org/api/1.1#
http://purl.org/dc/elements/1.1/
http://apps.ideaconsult.net:8080/ambit2/
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.opentox.org/echaEndpoints.owl#
http://www.opentox.org/echaEndpoints.owl#
http://apps.ideaconsult.net:8080/ambit2/compound/147678/conformer/419677
http://apps.ideaconsult.net:8080/ambit2/compound/147678/conformer/419677
http://apps.ideaconsult.net:8080/ambit2/feature/22114
http://apps.ideaconsult.net:8080/ambit2/feature/22114

ot:compound <http://apps.ideaconsult.net:8080/
ambit2/compound/2146/conformer/419678> ;

ot:values
[a ot:FeatureValue ;
ot:feature <http://apps.ideaconsult.net:8080/

ambit2/feature/22114> ;
ot:value “1.59"^^xsd:double
]

].
<http://apps.ideaconsult.net:8080/ambit2/algorithm/

org.openscience.cdk.qsar.descriptors.molecular.
XLogPDescriptor>

a ot:Algorithm.
<http://apps.ideaconsult.net:8080/ambit2/feature/

22114>
a ot:Feature, ot:NumericFeature ;
dc:title “XLogP” ;
ot:hasSource

<http://apps.ideaconsult.net:8080/ambit2/algorithm/
org.openscience.cdk.qsar.descriptors.molecular.XLogP-
Descriptor> ;

= otee:ENDPOINT_Octanol-
water_partition_coefficient.
The Ontology Service is a separate project, which

does not depend on AMBIT modules, and which com-
piles into a different web application. It currently uses
the Jena TDB [35] persistence mechanism, and was initi-
ally designed as a proof-of-concept service to illustrate
the added value of gathering RDF triples of several
remote OpenTox services into the same triple storage
and enabling SPARQL queries. According to our experi-
ence, the performance of the TDB storage, especially
when embedded as a web service and being concur-
rently accessed by many users, is not optimal, and other
available solutions are being evaluated. Currently, it is
planned to use the ontology service as a registry of all
deployed OpenTox services (both local and remote).
AMBIT REST services is a web application that

includes all resources listed in Table 1 except the ontol-
ogy service. All OpenTox objects are implemented as
subclasses of org.restlet.resource.ServerResource [36], and
reside in the ambit-www module, which compiles into a
single web archive (ambit2.war). The Algorithm and
Task resources are implemented as in-memory objects.
Compounds, Features, Datasets, and Models rely on a
MySQL database backend. The common architecture is
as follows.
GET operations
The ServerResource receives input parameters and cre-
ates a query object, which encapsulates the database
query. The query object could be as simple as the defi-
nition of a resource retrieval by its primary key or it
could represent more complex queries like searching by
several parameters, similarity search, or substructure

search (SMARTS) pre-screening. The query object is
processed by a generic “batch processing” class, which
retrieves domain objects (e.g. compounds, features, data-
sets, dataset entries, or models) one by one, applies
further processing if necessary, and serializes back from
the server to the client the resource representation in
the desired format by a “reporter” class. This setup
allows for easy handling of new query types (by adding
new query classes) and for adding many serialization
formats (by writing new reporter classes). The supported
MIME types for datasets (besides the mandatory appli-
cation/rdf+xml) currently are: chemical/x-mdl-sdfile,
text/n3, application/x-turtle, chemical/x-mdl-molfile,
chemical/x-cml, chemical/x-daylight-smiles, chemical/x-
inchi, text/x-arff, application/pdf, text/uri-list, text/csv,
text/plain. Experimental support for YAML and JSON is
also available. The most efficient implementation of a
“reporter” class is to serialize the domain objects into
the stream immediately after receiving them, without
keeping the objects, or any related data, in memory.
Unfortunately, when Jena is used to generate a RDF
representation of a domain object, it requires building
the entire RDF triple model prior to serialization. To
avoid this overhead, the dataset RDF/XML serialization
was re-implemented to use the Streaming API for XML
(StAX) [37], resulting in reduced response time of data-
set retrieval (2-10 times improvement, depending on the
size of the dataset).
POST and PUT operations
Instances of ServerResource receive input parameters,
create a task resource, put it into an execution queue,
and immediately return the task URI and representation
in the requested MIME type to the client. The execution
queue consists of java.util.concurrent.Ca llable objects
[38], while completed tasks are light objects, containing
only input and output URIs. The result, as per the
OpenTox REST API, is always a URI: either represent-
ing the result, or an intermediate Task object. The tasks
are available via the Task service (Table 1), and are
used, via GET, for accessing either the status of a unfin-
ished task, or the URI of the results - for the completed
ones. This defines a generic processing scheme where,
for implementing new type of processing (e.g. integrat-
ing a new algorithm), it is sufficient to subclass the Ser-
verResource and attach the specific type of Callable
object that implements the new algorithm.
POST and PUT on datasets, compounds, and feature

resources are used to create new resources or update
the content of existing ones, and always return the URI
of the new resources or the URI of the updated ones.
POST on machine learning algorithms (e.g. regression,
classification, or clustering) creates a new model
resource and returns its URI. The representation of a
model URI can be retrieved via GET to inspect the

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 6 of 18

http://apps.ideaconsult.net:8080/ambit2/compound/2146/conformer/419678
http://apps.ideaconsult.net:8080/ambit2/compound/2146/conformer/419678
http://apps.ideaconsult.net:8080/ambit2/feature/22114
http://apps.ideaconsult.net:8080/ambit2/feature/22114
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://apps.ideaconsult.net:8080/ambit2/feature/22114
http://apps.ideaconsult.net:8080/ambit2/feature/22114
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.XLogPDescriptor

Table 1 Summary of the OpenTox API, implemented by AMBIT REST services. {service} defaults to “ambit2”.

1. Chemical compound http(s)://host:port/{service}/compound/{id}

GET Retrieves a representation of the chemical compound (in Chemical MIME [32] formats or image/* formats)

PUT Updates the chemical compound

POST Creates a new chemical compound, returns the URI of the new chemical compound

DELETE Deletes the chemical compound

2. Features (or properties) of chemical compounds http(s)://host:port/{service}/feature/{id}

GET Retrieves a representation of the property (RDF representation of the ot:Feature class)

PUT Updates the property representation

POST Creates a new property, returns a URI of the new property

DELETE Deletes the property

3. Datasets of chemical compounds http(s)://host:port/{service}/dataset/{id}

GET Retrieves a representation of the dataset (RDF representation of the ot:Dataset class, or Chemical MIME formats)

PUT Updates the dataset (adds new compounds and/or properties)

POST Creates a new dataset (e.g. uploads a file, which is transformed into a dataset). Returns the new dataset URI, or a Task URI for long running
jobs. Parameters are expected in the body of the POST command, several formats are supported via the “Content-type” HTTP header,
including RDF and chemical MIME formats.

DELETE Deletes the dataset

4. Algorithms http(s)://host:port/{service}/algorithm/{id}

GET Retrieves a representation of the algorithm (RDF representation of the ot:Algorithm class)

POST • Given a compound URI, or a dataset URI as input parameter, launches the processing algorithm and returns the URI of the dataset,
containing the results, or returns a Task URI for long running jobs.

• If the algorithm is a machine learning one, given a dataset URI as input parameter, builds a new predictive model and returns the Model
URI, or the Task URI.

• Parameters are expected in the body of the POST command, in “application/x-www-form-urlencoded” MIME format.

• A common required parameter is dataset_uri = http://host:port/{service}/dataset/{datasetid}, which specifies the data set to be operated
on.

5. Models http(s)://host:port/{service}/model/{id}

GET Retrieves a representation of the model (RDF representation of the ot:Model class)

POST • Given a compound URI, or a dataset URI as input parameter, applies the predictive model, and returns the URI of the dataset, containing
the predictions, or a Task URI for long running jobs.

• Parameters are expected in the body of POST command, in “application/x- www-form-urlencoded” MIME format.

• A common required parameter (in the body of the POST command is dataset_uri = http://host:port/{service}/dataset/{datasetid}, which
specifies the data set to be operated on.

DELETE Deletes the model

6. Task http(s)://host:port/{service}/task/{id}

GET Retrieves a representation of the task (RDF representation of the ot:Task class). The task status can be one of Queued, Running, Cancelled,
Error or Completed.

DELETE Cancels the task

7.Query for compounds http(s)://host:port/{service}/query/compound/{identifier}/{results}

GET Returns compounds, features and feature values, matching the submitted search criteria, in supported formats (dataset representation in
RDF, SDF, MOL or SMILES format), according to the mime type requested by the corresponding Accept header:

• identifier - any name, formula, registry identifier, InChI , SMILES, or predefined string “url“; if the string “url“ is used, a query parameter is
expected ?search=<compound url>

• results - predefined strings: ’names’, ’stdinchi’, ’all’, ’smiles’, ’stdinchikey’

8. Ontology http(s)://host:port/ontology

GET Submits a SPARQL query and retrieves the result in “application/sparql-results+xml” format. Requires an input parameter query = “SPARQL”

POST Submits a SPARQL query and retrieves the result in “application/sparql-results+xml” format. Requires an input parameter query = “SPARQL”
in the message body in “application/x-www-form- urlencoded” MIME format. Useful for submitting long queries that might exceed the
supported URI length.

POST Reads the RDF representation of an OpenTox object and adds it into the triple storage. Requires input parameter uri=“OpenTox resource URI“

DELETE Deletes all RDF triples that refer to a given URI. Requires an input parameter uri=“OpenTox resource URI“

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 7 of 18

model details (e.g. training dataset, independent vari-
ables, specific parameters). POST on a model URI cre-
ates a new dataset, containing prediction results, and
returns its URI. Returning the URI of a subordinate
resource upon POST is in compliance with REST
recommendations (and HTTP specifications [6]), as the
content of the result URI could be later accessed via
GET, obeying the cacheability constraint of the architec-
ture. Neither REST nor HTTP strictly defines the mean-
ing of “subordinate” resource; we however consider the
OpenTox API interpretation compliant to the REST
architecture, because in all of the cases, presented
above, POST on a resource creates a new dependent
resource, and is defined in a uniform manner. An
important difference to remote procedure call (RPC)
based architectures is that the client does not send the
complete data to be processed; the processing service
receives only the data URI, which it uses to retrieve the
appropriate representation when it needs the data. The
distinction between information resources and their
representations, which is considered a key feature of
REST, enables the processing resource to choose the
most appropriate representation (i.e. no additional data
conversion is necessary!) and keep track of the data pro-
venance by simply referring to the data URI and its rele-
vant metadata. This design also allows to dynamically
generate predictive models, immediately making them
available online, and maintaining in the underlying
representation of linked resources all the information
required to reproduce the model building process,
which was one of the initial design goals of the Open-
Tox framework.
The results of applying the REST constraints to infor-

mation processing elements, like data analysis algo-
rithms, leads to a change in the way of thinking,
modelling, implementing, and perceiving data proces-
sing. From a point of view of the REST architecture, a
data processing algorithm is just another resource that
retrieves data, given its identifier, and creates a resulting
resource with another identifier. The difference between
the data and processing elements vanishes.
DELETE operations
Usually implemented by deleting objects from the data-
base backend, the integrity is managed via a standard
relational database foreign keys mechanism. Integrity
between local and remote objects is not addressed. If a
local object refers to a remote OpenTox object, e.g. pre-
dictions stored as an AMBIT dataset by a remote
model, and the remote model service becomes unreach-
able, this will not be reflected in any way. This is similar
to the generic problem of broken hyperlinks on the
Web and might be addressed in future by some suitable
keep-alive or synchronization mechanism.

RDF input/output
Jena in-memory models are used to read incoming
RDF data and to serialize domain objects into RDF for-
mats. The lack of streaming RDF readers and writers is
a major disadvantage for the use of RDF for data trans-
fer. A possible workaround is to introduce a persistent
RDF storage, but the performance gain has still to be
evaluated. Another disadvantage of making domain
objects available in RDF is the lack of support from
most popular scripting languages, used to build web
applications (e.g. JavaScript). As a workaround, JSON
(Java Script Object Notation) [39] serialization of RDF
is considered, and although many proposals and imple-
mentations exist, there is currently no standard for
JSON serialization. Two of the existing JSON libraries
have been evaluated, with the results not encouraging -
the volume of the JSON representation is comparable
to that of RDF/XML, and the same is true for the cor-
responding memory consumption. Possible work-
arounds are either to build client applications in
programming languages with good RDF support or to
provide alternative formats with efficient streaming
support. Fortunately, the REST architecture natively
supports multiple representations per resource, which
allows using the most appropriate format for carrying
out a particular task.
A clear advantage of the availability of RDF represen-

tations for the OpenTox objects, data, algorithms, and
models is that it allows to combine easily the RDF
representations of remote resources into a standard tri-
ple storage, annotating and cross-linking objects with
terms from existing ontologies. Publishing a dataset of
chemical structures and their properties as linked data
becomes as straightforward, as uploading a sdf file into
an OpenTox dataset service, with optional subsequent
annotation of property tags.

Results and Discussion
We have implemented a large subset of the OpenTox
API in the open source AMBIT REST package, and
have made it available both as live demo online services
and as a downloadable package, allowing third parties to
install and run separate instances of the services, either
on Intranet or publicly on the Internet.
The major advantage is the ability of the framework to

hide implementation details and offer diverse functional-
ity via a uniform application programming interface,
which, while generic, allows encapsulating very diverse
data and predictive algorithms and allows seamless inte-
gration of remote services. Additionally, representing
domain objects via the Resource Description Framework
allows to explicitly assert relationships between data and
data generation processes.

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 8 of 18

Uniform access to data
The OpenTox compound and dataset API provide gen-
eric means to access chemical compounds and aggregate
various data. Chemical compounds are assigned unique
URIs, and can be retrieved, created, or deleted via
HTTP POST, PUT and DELETE commands, submitted
to the compound service http://host:port/{service}/com-
pound. The GET command returns a representation of
the chemical compound in a specified MIME format
(Appendix 6). Changing the MIME format in this exam-
ple will return the representation of the compound
in that format, making the service essentially work as a
format converter.

Appendix 6: An example of retrieving a compound in a
specified format (Chemical MIME for SMILES in this
example)
curl -H “Accept:chemical/x-daylight-smiles” http://apps.
ideaconsult.net:8080/ambit2/compound/1
O=C
The concept of a dataset of chemical compounds is

central to the OpenTox web services functionality. Algo-
rithm services accept a dataset URI in order to build a
model or to generate descriptor values. Model services
accept a dataset URI in order to apply a model and
obtain predictions. Predictions are also returned as a
dataset URI, whose contents could be subsequently
retrieved (Appendix 5). Search results (by identifiers,
similarity, or substructure), are available as datasets
as well.
The OpenTox Dataset (ot:Dataset class) can be

thought of as a file of chemical compounds, along with
their properties, which is identified (and referred to) by
a unique web address, instead of a filename, and can be
read and written remotely. The dataset POST operation
allows uploading datasets in RDF representation, as well
as files with chemical structures with arbitrary set of
fields. AMBIT services do not restrict entering and
uploading data to predefined fields only. Instead, arbi-
trary data can be imported, and later annotated to estab-
lish the semantics of the fields. When uploading data in
RDF format, the client has full control of the fields’
representation. This is a substantial improvement over
most of the current practices with popular chemical for-
mats, which usually involve describing the meaning of
the fields in separate documents, targeted at human
readers; sadly, this approach tends to lead to quite fre-
quent peculiarities.

Appendix 7: A RDF representation of a single entry from
the DSSTox Carcinogenic Potency Database dataset
@prefix ot: <http://www.opentox.org/api/1.1#>.
@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix: <http://apps.ideaconsult.net:8080/ambit2/>.

@prefix otee: <http://www.opentox.org/echaEnd-
points.owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-

schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.
@prefix xsd: <http://www.w3.org/2001/

XMLSchema#>.
@prefix ac: <http://apps.ideaconsult.net:8080/ambit2/

compound/>.
@prefix ad: <http://apps.ideaconsult.net:8080/ambit2/

dataset/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syn-

tax-ns#>.
@prefix af: <http://apps.ideaconsult.net:8080/ambit2/

feature/>.
af:21611
a ot:Feature ;
dc:title “ActivityOutcome_CPDBAS_Mutagenicity” ;
ot:hasSource ad:10 ;
= otee:Mutagenicity.

af:21604
a ot:Feature ;
dc:title “TD50_Dog_mg” ;
ot:hasSource ad:10 ;
ot:units “mg” ;
= otee:ENDPOINT_Carcinogenicity.

ac:144089
a ot:Compound.

ad:10
a ot:Dataset ;
ot:dataEntry
[a ot:DataEntry ;
ot:compound ac:144089 ;
ot:values
[a ot:FeatureValue ;
ot:feature af:21604 ;
ot:value “blank"^^xsd:string
] ;

ot:values
[a ot:FeatureValue ;
ot:feature af:21611 ;
ot:value “active"^^xsd:string
]

].
A simple example is representing carcinogenicity data

from two public datasets, DSSTox CPDBAS: Carcino-
genic Potency Database [40] (Appendix 7) and ISSCAN:
Chemical Carcinogens Database [41]. Both datasets are
available as sdf files, with fields described in human
readable documents. The outcome of the carcinogenicity
study is represented in the “ActivityOutcome“ field in
CPDBAS (with allowed values “active”, “unspecified”,
“inactive“), while in ISSCAN, a numeric field named
“Canc“ is used with allowed value of 1, 2, or 3. The

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 9 of 18

http://apps.ideaconsult.net:8080/ambit2/compound/1
http://apps.ideaconsult.net:8080/ambit2/compound/1
http://www.opentox.org/api/1.1#
http://purl.org/dc/elements/1.1/
http://apps.ideaconsult.net:8080/ambit2/
http://www.opentox.org/echaEndpoints.owl#
http://www.opentox.org/echaEndpoints.owl#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2001/XMLSchema#
http://apps.ideaconsult.net:8080/ambit2/compound/
http://apps.ideaconsult.net:8080/ambit2/compound/
http://apps.ideaconsult.net:8080/ambit2/dataset/
http://apps.ideaconsult.net:8080/ambit2/dataset/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://apps.ideaconsult.net:8080/ambit2/feature/
http://apps.ideaconsult.net:8080/ambit2/feature/

description of the numbers (3 = carcinogen; 2 = equivo-
cal; 1 = noncarcinogen) is only available in a separate
“Guidance for Use” pdf file. Ideally, toxicity prediction
software should offer comparison between the data and
models, derived from both datasets, which is currently
impossible without involving human efforts to read the
guides and establish the semantic correspondence
between the relevant data entries if and when possible.
Moreover, every toxicity prediction package has to do
the same. The two files in the example are selected only
because they are publicly available and widely known.
This is a typical scenario of the current state of repre-
senting toxicity data. Even if the toxicity data is highly
structured within a commercial or in-house database,
the usual practice for exchanging it is through export
into unstructured file formats. ToxML [42] is a notable
example of an attempt of a structured file format for
data exchange in toxicology, but it has not yet been
adopted beyond its original authors, even though there
are ongoing efforts in this direction [43]. There are a
variety of relevant ontology development efforts [44,45],
but these are in most cases done in a different context,
and are only partially applicable to representations of
toxicology studies.
Being aware of the lack of standards in this area, the

authors of the OpenTox API have designed it in a way
to provide a generic approach towards data representa-
tion, keeping the flexibility of importing arbitrary named
fields, but still allowing assignment of computer read-
able annotations to the fields. This is illustrated in
Appendixes 8 and 9.

Appendix 8: A RDF representation of the “Canc” field of
the ISSCAN dataset, available via AMBIT services and
OpenTox API (prefixes are the same as in Appendix 7,
and therefore omitted)
ad:9 a ot:Dataset ;

rdfs:seeAlso “http://www.epa.gov/NCCT/dsstox/
sdf_isscan_external.html“ ;

dc:source “ISSCAN_v3a_1153_19-
Sept08.1222179139.sdf” ;

dc:title “ISSCAN: Istituto Superiore di Sanita, CHE-
MICAL CARCINOGENS: STRUCTURES AND
EXPERIMENTAL DATA”.
af:21573
a ot:Feature ;
dc:title “Canc” ;
ot:hasSource ad:9 ;
= otee:ENDPOINT_Carcinogenicity.

The fields in sdf files and other formats can contain
arbitrary attributes, which are represented as instances
of the ot:Feature class from the OpenTox ontology.
Every feature is identified by a unique URI, which is
hosted at a feature service (http://host:port/{service}/

feature) and is dereferenceable (a representation of the
feature can be retrieved through a GET command). The
RDF representation includes a feature name (via dc:title
property), units (via ot:units property), and a link to the
resource (via ot:hasSource) that was used to generate
this property or where it was originally read from. Cur-
rently, the range of ot:hasSource property is defined to
be one of ot:Algorithm, ot:Model, or ot:Dataset. Using
the owl:sameAs property, it is possible to assert that an
instance of the ot:Feature class is the same as another
resource, defined in some other ontology. An example is
shown in Appendix 8, where the feature af:21573 is
asserted to be the same as the otee:ENDPOINT_Carci-
nogenicity individual from a simple ontology [1] that
enables the representation of physicochemical properties
and toxicology endpoints as defined in the ECHA gui-
dance document [46]. The same approach, as well as
using the rdf:type property, can be applied to assign
more elaborate representations of toxicity studies to a
particular feature, provided that an ontology describing
the study exists. This technique is used to represent the
ToxCast data in AMBIT services, and enables linking
and querying related entries from the GO ontology [47].

Appendix 9: A RDF representation of a subset of fields of
the CPDBAS dataset, available via AMBIT services and
OpenTox API (prefixes are the same as in Appendix 7,
and therefore omitted)
af:21603

a ot:Feature ;
dc:title “STRUCTURE_MolecularWeight” ;
ot:hasSource ad:10 ;
= <http://example.org#an-ontology-entry-repre-

senting-molecular-weight>.
af:21607
a ot:Feature ;
dc:title “STRUCTURE_ChemicalName_IUPAC” ;
ot:hasSource ad:10 ;
= <http://example.org#an-ontology-entry-repre-

senting-IUPAC name>.
af:21610
a ot:Feature ;
dc:title “ActivityOutcome_CPDBAS_Rat” ;
ot:hasSource ad:10 ;
= otee:ENDPOINT_Carcinogenicity.

ad:10
a ot:Dataset ;
rdfs:seeAlso “http://www.epa.gov/NCCT/dsstox/

sdf_cpdbas.html“ ;
dc:title “CPDBAS: Carcinogenic Potency Database

Summary Tables - All Species”.
Instances of the ot:Feature class (Appendix 9) are used

to represent arbitrary properties, including chemical
identifiers (e.g. STRUCTURE_ChemicalName_IUPAC),

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 10 of 18

http://www.epa.gov/NCCT/dsstox/sdf_isscan_external.html
http://www.epa.gov/NCCT/dsstox/sdf_isscan_external.html
http://www.epa.gov/NCCT/dsstox/sdf_cpdbas.html
http://www.epa.gov/NCCT/dsstox/sdf_cpdbas.html

properties like molecular weight (e.g. STRUCTURE_Mo-
lecularWeight), or calculated descriptors (Appendix 5)
and model predictions (Appendix 11). If ot:hasSource
points to an OpenTox algorithm or model URI, it could
be directly used to launch the calculations for any new
compound or dataset by simply initiating a HTTP
POST to this URI, with an input parameter, pointing to
the compound or dataset. This ensures keeping track of
all the processing steps performed by the OpenTox ser-
vices, and provides sufficient information to reproduce
or repeat the calculations (Appendix 5). Features can be
deleted by sending a DELETE command to the feature
service, and created or updated via POST and PUT
commands by providing a RDF representation as an
input parameter. AMBIT services automatically create
features when a dataset is being uploaded. If the
uploaded dataset is not in RDF format, the features are
generated with dc:title equal to the field name in the file
and ot:hasSource property linking to the dataset, the
combination of both properties used as a unique key.
The features representation can be modified and anno-
tated later by sending an appropriate RDF representa-
tion to the feature URI via a HTTP PUT command.
The use of dynamically generated and dereferenceable

URIs for RDF resource identifiers differs from the classic
recommendation of using “stable” identifiers from a pre-
defined ontology. However, we consider the dynamically
generated RDF graph an advantage of OpenTox services,
and, moreover, it does not preclude linking dynamically
generated resources with equivalent resources that have
stable identifiers, if such exist. For example, features are
expected to be associated via owl:sameAs links with
stable identifiers, describing specific chemical properties.
Arbitrary RDF statements, including both dynamically
generated and stable resources could be added as well.
The dynamically generated RDF representations allow
quickly publishing information in RDF format and mak-
ing it available online. Models and predictions also
immediately become available as RDF resources online,
and include live local and remote links, keeping track of
the provenance (how predictions have been calculated
and where the data came from). Given the availability of
the OpenTox services as open source, anybody inter-
ested could run an instance of the services themselves,
for as long as necessary. Because of the interoperable
and distributed design, multiple instances of services
running at multiple places could communicate and gen-
erate dynamically linked data. The URIs and addresses
of networking resources generally don’t have infinite
lifetime, but this is not considered disadvantage for the
World Wide Web, where, if any piece of the dynamic
infrastructure is perceived important - for economic or
any other reasons - it will certainly remain available for
longer than average. The fact that HTTP URIs are

transient and dependent on the service location is a
consequence of the early Internet design as a medium
for host-to-host communication, rather than one for
data access, and also of the lack of location independent
application names in Internet protocols [48]. Revising
the current status of network resources naming towards
persistent and self-certifying names and content-
oriented networking is a field of active research nowa-
days, and may render the disputes about dereference-
ability and stability of resource identifiers irrelevant in
future.
Finally, it is trivial to retrieve the RDF representations

from an arbitrary set of geographically distributed ser-
vices. It is equally easy to create a snapshot of the con-
tent of a given subset of services of particular interest,
either for archiving purposes, or in order to import it
into a RDF triple storage and expose it via a SPARQL
endpoint.
We support the view [49,50] that the current practice

of aggregating data via loading RDF dumps into a single
triple store is not always the best approach, but rather a
temporary solution, until emerging technologies for dis-
tributed querying and reasoning become more efficient
and scalable enough to eliminate the need of centralized
data stores. Meanwhile, web services as the OpenTox
REST ones, that provide dynamically generated RDF
data via resolvable identifiers, can be crawled in a simi-
lar way as search engines crawl the web. However, there
is the additional benefit of results being retrieved and
reasoning performed over structured data, instead of
just analysing keywords and links as popular search
engines typically operate today.

Uniform approach to data processing, model building,
and predictions
The ability to represent data in a generic way, as
explained above, greatly simplifies data processing. The
latter can be described as the following three simple
steps:

1. Read data from a web address, representing an ot:
Compound or an ot:Dataset instance;
2. Perform processing; store results as ot:Dataset
representation (e.g. ot:FeatureValue instances);
3. Write the ot:Dataset RDF representation to an
OpenTox data service; return the URI of the result-
ing dataset.

The OpenTox API specifies two classes that perform
processing - ot:Algorithm and ot:Model, supported by
http://host:port/{service}/algorithm and http://host:port/
{service}/model services, respectively. The lists of avail-
able algorithms can be retrieved by a GET command.
The type of the algorithm is specified by sub-classing

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 11 of 18

the algorithm instance from the respective class in the
Algorithm types ontology [1]. Two major types of algo-
rithms are data processing ones and model building
algorithms.
Models are generated by the respective algorithms,

given specific parameters and data. The process of
model creation (e.g. using statistical algorithm to build
a model) is initiated by sending a POST command to
the algorithm service (example available in the Support-
ing Information [Additional file 1]), and involves the fol-
lowing steps:

1. Optionally read data from a web address, repre-
senting an ot:Dataset instance;
2. Create a model; describe it as an ot:Model
instance; this includes specifying ot:Feature instances
that contain the results, via the ot:predictedVariables
property, as well as linking any independent and tar-
get variables via the ot:independentVariables and the
ot:dependent variables properties;
3. Assign a unique URI to the model, and return the
URI;
4. A POST command to the model URI, with a data-
set or compound URI as input parameter, could be
later used to calculate predictions.

This architecture turns out to be successful in encap-
sulating different algorithms and models in a single API.
A summary of the algorithms, included in AMBIT
REST services, is shown in Table 2 and the full list can
be retrieved originally from http://apps.ideaconsult.
net:8080/ambit2/algorithm or from http://host:port/
ambit2/algorithm in any other installation of the
ambit2.war.
Most of the algorithms (except Weka and Toxtree) are

considered data processing algorithms, and accept a
dataset URI as input parameter, returning URI of the
resulting dataset. The calculated values are included as
feature values, as explained above. The structure optimi-
zation algorithm returns a dataset with links to the new
3D structures. SMARTCyp and SOME algorithms
return their results as features as well, but the features
represent calculated atomic properties. The MCSS algo-
rithm accepts a dataset and creates a model, containing
a set of maximum common substructures. The model
could be further applied to new datasets or compounds.
The superservice is an algorithm, which encapsulates
descriptor calculation and model prediction, by automa-
tically identifying which descriptors are required by a
given model, launching the calculation, and, when
results are available, applying the model itself. Toxtree
algorithms are implemented as a model building algo-
rithm, although being fixed rules and not requiring a
training dataset. Thus, upon installation of the web

application, the Toxtree model needs to be created by
sending a HTTP POST to the corresponding algorithm.
The Weka algorithms are selected to be representative
of regression, classification, and clustering algorithms.
They accept a dataset URI and a feature URI (referring
to the target variable), and generate a model URI, as
specified in the API. The implementation of Weka algo-
rithms as OpenTox REST services is a generic one;
inclusion of all algorithms, available in the Weka pack-
age, is just a matter of configuration, and the list will be
extended in future releases. The RDF representation of
all algorithms and models can be retrieved by submit-
ting a GET command.

Registering data, algorithms and models; SPARQL query
The OpenTox ontology service provides a place for regis-
tering OpenTox resources, running at remote places, as
well as searching capabilities via SPARQL. Registering a
resource into the ontology service requires sending a
POST command to the service, with a parameter, point-
ing to the resource being registered (see Supporting
Information [Additional file 1]). This allows a model, cre-
ated by a remote service, to become available to any
application that can send relevant queries to the ontology
service. The registered resources and their properties
could be retrieved via the service SPARQL endpoint
(Appendix 10). Adding query conditions may restrict the
search to models of specific type (e.g. regression) or toxi-
cology endpoint of interest (e.g. carcinogenicity).

Appendix 10: An example of retrieving information about
a specific model (X and Y variables; learning algorithm;
variables, containing the predictions; endpoints)
PREFIX ot: <http://www.opentox.org/api/1.1#>
PREFIX ota: <http://www.opentox.org/algorithms.

owl#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-

schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syn-

tax-ns#>
PREFIX otee: <http://www.opentox.org/echaEnd-

points.owl#>
SELECT ?Model ?algorithm ?xvars ?descriptorAlgo-

rithms ?yvars ?endpoints ?predicted
WHERE {
?Model rdf:type ot:Model.

OPTIONAL {?Model dc:title ?title }.
OPTIONAL {
?Model ot:algorithm ?algorithm.
?algorithm rdf:type <http://www.opentox.org/

algorithmTypes.owl/#Regression>.
}.

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 12 of 18

http://apps.ideaconsult.net:8080/ambit2/algorithm
http://apps.ideaconsult.net:8080/ambit2/algorithm
http://www.opentox.org/api/1.1#
http://www.w3.org/2002/07/owl#
http://purl.org/dc/elements/1.1/
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.opentox.org/echaEndpoints.owl#
http://www.opentox.org/echaEndpoints.owl#

OPTIONAL {
?Model ot:independentVariables ?xvars.
OPTIONAL {?xvars ot:hasSource ?descriptorAlgo-

rithms. }.
}.
OPTIONAL {
?Model ot:dependentVariables ?yvars.
OPTIONAL {?yvars owl:sameAs ?endpoints. }.

}.
OPTIONAL {
?Model ot:predictedVariables ?predicted.
OPTIONAL {?predictions owl:sameAs ?endpoints.

}.
}.

}
Any number of ontology services can be installed, thus

allowing clustering and querying resources of interest to
specific applications. Policies and access rights for pro-
tecting the resources are currently under development.
Alternatively, a RDF triple storage of choice could be
used to aggregate resources, generated by different
implementations of OpenTox services.
A RDF graph, describing two models (tumm:TUMO-

penToxModel_kNN_92 and am:33), running on remote
services and using the same training dataset (ot:training-
Dataset ad:R545) and descriptors (ot:independentVari-
ables af:22213, af:22137, af:22252, af:22127; the link to
the descriptor calculation service shown only for the
af:22127), hosted and calculated by AMBIT services, is
provided in Appendix 11.

Appendix 11: A RDF graph, representing two remote
models, using the same training dataset (the RDF content
was aggregated by retrieving the RDF representations of
multiple web services, and is available as Supporting
Information [Additional file 2])
@prefix: <http://apps.ideaconsult.net:8080/ambit2/>.
@prefix ot: <http://www.opentox.org/api/1.1#>.
@prefix dc: <http://purl.org/dc/elements/1.1/>.
@prefix tuma: <http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/algorithm/>.
@prefix tumm: <http://opentox.informatik.tu-

muenchen.de:8080/OpenTox-dev/model/>.
@prefix ota: <http://www.opentox.org/algorithm-

Types.owl#>.
@prefix otee: <http://www.opentox.org/echaEnd-

points.owl#>.
@prefix bo: <http://www.blueobelisk.org/ontologies/

chemoinformatics-algorithms/#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-

schema#>.
@prefix am: <http://apps.ideaconsult.net:8080/

ambit2/model/>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

@prefix xsd: <http://www.w3.org/2001/
XMLSchema#>.
@prefix ac: <http://apps.ideaconsult.net:8080/ambit2/

compound/>.
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syn-

tax-ns#>.
@prefix ad: <http://apps.ideaconsult.net:8080/ambit2/

dataset/>.
@prefix ag: <http://apps.ideaconsult.net:8080/ambit2/

algorithm/>.
@prefix af: <http://apps.ideaconsult.net:8080/ambit2/

feature/>.
tumm:TUMOpenToxModel_kNN_92
a ot:Model ;
dc:title “OpenTox model created with TUM’s

kNNregression model learning web service.” ; ot:algo-
rithm tuma:kNNregression ;

ot:dependentVariables
af:22200 ;

ot:independentVariables
af:22213, af:22137, af:22252, af:22127 ;

ot:predictedVariables
af:27501 ;

ot:trainingDataset ad:R545.
am:33
a ot:Model ;
dc:title “Caco-2 Cell Permeability” ;
ot:algorithm ag:LR ;
ot:dependentVariables
af:22200 ;

ot:independentVariables
af:22213, af:22137, af:22252, af:22127 ;

ot:predictedVariables
af:26182 ;

ot:trainingDataset ad:R545.
ag:LR

a ot:Algorithm, ota:Supervised, ota:EagerLearning,
ota:SingleTarget, ota:Regression;

dc:title “Linear regression"^^xsd:string.
af:22127
a ot:Feature ;
dc:title “FPSA-2” ;
ot:hasSource

<http://apps.ideaconsult.net:8080/ambit2/algorithm/
org.openscience.cdk.qsar.descriptors.molecular.CPSADe-
scriptor >.

Linked resources
Uploading data and running calculations via the Open-
Tox API and its implementation by AMBIT services
generates a multitude of linked resources, all available
via their RDF representations. The links could span
many remote sites, running various implementations of
OpenTox services. For example, a model, built by model

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 13 of 18

http://apps.ideaconsult.net:8080/ambit2/
http://www.opentox.org/api/1.1#
http://purl.org/dc/elements/1.1/
http://www.opentox.org/echaEndpoints.owl#
http://www.opentox.org/echaEndpoints.owl#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://apps.ideaconsult.net:8080/ambit2/model/
http://apps.ideaconsult.net:8080/ambit2/model/
http://www.w3.org/2002/07/owl#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2001/XMLSchema#
http://apps.ideaconsult.net:8080/ambit2/compound/
http://apps.ideaconsult.net:8080/ambit2/compound/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://apps.ideaconsult.net:8080/ambit2/dataset/
http://apps.ideaconsult.net:8080/ambit2/dataset/
http://apps.ideaconsult.net:8080/ambit2/algorithm/
http://apps.ideaconsult.net:8080/ambit2/algorithm/
http://apps.ideaconsult.net:8080/ambit2/feature/
http://apps.ideaconsult.net:8080/ambit2/feature/
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.CPSADescriptor
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.CPSADescriptor
http://apps.ideaconsult.net:8080/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.CPSADescriptor

services running at site A, will be accessible via its web
address, but the representation could include links to
the training dataset and prediction variables, hosted at
OpenTox services running at site B. The features, repre-
senting predicted variables, contain links back to the
remote model. An illustration of linked resources, gen-
erated by OpenTox services, is provided on Figure 1
and Additional file 2.

Comparison with similar systems
The design of the OpenTox REST API and its implemen-
tation started at the beginning of the OpenTox FP7 pro-
ject in 2008. At that moment we were not aware of any
API with comparable functionality and design. There
were examples of REST services in cheminformatics, but

usually designed as a monolithic system and not available
for download and installation elsewhere. The OpenTox
framework is designed and developed collaboratively with
the intention to be a modular and interoperable distribu-
ted system. The SADI framework [58,59] is the only
other existing system which combines REST and RDF
technologies to perform bio- and cheminformatics tasks.
It should be noted, though, that these systems have been
developed independently, without mutual awareness, until
quite recently. While both approaches might seem similar
to some extent, there are significant differences in their
design and implementation.
The main goal of the OpenTox framework is to pro-

vide distributed means for building, using, and validating
predictive models. We are not fully aware whether SADI

Table 2 Algorithms, implemented in AMBIT REST services

CDK descriptors http://host:port/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular.*

Weka [51] machine learning algorithms http://host:port/ambit2/algorithm/LR

http://host:port/ambit2/algorithm/SimpleKMeans

http://host:port/ambit2/algorithm/J48

Toxtree [20] modules http://host:port/ambit2/algorithm/toxtreecarc

http://host:port/ambit2/algorithm/toxtreecramer

http://host:port/ambit2/algorithm/toxtreecramer2

http://host:port/ambit2/algorithm/toxtreeeye

http://host:port/ambit2/algorithm/toxtreemichaelacceptors

http://host:port/ambit2/algorithm/toxtreeskinirritation

http://host:port/ambit2/algorithm/toxtreeskinsens

http://host:port/ambit2/algorithm/toxtreemic

http://host:port/ambit2/algorithm/toxtreeverhaar

http://host:port/ambit2/algorithm/toxtreesmartcyp[52]

pKa [53] prediction http://host:port/ambit2/algorithm/pka

Applicability domain algorithms [54-56] http://host:port/ambit2/algorithm/distanceCityBlock

http://host:port/ambit2/algorithm/distanceEuclidean

http://host:port/ambit2/algorithm/fpmissingfragments

http://host:port/ambit2/algorithm/fptanimoto

http://host:port/ambit2/algorithm/leverage

http://host:port/ambit2/algorithm/distanceMahalanobis

http://host:port/ambit2/algorithm/nparamdensity

http://host:port/ambit2/algorithm/pcaRanges

Superservice http://host:port/ambit2/algorithm/superservice

InChI http://host:port/ambit2/algorithm/ambit2.descriptors.InChI??

MOPAC descriptors http://host:port/ambit2/algorithm/ambit2.mopac.

MopacOriginalStructure

3D structure optimization via MOPAC http://host:port/ambit2/algorithm/ambit2.mopac.MopacShell

SOME [57] http://host:port/ambit2/algorithm/ambit2.some.

DescriptorSOMEShell

MCSS http://host:port/ambit2/algorithm/mcss

Fingerprints, used in similarity searching http://host:port/ambit2/algorithm/fingerprints

Generate data for accelerating substructure search http://host:port/ambit2/algorithm/smartsprop

http://host:port/ambit2/algorithm/struckeys

Retrieve structures from non-OpenTox online services http://host:port/ambit2/algorithm/finder

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 14 of 18

http://host:port/ambit2/algorithm/org.openscience.cdk.qsar.descriptors.molecular
http://host:port/ambit2/algorithm/LR
http://host:port/ambit2/algorithm/SimpleKMeans
http://host:port/ambit2/algorithm/J48
http://host:port/ambit2/algorithm/toxtreecarc
http://host:port/ambit2/algorithm/toxtreecramer
http://host:port/ambit2/algorithm/toxtreecramer2
http://host:port/ambit2/algorithm/toxtreeeye
http://host:port/ambit2/algorithm/toxtreemichaelacceptors
http://host:port/ambit2/algorithm/toxtreeskinirritation
http://host:port/ambit2/algorithm/toxtreeskinsens
http://host:port/ambit2/algorithm/toxtreemic
http://host:port/ambit2/algorithm/toxtreeverhaar
http://host:port/ambit2/algorithm/toxtreesmartcyp
http://host:port/ambit2/algorithm/pka
http://host:port/ambit2/algorithm/distanceCityBlock
http://host:port/ambit2/algorithm/distanceEuclidean
http://host:port/ambit2/algorithm/fpmissingfragments
http://host:port/ambit2/algorithm/fptanimoto
http://host:port/ambit2/algorithm/leverage
http://host:port/ambit2/algorithm/distanceMahalanobis
http://host:port/ambit2/algorithm/nparamdensity
http://host:port/ambit2/algorithm/pcaRanges
http://host:port/ambit2/algorithm/superservice
http://host:port/ambit2/algorithm/ambit2.descriptors.InChI
http://host:port/ambit2/algorithm/ambit2.mopac
http://host:port/ambit2/algorithm/ambit2.mopac.MopacShell
http://host:port/ambit2/algorithm/ambit2.some
http://host:port/ambit2/algorithm/mcss
http://host:port/ambit2/algorithm/fingerprints
http://host:port/ambit2/algorithm/smartsprop
http://host:port/ambit2/algorithm/struckeys
http://host:port/ambit2/algorithm/finder

services support generating and validating new predic-
tive models via machine learning techniques or other
methods. OpenTox services are independent, and can be
mashed up or invoked in serial or parallel fashion by
explicit invocation of command tools, existing workflow
systems, or custom user interface. SADI’s strong point is
in the usage of implicit invocation of web services, given
a SPARQL query. The SHARE engine [60] decides
which services to invoke in order to fill in the missing
data. The SADI services use HTTP, but define HTTP
resources only for the processing elements, not for the
data elements. The calculations are initiated by a POST
command, and the data is returned in the body, resem-
bling a typical processing by a remote procedure call,
rather than a REST resource. Input data is subsumed
into the output data, and neither of the data has its own
dereferenceable identifier. OpenTox services work by
accepting a URI of an input resource and return a URI
of the resulting resource. The content of the latter could
be retrieved by a subsequent GET operation if necessary
- as a whole or in parts. This allows processing of data-
sets of arbitrary number of entries. Dataset is a central
type of resource in OpenTox, while we are not aware of
a corresponding concept in SADI. Implementation-wise,
SADI services require a RDF triple storage as a backend,
while OpenTox services do not mandate any particular
backend representation; it is sufficient only to serialize
resources to RDF on input/output in order to be com-
patible with the OpenTox API. Another difference exists
due to the requirement to define a custom input/output

format for each SADI processing service, while Open-
Tox services have a uniform interface, which resembles
conceptually the standard input and output streams in
UNIX operating systems, and brings proven flexibility
when composing services into arbitrary workflows.
Finally, SADI strives to provide a single ontology,
describing all cheminformatics services. We believe that
this is hardly achievable in a truly distributed system,
and therefore designed OpenTox in a different way; we
provide a skeleton ontology, allowing representation of a
few basic classes, generate dynamic resources, and link/
annotate them with all relevant third party ontologies.

Applications
Although all AMBIT REST services support HTML
MIME format and could be accessed through a web
browser, the intended use is via custom client applica-
tions, which would consume the web services, and pro-
vide a friendly user interface, tailored to specific use
cases. An example is the ToxPredict[1,61] web applica-
tion, which provides a customized user interface for
searching data, selecting and applying models, and dis-
playing prediction results. Integration of REST services
into workflow systems and rich client applications are
other options, subject to further work.

Installation
• Download the web application archive (war) file
from http://ambit.sourceforge.net/
• Deploy the war file into a servlet container

Figure 1 Illustration of linked resources, generated by OpenTox services.

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 15 of 18

http://ambit.sourceforge.net/

• Ensure MySQL is installed and running at the
default port
• Create an empty database by issuing a POST
request to http://host:8080/ambit2/admin/database
URI as shown in the command below. Note: mysql-
privuser should be an existing MySQL user with suf-
ficient privileges to create a database.

curl -X POST -d “dbname = ambit2” -d “user =
mysqlprivuser” -d “pass = mysqlprivpass” \ http://
host:8080/ambit2/admin/database

• On success, reading the URI http://host:8080/
ambit2/admin/database will return the database
name
• Import your own data by sending a POST com-
mand to http://host:8080/ambit2/dataset or using
the web interface. Use the OpenTox API to run
algorithms and models.

Plans for future developments include protecting
resources via the OpenTox Authentication and Authori-
zation API [62], which relies on a customized OpenAM
[63] service; extend dataset and feature representations
to accommodate hierarchical data; develop applications
with specialized user interfaces that would consume the
services; improve and refactor the services’ implementa-
tion in order to provide a skeleton code for easy deploy-
ment of third party algorithms and models, compliant
with the OpenTox API; provide a client library for
accessing the OpenTox API.

Conclusions
The AMBIT REST services package has been developed
as an extension of AMBIT modules, wrapping their
functionalities as REST web services, and adding some
new ones. This implementation covers a large subset of
the functionality, specified by the OpenTox API, and is
available both as live demo online web services and as a
downloadable web application, which can be deployed
in a compatible servlet container. The services, imple-
menting the OpenTox API for compounds, datasets,
and features, enable importing arbitrary files with che-
mical structures and their properties, allowing linking to
computer readable information about the data fields, as
well as keeping provenance information. In addition,
they support multiple structures of the same compound,
which is useful for storing and working with multiple
conformations, as well as for comparing structures, ori-
ginally residing in different source databases. Uploading
a file with chemical structures and data makes it auto-
matically available in several formats, including the
mandatory RDF representation, defined by the OpenTox
ontology. The services, implementing the OpenTox API

for algorithms and models, provide a unified web service
interface to several descriptor calculation, machine
learning, and similarity searching algorithms, as well as
to applicability domain and toxicity prediction models.
The complexity and diversity of the processing is
reduced to the simple paradigm “read data from a web
address, perform processing, write to a web address”.
The online service allows running predictions without
installing any software, as well sharing datasets and
models between online users. The downloadable web
application allows researchers to set up their own sys-
tems of chemical compounds, calculated and experimen-
tal data, and to run existing algorithms and create new
models. The advantage of exposing the functionality via
the OpenTox API is that all these resources could inter-
operate seamlessly, not only within a single web applica-
tion, but also in a network of many cooperating
distributed services.
Exposing functionalities through a web application

programming interface allows to hide the implementa-
tion details of both data storage (different database
types vs. memory vs. file system backend) and proces-
sing (descriptor calculation algorithms using CDK,
OpenBabel, commercial or in-house implementations).
The availability of data and processing resources as RDF
facilitates integrating the resources as Linked Data [64].
The distributed algorithm and model resources automa-
tically generate RDF representations, making the linked
data dynamic, and not relying on a single traditional tri-
ple storage. The classes in the OpenTox ontology are
designed to cover the minimum number of building
blocks, necessary to create predictive toxicology applica-
tions. The OpenTox ontology relies on external ontolo-
gies to represent descriptor calculation algorithms,
machine learning methods, and toxicity studies. We
believe that such modularity better reflects how any par-
ticular domain is described in reality [65], compared to
monolithic ontologies, which could be difficult or even
impossible to reach consensus on, and would be hard to
maintain. RDF natively provides means to link multiple
concepts to a same resource, either by multiple inheri-
tance, or owl:sameAs links, and we intend to use these
techniques, together with the current dataset representa-
tion, to describe complex toxicological studies.
The AMBIT REST services package is one of the sev-

eral independent implementations of the OpenTox
Application Programming Interface, being developed
within the OpenTox project. While creating an ontology
(even for a rather limited domain) by consensus is a
challenge by itself, the value of having multiple indepen-
dent implementations of services using the ontology is
enormous, as it clearly highlights components that have
not been explicitly described, and are thus open to
diverging and possibly conflicting interpretations. This

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 16 of 18

demonstrates that the OpenTox API could be imple-
mented equally well either as a completely new project
or as an extension of an existing software. It also
demonstrates OpenTox API’s ability to provide a unified
interface to diverse algorithms and data, and to encou-
rage defining explicit relationships between data and
processing routines. Last but not least, the services pro-
vide a sound basis for building web mashups, end user
applications with friendly GUIs, as well as embedding
the functionalities in existing workflow systems.

Availability and requirements
• Project name: AMBIT implementation of Open-
Tox REST web services
• Project home page: http://ambit.sourceforge.net/
• Operating system(s): Platform independent
• Programming language: Java
• Other requirements: Java 1.6 or higher, Tomcat
6.0 or higher, MySQL 5.1 or higher
• License: GNU LGPL (ambit2-all modules), GNU
GPL (web services)
• Any restrictions to use by non-academics: None
• Online web services: http://apps.ideaconsult.
net:8080/ambit2/

Additional material

Additional file 1: Supporting Information. Examples of accessing
various AMBIT REST services via the cURL tool.

Additional file 2: Supporting Information. RDF graph, representing
two remote models, using the same training dataset.

Abbreviations
API: Application Programming Interface; CDK: The Chemistry Development
Kit; HTTP: Hypertext Transfer Protocol; MIME: Multipurpose Internet Mail
Extensions: (Q)SAR: (Quantitative) Structure Activity Relationship; REST:
REpresentational State Transfer; RDF: Resource Description Framework; URI:
Universal Resource Identifier.

Acknowledgements and Funding
The AMBIT software was initially developed within the framework of the
CEFIC LRI project EEM-9 ‘Building blocks for a future (Q)SAR decision support
system: databases, applicability domain, similarity assessment and structure
conversions’, http://www.cefic-lri.org/projects/1202813618/21/EEM9-PGEU-
Quantitative-Structure-Activity-Relationships-software-for-data-management/?
cntnt01template=display_list_test, and further extended under a subsequent
CEFIC LRI contract for developing AmbitXT, http://www.cefic-lri.org/lri-
toolbox/ambit. The AMBIT web services package was developed within the
OpenTox project - An Open Source Predictive Toxicology Framework, http://
www.opentox.org/ funded under the EU Seventh Framework Programme:
HEALTH-2007-1.3-3 Promotion, development, validation, acceptance and
implementation of QSARs (Quantitative Structure-Activity Relationships) for
toxicology, Project Reference Number Health-F5-2008-200787 (2008-2011).
Support for applicability domain algorithms has been integrated into the
AMBIT web services package in the framework of the CADASTER project -
Case studies on the development and application of in-silico techniques for
environmental hazard and risk assessment, http://www.cadaster.eu/, funded
under the EU Seventh Framework Programme: ENV.2007.3.3.1.1 In-silico

techniques for hazard-, safety-, and environmental risk-assessment, Project
Reference Number 212668 (2009-2012).
We acknowledge the article processing charge for this article that has been
partially funded by Pfizer, Inc. Pfizer, Inc. has had no input into the content
of the article. The article has been independently prepared by the authors
and been subject to the journal’s standard peer review process.

Authors’ contributions
NJ performed most of the AMBIT web services software development,
coordinated the OpenTox framework implementation, and provided
valuable insights on a range of important aspects of the manuscript. VJ
contributed to the design and testing of the webservices, performed data
gathering and curation, and helped drafting the manuscript. All authors read
and approved the final manuscript.

Authors’ information
Nina Jeliazkova (NJ): Nina received a M.Sc. in Computer Science from the
Institute for Fine Mechanics and Optics, St. Petersburg, Russia in 1991,
followed by a PhD in Computer Science (thesis “Novel computer methods
for molecular modelling”) in 2001 in Sofia, Bulgaria, and a PostDoc at the
Central Product Safety department, Procter & Gamble, Brussels, Belgium
(2002 - 2003). Her professional career started as a software developer first at
the oil refinery Neftochim at Burgas, Bulgaria (1991 - 1995), then at the
Laboratory for Mathematical Chemistry, Burgas, Bulgaria (1996 - 2001). She
joined the Bulgarian Academy of Sciences in 1996 as a researcher and
network engineer at the Network Operating Centre of the Bulgarian National
Research and Education Network. She is founder and co-owner of
Ideaconsult Ltd, and is technical manager of the company since 2009. She
participated in a number of R&D projects in Belgium and Bulgaria, authored
and co-authored about 40 scientific papers in Bulgarian and international
journals, as well as several book chapters.
Vedrin Jeliazkov (VJ): Vedrin received a M.Sc. in Computer Science from the
University Paris VII - Denis Diderot, Paris, France in 1998. From 1996 to 1998
he worked for the R&D department of Electricité de France, Clamart, France,
as a software developer, and was responsible for the design of quality
assurance tests. From 2001 to 2002 Vedrin had been employed by the
European Commission as an advisor to the director of “Essential
Technologies and Infrastructures” at the Information Society Directorate-
General. From 2003 to 2007 he was researcher at the Bulgarian Academy of
Sciences and network engineer at the Network Operating Centre of the
Bulgarian National Research and Education Network. Vedrin is one of the
founders and owners of Ideaconsult Ltd, and is a full-time researcher at the
company since 2007. He participated in a number of R&D projects in France,
Belgium, and Bulgaria, authored ten research papers, co-authored one book
and has given several talks in scientific conferences.

Competing interests
The authors declare that they have no competing interests.

Received: 10 December 2010 Accepted: 16 May 2011
Published: 16 May 2011

References
1. Hardy B, Douglas N, Helma C, Rautenberg M, Jeliazkova N, Jeliazkov V,

Nikolova I, Benigni R, Tcheremenskaia O, Kramer S, Girschick T, Buchwald F,
Wicker J, Karwath A, Gütlein M, Maunz A, Sarimveis H, Melagraki G,
Afantitis A, Sopasakis P, Gallagher D, Poroikov V, Filimonov D, Zakharov A,
Lagunin A, Gloriozova T, Novikov S, Skvortsova N, Druzhilovsky D, Chawla S,
Ghosh I, Ray S, Patel H, Escher S: Collaborative Development of Predictive
Toxicology Applications. J Cheminform 2010, 2:7.

2. Resource Description Framework. [http://www.w3.org/RDF/].
3. R. Fielding, Representational State Transfer (REST). [http://www.ics.uci.

edu/~fielding/pubs/dissertation/rest_arch_style.htm].
4. Richardson L, Ruby S: RESTful Web Services. Sebastopol, CA, USA: O’Reilly

Media, Inc; 2007.
5. OASIS Standards. [http://www.oasis-open.org/specs/].
6. RFC 2616 Hypertext Transfer Protocol – HTTP/1.1. [http://tools.ietf.org/

html/rfc2616].
7. RFC 5023 The Atom Publishing Protocol. [http://tools.ietf.org/html/rfc5023].
8. OpenTox ontology. [http://opentox.org/api/1.1/opentox.owl].

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 17 of 18

http://ambit.sourceforge.net/
http://apps.ideaconsult.net:8080/ambit2/
http://apps.ideaconsult.net:8080/ambit2/
http://www.biomedcentral.com/content/supplementary/1758-2946-3-18-S1.DOC
http://www.biomedcentral.com/content/supplementary/1758-2946-3-18-S2.N3
http://www.cefic-lri.org/projects/1202813618/21/EEM9-PGEU-Quantitative-Structure-Activity-Relationships-software-for-data-management/?cntnt01template=display_list_test
http://www.cefic-lri.org/projects/1202813618/21/EEM9-PGEU-Quantitative-Structure-Activity-Relationships-software-for-data-management/?cntnt01template=display_list_test
http://www.cefic-lri.org/projects/1202813618/21/EEM9-PGEU-Quantitative-Structure-Activity-Relationships-software-for-data-management/?cntnt01template=display_list_test
http://www.cefic-lri.org/lri-toolbox/ambit.
http://www.cefic-lri.org/lri-toolbox/ambit.
http://www.opentox.org/
http://www.opentox.org/
http://www.cadaster.eu/
http://www.ncbi.nlm.nih.gov/pubmed/20807436?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20807436?dopt=Abstract
http://www.w3.org/RDF/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.oasis-open.org/specs/
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc5023
http://opentox.org/api/1.1/opentox.owl

9. RDF/XML Syntax Specification. [http://www.w3.org/TR/REC-rdf-syntax/].
10. Notation 3 (N3) A Readable RDF Syntax. [http://www.w3.org/DesignIssues/

Notation3].
11. Turtle - Terse RDF Triple Language. [http://www.w3.org/TeamSubmission/

turtle/].
12. OWL Web Ontology Language Guide. [http://www.w3.org/TR/owl-guide/].
13. Microformats. [http://microformats.org/].
14. AMBIT project. [http://ambit.sourceforge.net/].
15. Jeliazkova N, Jaworska J, Worth A: Chapter 17. Open Source Tools for

Read-Across and Category Formation. In In Silico Toxicology : Principles and
Applications. Edited by: Cronin M. Madden J.: Cambridge: RSC Publishing;
2010:408-445.

16. MySQL. [http://www.mysql.com/].
17. CEFIC Long Range research initiative. [http://www.cefic-lri.org/].
18. Apache Tomcat. [http://tomcat.apache.org/].
19. Java Servlet Technology. [http://www.oracle.com/technetwork/java/index-

jsp-135475.html].
20. Toxtree. [http://toxtree.sourceforge.net/].
21. Patlewicz G, Jeliazkova N, Safford RJ, Worth AP, Aleksiev B: An evaluation of

the implementation of the Cramer classification scheme in the Toxtree
software. SAR QSAR Environ Res 2008, 19(5-6):495-524.

22. Implementation of simple OpenTox Ontology service. [https://ambit.svn.
sourceforge.net/svnroot/ambit/branches/opentox/ontology-service].

23. The Chemistry Development Kit. [http://cdk.sourceforge.net/].
24. Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen EL: The

Chemistry Development Kit (CDK): An Open-Source Java Library for
Chemo- and Bioinformatics. J Chem Inf Comput Sci 43, 2:493-500.

25. Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL: Recent
Developments of the Chemistry Development Kit (CDK) - An Open-
Source Java Library for Chemo-and Bioinformatics. Curr Pharm 2006,
12(17):2111-2120.

26. Restlet, REST framework for Java. [http://www.restlet.org/].
27. Jena - A Semantic Web Framework for Java. [http://jena.sourceforge.net/].
28. Apache Maven. [http://maven.apache.org/].
29. AMBIT source code. [https://ambit.svn.sourceforge.net/svnroot/ambit/trunk/

ambit2-all].
30. Toxtree - Toxic Hazard Estimation by decision tree approach, source

code. [https://toxtree.svn.sourceforge.net/svnroot/toxtree/trunk/toxtree].
31. OpenTox API wiki site. [http://opentox.org/dev/apis/].
32. Chemical MIME. [http://chemical-mime.sourceforge.net/].
33. cURL tool. [http://curl.haxx.se/].
34. ToxCast - Predicting Hazard, Characterizing Toxicity Pathways, and

Prioritizing the Toxicity Testing of Environmental Chemicals. [http://www.
epa.gov/ncct/toxcast/].

35. TDB - A SPARQL Database for Jena. [http://openjena.org/TDB/].
36. Restlet documentation on ServerResource class. [http://www.restlet.org/

documentation/2.0/jee/api/org/restlet/resource/ServerResource.html].
37. The Streaming API for XML. [http://stax.codehaus.org/].
38. JDK Documentation. [http://download.oracle.com/javase/6/docs/api/java/

util/concurrent/Callable.html].
39. JSON (JavaScript Object Notation). [http://www.json.org/].
40. CPDBAS: Carcinogenic Potency Database Summary Tables. [http://www.

epa.gov/ncct/dsstox/sdf_cpdbas.html].
41. ISSCAN: Chemical Carcinogens Database. [http://www.iss.it/ampp/dati/

cont.php?id=233&lang=1&tipo=7].
42. ToxML. [http://www.leadscope.com/toxml.php].
43. ToxML project. [https://www.lhasalimited.org/research/toxml].
44. The Open Biological and Biomedical Ontologies. [http://www.obofoundry.

org/].
45. MIBBI: Minimum Information for Biological and Biomedical

Investigations. [http://www.mibbi.org/].
46. Guidance on information requirements and chemical safety assessment

Chapter R.6: QSARs and grouping of chemicals. [http://guidance.echa.
europa.eu/docs/guidance_document/information_requirements_r6_en.pdf?
vers=20_08_08].

47. GO Ontology. [http://www.geneontology.org/].
48. Day J: Patterns in Network Architecture: A Return to Fundamentals Upper

Saddle River, New Jersey, USA: Prentice Hall; 2007.
49. Haase P, Mathäß T, Ziller M: An evaluation of approaches to federated

query processing over linked data. I-SEMANTICS ‘10 Proceedings of the 6th
International Conference on Semantic Systems ACM New York, NY, USA; 2010.

50. Preda N, Kasneci G, Suchanek FM, Neumann T, Yuan W, Weikum G: Active
Knowledge: Dynamically Enriching RDF Knowledge Bases by Web
Services, Proceeding. SIGMOD ‘10 Proceedings of the 2010 international
conference on Management of data ACM New York, NY, USA; 2010.

51. WEKA - Machine learning in Java. [http://www.cs.waikato.ac.nz/ml/weka/].
52. Rydberg P, Gloriam DE, Zaretzki J, Breneman C, Olsen L: SMARTCyp: A 2D

Method for Prediction of Cytochrome P450-Mediated Drug Metabolism.
ACS Med Chem Lett., 2010, 1(3):96-100.

53. Lee AC, Yu JY, Crippen GM: pKa Prediction of Monoprotic Small
Molecules the SMARTS Way. J Chem Inf Model., 2008, 48(10):2042-2053.

54. Jaworska J, Nikolova-Jeliazkova N: How can structural similarity analysis
help in category formation. SAR and QSAR in Environmental Research 2007,
18(3-4):195-207.

55. Jaworska J, Nikolova-Jeliazkova N, Aldenberg T: QSAR Applicability Domain
Estimation by Projection of the Training Set in Descriptor Space: A
Review. Altern Lab Anim 2005, 33:445-459.

56. Netzeva TI, Worth A, Aldenberg T, Benigni R, Cronin MT, Gramatica P,
Jaworska JS, Kahn S, Klopman G, Marchant CA, Myatt G, Nikolova-
Jeliazkova N, Patlewicz GY, Perkins R, Roberts D, Schultz T, Stanton DW, van
de Sandt JJ, Tong W, Veith G, Yang C: Current status of methods for
defining the applicability domain of (quantitative) structure-activity
relationships. The report and recommendations of ECVAM Workshop 52.
Altern Lab Anim 2005, 33:155-173.

57. Zheng M, Luo X, Shen Q, Wang Y, Du Y, Zhu W, Jiang H: Site of
metabolism prediction for six biotransformations mediated by
cytochromes P450. Bioinformatics 2009, 25(10):1251-1258.

58. SADI framework. [http://sadiframework.org/].
59. Wilkinson MD, McCarthy L, Vandervalk B, Withers D, Kawas E, Samadian S:

SADI, SHARE, and the in silico scientific method. 11th Annual
Bioinformatics Open Source Conference (BOSC) 2010, Boston, MA, USA 2010
[http://www.biomedcentral.com/content/pdf/1471-2105-11-s12-s7.pdf].

60. Vandervalk B, McCarthy L, Wilkinson MD: SHARE: A Semantic Web Query
Engine for Bioinformatics. The Semantic Web, Lecture Notes in Computer
Science proceedings of the ASWC 2009, 5926:367-369.

61. ToxPredict demo application. [http://toxpredict.org/].
62. OpenTox Authentication and Authorisation API. [http://opentox.org/dev/

apis/api-1.2/AA].
63. OpenAM. [http://www.forgerock.com/openam.html].
64. Wikipedia entry for Linked Data. [http://en.wikipedia.org/wiki/

Linked_Data].
65. Hepp M: Possible Ontologies: How Reality Constrains the Development

of Relevant Ontologies. IEEE Internet Computing 2007, 11(1):90-96.

doi:10.1186/1758-2946-3-18
Cite this article as: Jeliazkova and Jeliazkov: AMBIT RESTful web services:
an implementation of the OpenTox application programming interface.
Journal of Cheminformatics 2011 3:18.

Open access provides opportunities to our
colleagues in other parts of the globe, by allowing

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

Jeliazkova and Jeliazkov Journal of Cheminformatics 2011, 3:18
http://www.jcheminf.com/content/3/1/18

Page 18 of 18

http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/owl-guide/
http://microformats.org/
http://ambit.sourceforge.net/
http://www.mysql.com/
http://www.cefic-lri.org/
http://tomcat.apache.org/
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://www.oracle.com/technetwork/java/index-jsp-135475.html
http://toxtree.sourceforge.net/
http://www.ncbi.nlm.nih.gov/pubmed/18853299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18853299?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18853299?dopt=Abstract
https://ambit.svn.sourceforge.net/svnroot/ambit/branches/opentox/ontology-service
https://ambit.svn.sourceforge.net/svnroot/ambit/branches/opentox/ontology-service
http://cdk.sourceforge.net/
http://www.restlet.org/
http://jena.sourceforge.net/
http://maven.apache.org/
https://ambit.svn.sourceforge.net/svnroot/ambit/trunk/ambit2-all
https://ambit.svn.sourceforge.net/svnroot/ambit/trunk/ambit2-all
https://toxtree.svn.sourceforge.net/svnroot/toxtree/trunk/toxtree
http://opentox.org/dev/apis/
http://chemical-mime.sourceforge.net/
http://curl.haxx.se/
http://www.epa.gov/ncct/toxcast/
http://www.epa.gov/ncct/toxcast/
http://openjena.org/TDB/
http://www.restlet.org/documentation/2.0/jee/api/org/restlet/resource/ServerResource.html
http://www.restlet.org/documentation/2.0/jee/api/org/restlet/resource/ServerResource.html
http://stax.codehaus.org/
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/Callable.html
http://download.oracle.com/javase/6/docs/api/java/util/concurrent/Callable.html
http://www.json.org/
http://www.epa.gov/ncct/dsstox/sdf_cpdbas.html
http://www.epa.gov/ncct/dsstox/sdf_cpdbas.html
http://www.iss.it/ampp/dati/cont.php?id=233&lang=1&tipo=7
http://www.iss.it/ampp/dati/cont.php?id=233&lang=1&tipo=7
http://www.leadscope.com/toxml.php
https://www.lhasalimited.org/research/toxml
http://www.obofoundry.org/
http://www.obofoundry.org/
http://www.mibbi.org/
http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_r6_en.pdf?vers=20_08_08
http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_r6_en.pdf?vers=20_08_08
http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_r6_en.pdf?vers=20_08_08
http://www.geneontology.org/
http://www.ncbi.nlm.nih.gov/pubmed/21574749?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21574749?dopt=Abstract
http://www.cs.waikato.ac.nz/ml/weka/
http://www.ncbi.nlm.nih.gov/pubmed/17514565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17514565?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16268757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16268757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16268757?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16180989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16180989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16180989?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19286831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19286831?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19286831?dopt=Abstract
http://sadiframework.org/
http://www.biomedcentral.com/content/pdf/1471-2105-11-s12-s7.pdf
http://toxpredict.org/
http://opentox.org/dev/apis/api-1.2/AA
http://opentox.org/dev/apis/api-1.2/AA
http://www.forgerock.com/openam.html
http://en.wikipedia.org/wiki/Linked_Data
http://en.wikipedia.org/wiki/Linked_Data

	Abstract
	Background
	Implementation
	Appendix 1: An example how to retrieve the representation of an OpenTox model
	Appendix 2: An example how to retrieve the representation of an OpenTox algorithm
	Appendix 3: An example of launching XLogP prediction for a dataset
	Appendix 4: An example of polling the status of asynchronous job (Task URI)
	Appendix 5: An example of prediction results retrieval by HTTP GET command on URI, received as shown in Appendix 4
	GET operations
	POST and PUT operations
	DELETE operations
	RDF input/output

	Results and Discussion
	Uniform access to data
	Appendix 6: An example of retrieving a compound in a specified format (Chemical MIME for SMILES in this example)
	Appendix 7: A RDF representation of a single entry from the DSSTox Carcinogenic Potency Database dataset
	Appendix 8: A RDF representation of the “Canc” field of the ISSCAN dataset, available via AMBIT services and OpenTox API (prefixes are the same as in Appendix 7, and therefore omitted)
	Appendix 9: A RDF representation of a subset of fields of the CPDBAS dataset, available via AMBIT services and OpenTox API (prefixes are the same as in Appendix 7, and therefore omitted)
	Uniform approach to data processing, model building, and predictions
	Registering data, algorithms and models; SPARQL query
	Appendix 10: An example of retrieving information about a specific model (X and Y variables; learning algorithm; variables, containing the predictions; endpoints)
	Appendix 11: A RDF graph, representing two remote models, using the same training dataset (the RDF content was aggregated by retrieving the RDF representations of multiple web services, and is available as Supporting Information [Additional file 2])
	Linked resources
	Comparison with similar systems
	Applications
	Installation

	Conclusions
	Availability and requirements
	Acknowledgements and Funding
	Authors' contributions
	Authors' information
	Competing interests
	References

