
SOFTWARE Open Access

OSCAR4: a flexible architecture for chemical text-
mining
David M Jessop, Sam E Adams, Egon L Willighagen, Lezan Hawizy and Peter Murray-Rust*

Abstract

The Open-Source Chemistry Analysis Routines (OSCAR) software, a toolkit for the recognition of named entities and
data in chemistry publications, has been developed since 2002. Recent work has resulted in the separation of the
core OSCAR functionality and its release as the OSCAR4 library. This library features a modular API (based on
reduction of surface coupling) that permits client programmers to easily incorporate it into external applications.
OSCAR4 offers a domain-independent architecture upon which chemistry specific text-mining tools can be built,
and its development and usage are discussed.

Introduction
In keeping with the historical and methodological aspects
of this special issue, we recount the history and motiva-
tion of OSCAR.
A large amount of factual data in chemistry and

neighbouring disciplines is published in the form of text
and components within text rather than as structured
semantic information. If we can discover and extract
this information, the textual literature becomes an enor-
mous additional chemical resource. As an example, we
estimate that about 10 million chemical syntheses per
year are published in the public literature (articles,
patents, theses) and the conventional method is a nat-
ural language narrative (most commonly in English). It
is extremely tedious and error-prone to extract informa-
tion from this narrative manually, and for this reason
many chemical abstracting services limit their scope and
also frequently lag behind the current publication list.
The discipline of text-mining has now reached a state

where much natural language in textual form can be
analysed rapidly and with high precision and recall.
Methodologies applied to the problem of chemical
named entity recognition include dictionary- and rule-
based methods, as well as machine learning and hybrid
approaches [1-11]. We have been working in this area
for approximately 10 years and the OSCAR4 software,
together with OPSIN (the Open Parser for Systematic
IUPAC Nomenclature) [12,13] and ChemicalTagger

[14,15], represent the public state-of-the-art in chemical
text analysis and extraction.
The OSCAR (Open-Source Chemistry Analysis Rou-

tines) software has been developed over a period of
years and a number of projects. Between 2002 and 2004,
sponsors including the Royal Society of Chemistry
(RSC), Nature and the International Union of Crystallo-
graphy (IUCr) supported a number of summer student-
ships. These projects were focused on the development
of software with limited capacity for the automated
interpretation of chemical documents, and resulted in
two main software components-the Experimental Data
Checker [16,17] and OSCAR2.
The Experimental Data Checker was conceived as a

tool to be used as part of the RSC’s publication process.
The tool is capable of recognising sections of reported
experimental data within plain text input using regular
expressions to match the highly-stylised and journal-
mandated formats in which they are reported in the lit-
erature (as shown in Figure 1). Once this information
has been identified and interpreted, the tool performs
elementary checks on the characterisation data (spectra,
analytical) where molecular structures are reported, and
attempts to ensure that the data does not conflict with
the structure.
The Experimental Data Checker application relied

upon a core library of analysis routines, and it was this
library that was the first to bear the name OSCAR.
Further development of this library in the summer of
2004 resulted in OSCAR2, which used XML formatting
to represent the document undergoing processing, and

* Correspondence: pm286@cam.ac.uk
Unilever Centre for Molecular Science Informatics, Department of Chemistry,
Lensfield Road, Cambridge CB2 1EW, UK

Jessop et al. Journal of Cheminformatics 2011, 3:41
http://www.jcheminf.com/content/3/1/41

© 2011 Jessop et al; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:pm286@cam.ac.uk
http://creativecommons.org/licenses/by/2.0

applied XML annotations to the document to indicate
recognised sections of text. OSCAR2 implemented a
naïve Bayesian system based on n-grams and a simple
grammar in order to identify chemical names within a
text. These improvements were later extended as part of
the OSCAR3 project.
In 2005, the EPSRC awarded a grant ("Sciborg”) to

develop natural language processing (NLP) tools for
chemistry and science. The chemistry component of
this project focused on the development of the
OSCAR2 methodology and resulted in the creation of
OSCAR3 [18]. OSCAR3 focuses on the recognition of
and, where appropriate, the resolution of connection
tables for chemical named entities. OSCAR3 employs a
naïve Bayesian model to identify “chemical” tokens in
text and offers a choice of two methods for the identi-
fication of multi-token named entities. The first of
these, the PatternRecogniser, uses predetermined regu-
lar-expression style heuristics while the second, the
MEMMRecogniser [19], employs machine learning in
the form of a Maximum Entropy Markov Model

(MEMM). OSCAR3 uses these methods to identify
four classes of named entity (Chemical, Reaction, Che-
mical Adjective and Enzyme) as well as dictionary
lookup to identify a pre-determined set of ontology
terms and a discrete finite automaton based method to
identify chemical prefixes.
In order to convert chemical names to connection

tables (Figure 2), OSCAR3 uses dictionary-based meth-
ods and, where this is not successful, OPSIN. Early ver-
sions of OSCAR directly included the OPSIN code, but
this was later re-factored into a separate library.
By 2008, OSCAR was in common use in many labora-

tories for the identification and extraction of chemical
terms (chemical named entities) in a variety of texts.
Our original metrics [18] showed that the precision and
recall were domain-dependent and varied considerably
with the purpose and style of chemical texts. Feedback
from users was informal but it was clear that they were
modifying OSCAR for their particular purposes both in
vocabulary and recognition methods. As a result we
embarked on a major re-factoring program in order to

Figure 1 A screenshot of the Experimental Data Checker (OSCAR-Data) showing identification and markup of plain text experimental
data. The initial application of OSCAR was to parse the highly stylised data used to report spectra and other analytical proofs of synthesis. This
functionality is very widely-used (pers. comm. from RSC staff) and has been re-integrated into OSCAR4 rather than being a separate application.

Jessop et al. Journal of Cheminformatics 2011, 3:41
http://www.jcheminf.com/content/3/1/41

Page 2 of 12

robustify the OSCAR software and simplify the API, and
this paper describes the results.

Historical Funding and Collaboration
It is very difficult to get funding for software engineer-
ing projects, especially when apparently little changes on
the surface. We are grateful to the following bodies for
their funding and interest:

1. OMII-UK. This organisation existed to support and
robustify the products of the UK eScience program.
Many of these were middleware products but OSCAR
was seen by the UK eScience community as an exam-
ple of a widely-deployable component that could be
used in a modern manner in many branches of
science. The OMII-UK project carried out an initial
scoping and re-factoring of the OSCAR3 source.
2. The OSCAR-ChEBI project. This was a competi-
tive funding resource for eScience products and we
worked with the European Bioinformatics Institute
(EBI) to develop OSCAR as an appropriate tool for
the extraction and verification of chemistry in the
ChEBI ontology.

3. CheTA. This was a JISC-funded project led by our
group in conjunction with the National Centre for
Text Mining (NaCTeM) to evaluate the relative mer-
its of human annotation and machine annotation of
documents. Part of this project involved OSCAR
running under the UIMA [20]/U-Compare [21,22]
framework and required a re-factoring [23].

As a result of these projects, which probably
amounted to two person-years of effort in the re-factor-
ing, OSCAR4 has now been released in a usable form.

Limitation of OSCAR3 and design goals for OSCAR4
OSCAR3 is a powerful tool for chemical natural lan-
guage processing, but early attempts to develop software
using it as a library rather than as a standalone applica-
tion-the ChemicalTagger [14] and PatentEye [24,25]
projects-exposed weaknesses in the code in this regard.
The architecture of the software was built around the
principle that the software would be running as a server
on the user’s local machine. In order to function cor-
rectly, it required a properly configured workspace.
Many key components were implemented as mutable

Figure 2 OSCAR3 markup displaying recognised chemical entities (CM). A mouse-over action on an annotated term displays the associated
metadata, in this case for 2,5-dichlorobenzylamine, and displays an image representing the structure generated by the Chemistry Development
Kit (CDK) [35-37] (right). OSCAR3 concentrated on the identification and interpretation of chemical entities in text (named entity recognition,
NER). The primary purpose was to identify and extract the following types of object: chemicals (CM), ontology terms (ONT; looked-up from ChEBI
[38-40], FIX [41] and REX [42]etc.), reactions (RN; as identified by linguistic constructs, e.g. “methylated”), chemical adjectives (CJ) mainly formed
from chemical nouns), enzymes (ASE) and chemical prefixes (CPR), highlighted in different colours. These concepts are maintained in OSCAR4.

Jessop et al. Journal of Cheminformatics 2011, 3:41
http://www.jcheminf.com/content/3/1/41

Page 3 of 12

singletons (static objects), compromising the thread-
safety of the application and meaning that safe reconfi-
guration of a workflow required a complete shutdown
and restart of the Java virtual machine (JVM). Further-
more, the implementations of the various OSCAR com-
ponents required that a document be formatted in
SciXML as it underwent processing. Consequently, the
use of OSCAR3 by a client programmer to build sec-
ondary applications was unintuitive, and the distribution
and successful use of such applications was found, as
part of the Green Chain Reaction, to require an unac-
ceptably high level of support.
Early attempts to resolve these problems [23] involved

the extraction of the OSCAR3 tokeniser, MEMMRecog-
niser and PatternRecogniser components from the main
OSCAR3 codebase and their conversion into modules
suitable for use in the popular text-mining framework
U-Compare. This work allowed the use of OSCAR as
part of a drag-and-drop workflow, but not its direct
integration into another application. Consequently, a
comprehensive overhaul of the OSCAR3 code began in
autumn 2010 with the aim of producing a well-engi-
neered, simple, modularised version of OSCAR that
retained the core OSCAR3 functionality and could be
easily integrated into external applications. This most
recent development has been designated OSCAR4 and
is discussed in the remainder of this paper.
The development of OSCAR4 sought to address a

number of specific issues. These are summarised below
(and in Appendix A) and subsequently discussed in
greater detail.

1. To produce an OSCAR library with a simple API,
suitable for use by client programmers who may not
be familiar with the internal workings of OSCAR.
Consequently, while it is desirable for users to be
able to customise the behaviour of OSCAR in a
number of ways, initialisation of OSCAR compo-
nents must by default produce configurations that
“just work"-the ‘convention over configuration’ para-
digm (Appendix B).
2. In order to run, OSCAR3 required the existence
of a properly configured workspace-a directory on
the executing machine that contains the OSCAR
chemical name dictionary, the InChI [26,27] binary
file and a properties file along with subdirectories
intended to contain further resource files. When
OSCAR3 is first run this workspace is automatically
created, and when OSCAR3 is used as a library the
workspace is automatically created in the working
directory. This behaviour was deemed undesirable,
unnecessary and found to be a cause of difficulties
in producing distributable OSCAR-dependent soft-
ware. Consequently, the removal of the requirement

for a workspace was considered a high priority of
the OSCAR4 project.
3. Much of the OSCAR3 code required that a docu-
ment undergoing processing is formatted in SciXML.
Though converters are provided to transform HTML
into plain text and plain text into SciXML, the
requirement to perform this transformation is frus-
trating to the client programmer in that it prevents
him from working directly with plain text or with a
custom XML format which may very well be the
native format of a document that he wishes to pro-
cess. Consequently, the removal of this SciXML
dependence was considered important.
4. In addition to its core functionality-the recogni-
tion and interpretation of chemical named entities-
OSCAR3 included a wide range of secondary func-
tions including the OSCAR3 server. This server runs
on the local machine and provides an interactive
demonstration of the capacity of OSCAR3 for text
processing as well as a number of other utilities
including the capacity to manually annotate a text
from within a browser window, a servlet for the
interconversion and depiction of chemical names
and formats and an experimental Hearst pattern [28]
based system for the extraction of chemical relations
from text. The OSCAR3 codebase had the resem-
blance of a ‘treasure trove’ which made code mainte-
nance a more complex task than necessary. The
separation of a library containing the core OSCAR
functionality from these secondary functions was
therefore considered desirable.
5. Much of the architecture of OSCAR3 lacked clear
definition. Excessive use is made of mutable single-
tons which, while aiding performance by eliminating
the need for re-initialisation of components, allows
for complex interactions in the code, making it diffi-
cult to understand, debug and re-factor. This pro-
blem was compounded by the manner in which
program logic is partially controlled by a properties
object backed by a serialised file. Some of the prop-
erty values can be modified at runtime while others,
once accessed by the objects that rely upon them,
are duplicated in memory and cannot be further
changed. Attempts to resolve these complex interac-
tions can have unintended consequences since the
unit test coverage in OSCAR3 is sparse. Conse-
quently, the improvement of the architecture of the
OSCAR software was considered a vital part of the
OSCAR4 project.
6. It has been known for some time that the speed
of OSCAR3 operation could be improved by intro-
ducing certain optimisations into the code. Using
the YourKit Java profiler [29], a number of perfor-
mance blackspots were identified and subsequently

Jessop et al. Journal of Cheminformatics 2011, 3:41
http://www.jcheminf.com/content/3/1/41

Page 4 of 12

eliminated. This work was started after the final ver-
sion of OSCAR3 (OSCAR3 alpha 5 [30]) and contin-
ued as part of the OSCAR4 project.

Library as a design
OSCAR4 has been deliberately written as a Java library,
rather than an application or service. Consequently, the
decoupling of the core OSCAR functionality from appli-
cations that use this functionality has been achieved.
The usage of the library has been simplified as much as
possible with the introduction of the Oscar API object-a
class intended to wrap the functionality of the wider
library and provide default implementations of the var-
ious components. As a result, OSCAR4 can be called
from external software, as shown in the examples in Fig-
ure 3.
In the first of the examples in Figure 3, OSCAR4 is

used to detect named entities in an input string, return-
ing a List of NamedEntity objects. In the second, it is
used to both detect named entities and, where these
named entities correspond to chemical names, to resolve
these names to chemical structures-returning a List of
ResolvedNamedEntity objects. The ResolvedNamedEn-
tity class links a NamedEntity to a list of chemical struc-
tures in a number of formats-SMILES, InChI and CML-
while the NamedEntity class stores such information as
the surface (raw text) and type (e.g. compound or reac-
tion) of the named entity and the indices that define its
position within the source text. The outputs of these
examples are illustrated in Figure 4.
The examples above show how OSCAR4 can be used

without the need for any understanding of the underly-
ing technology or implementations. An overview of the
workflow managed by the Oscar API object is shown in
Figure 5.
The input is first passed to the Tokeniser to produce a

list of TokenSequence objects, each of which roughly

corresponds to a paragraph of text and contains a list of
Token objects. The Token represents a string of charac-
ters that mostly correspond to words but also to punc-
tuation or other discrete units of text e.g. “C2H6O” or
“42”. In NLP tools, tokenisation commonly occurs at
whitespace or punctuation boundaries, however due to
the form of some of the domain-specific entities found
in chemical texts such as “C-H” a custom Tokeniser is
used. The TokenSequences are then passed to a Chemi-
calEntityRecogniser-an interface for a class capable of
identifying a list of NamedEntities, which are subse-
quently passed to the ChemNameDictRegistry to create
a list of ResolvedNamedEntities if required.
This workflow can be customised by the user, who

can use the set() methods of the Oscar class to replace
the components of the default configuration with suita-
ble customised or custom-built alternatives. Specifically,
the user can select which implementation of Chemica-
lEntityRecogniser to use or can specify which set of
ontology terms are to be recognised and which model
the default ChemicalEntityRecogniser should use, and
which dictionary registry, i.e. set of chemical name dic-
tionaries, to use for name to structure resolution. In
addition to this, the public APIs of the individual com-
ponents can be used to assume a greater degree of con-
trol over the execution of the workflow.
OSCAR4 provides three implementations of the Che-

micalEntityRecogniser. The first, the RegexRecogniser,
finds terms that match a given regular expression and is
intended to find serial numbers corresponding to com-
pounds e.g. “NSC-2648”. The others, the PatternRecog-
niser and the MEMMRecogniser, use more complex
strategies to identify chemical named entities and fea-
ture subcomponents that can be customised by the user
to produce the desired behaviour.
The architecture of the PatternRecogniser is shown

in Figure 6. A list of “chemical” words is drawn from
an internal dictionary composed mostly of words

Figure 3 Java code using the OSCAR4 API to a) identify chemical named entities (CNEs) in a block of text and b) identify CNEs and
resolve their connection tables where possible.

Jessop et al. Journal of Cheminformatics 2011, 3:41
http://www.jcheminf.com/content/3/1/41

Page 5 of 12

derived from the ChEBI database and from a corpus of
manually-annotated documents, while a list of “non-
chemical” words is determined by removing those
words that occur in the chemical word list from a
standard English dictionary. These lists are used to
build an n-gram model which is used by a naïve Baye-
sian classifier to determine whether novel tokens are
“chemical” or “non-chemical”. Multi-token named enti-
ties, e.g. “ethyl acetate”, that occur within the input
text are then identified by regex-style matching of che-
mical tokens to a set of pre-specified pattern defini-
tions such as “*yl *ate”.

The architecture of the MEMMRecogniser is shown in
Figure 7, in which chemical named entities are identified
using a Maximum Entropy Markov Model (MEMM). The
feature set that is generated for each token includes fea-
tures that describe the token in question, such as the n-
grams that describe it and the probability that it is chemi-
cal as predicted by the n-gram model as previously, as well
as contextual features that describe its neighbouring
tokens. Using these features, the MEMM model assigns a
chemical token as being either the first token in a named
entity or a subsequent token in a named entity. Given
these assignments, multi-token named entities can be

Figure 4 Graphic representing the structure of the OSCAR4 API output object. Named entities reference their position in the input text,
the confidence in their identification and resolved structures in various formats (SMILES [43,44], InChI, CML [45]etc.).

Jessop et al. Journal of Cheminformatics 2011, 3:41
http://www.jcheminf.com/content/3/1/41

Page 6 of 12

constructed. Novel MEMM models can be built from a
corpus of hand-annotated documents by the user, and
OSCAR4 is supplied with two pre-generated models. One
of these models was built from a set of papers from RSC
journals [31], while the other was built from a set of
abstracts retrieved from PubMed [19].

Architecture and tests
The OSCAR4 library has been separated into a number
of modules with each performing a defined role in the
operation of the OSCAR code, such as the tokenisation
of text or the provision of chemical name dictionaries.
This allows client programmers to use as much or as

Figure 5 Workflow of the OSCAR4 API object.

Figure 6 PatternRecogniser architecture.

Jessop et al. Journal of Cheminformatics 2011, 3:41
http://www.jcheminf.com/content/3/1/41

Page 7 of 12

little of OSCAR in their applications as required, with-
out the need to unnecessarily pull in a large, compre-
hensive, single JAR. The process of creating the sub-
projects had the additional advantage of highlighting the
ways in which the separate components interact. During
this process, the readability of the OSCAR code was
improved by imposing a number of the idioms of ‘clean
code’, and the reliability of the code was improved by
the creation of appropriate unit and regression tests. At

the time of writing, OSCAR4 has nearly 500 tests. As a
result, the OSCAR4 code is far more robust than
OSCAR3, so a developer can work both with and on the
core OSCAR code with a far greater degree of
confidence.
The mutable singletons that were commonplace in

OSCAR3 have been largely removed. Instead, when set-
ting up custom workflows, a user has the choice of
either calling the getDefaultInstance() method or the

Figure 8 OSCAR4 run within Bioclipse’s scripting interface (centre pane) identifying named entities in a block of text and saving the
connection tables to file (extractedMols.sdf) for viewing (right pane).

Figure 7 MEMMRecogniser architecture.

Jessop et al. Journal of Cheminformatics 2011, 3:41
http://www.jcheminf.com/content/3/1/41

Page 8 of 12

default constructor as appropriate-each of which returns
a preconfigured instance of the class-or using the cus-
tom constructor which uses dependency injection to
supply the OSCAR components upon which the class
depends. For example, the OntologyTerms class repre-
sents a set of ontology terms and their corresponding
ontology IDs. The following two methods of obtaining
an OntologyTerms object are available:

OntologyTerms.getDefaultInstance();
new OntologyTerms(ListMultimap < String, String >
terms);

The first method returns the default OSCAR4 Ontolo-
gyTerms object, which contains an amalgamation of the
terms from the ChEBI, FIX and REX ontologies while
the second supplies a multimap of ontology terms to
IDs. The use of this design pattern throughout the code-
base permits, but by no means requires, a user to
assume a high degree of control over the functioning of
OSCAR.
The use of the properties file and object to control

elements of the program execution has been removed.
Instead, the required information is either specified as
part of a constructor’s signature or using a set() method
on the object in question. This improves the thread-
safety of OSCAR, particularly in a multiuser environ-
ment, and contributes to its usability since a user can
now trivially see what features may be customised from
the outline of the class as opposed to needing to know
which and how properties are used by which
components.

Input and Output Formats
As previously discussed, OSCAR3 required that input
documents be converted into SciXML before processing
can occur, using the document formatting as a base
against which annotations for identified named entities
can be referenced-whether as inline or standoff annota-
tions. XML input turned out to be overly complex as

NLP tools require “flat” relatively sequential tokens. The
XML markup adds little useful context. OSCAR4
removes this requirement by operating on plain text and
producing NamedEntity and DataAnnotation objects to
represent recognised sections of text and does not cur-
rently produce serialised output, though some support
for the serialisation of annotations into XML documents
is planned for future releases. It should be realised, how-
ever, that there is no single, fool-proof approach to this
problem. Different XML schema may use different
methods to indicate where in the document section
breaks and even text content occur, while it cannot be
guaranteed that well-formed inline annotations can be
generated for a given input document. Client program-
mers are therefore recommended to consume Name-
dEntity objects directly rather than rely upon serialised
output, though it is realised that users are likely to want
to be able to create serialised, marked-up copies of their
documents as well.

Non-core functionality
Non-critical code (particularly downstream applications)
has been removed from the OSCAR4 codebase to reflect
the philosophy that OSCAR4 should act as a library.
While some minor supporting code remains, such as
that required for generation of key resource files, the
majority has been removed entirely as it is envisaged
that much of the former functionality could be better
implemented by developers with specific use cases.
A number of useful non-core functions are provided

in dependent libraries developed at the Unilever Centre
in Cambridge. Specifically, subsidiary modules exist to
provide the capacity to run OSCAR4 from the com-
mand-line, as part of UIMA or Taverna [32] workflows
and from the Bioclipse [33] scripting interface, as shown
in Figure 8.

Performance
A number of modifications were introduced to the
OSCAR code with the aim of reducing the time

Table 1 Results of the initialisation task

Software version OSCAR4 4.0.1 OSCAR3 alpha 5 OSCAR4 4.0.1 OSCAR3 alpha 5

Recogniser MEMMRecogniser MEMMRecogniser PatternRecogniser PatternRecogniser

Mean time (s) 14.4 17.3 19.7 24.6

Standard deviation (ms) 40.8 40.0 72.6 88.6

Table 2 Results of the bulk processing task

Software version OSCAR4 4.0.1 OSCAR3 alpha 5 OSCAR4 4.0.1 OSCAR3 alpha 5

Recogniser MEMMRecogniser MEMMRecogniser PatternRecogniser PatternRecogniser

Mean time (s) 446 541 150 276

Standard deviation (s) 1.85 1.14 0.556 1.53

Jessop et al. Journal of Cheminformatics 2011, 3:41
http://www.jcheminf.com/content/3/1/41

Page 9 of 12

required to process documents. Performance hotspots
were identified using the YourKit Java profiler and
where possible eliminated. Some such improvements
focused on the time taken to initialise the various
OSCAR components, such as supplying a pre-calculated,
serialised copy of the n-gram models used for named
entity recognition rather than regenerating them each
time OSCAR is loaded. Others improved the speed at
which OSCAR can process a document by optimising
extremely tight loops in the code, such as eliminating
unnecessary string declaration while calculating n-gram
features and avoiding recompilation of regular expres-
sions. Further improvements were made ad hoc, as the
OSCAR4 developers encountered obvious bottlenecks
while working on the code.
In order to quantify the improvement in speed of

operation, the time taken by both OSCAR4 version 4.0.1
and OSCAR3 alpha 5 to perform two tasks was mea-
sured. The first task measured the time taken to initia-
lise the software to the point that it was ready to begin
the task of finding named entities in text; the second
task aimed to measure the speed at which the software
could process bulk text and consisted of processing the
full text of the 68 patents published by the European
Patent Office in the week of 2009-05-06-a total of 11468
paragraphs of text. All the tasks were run on a desktop
computer equipped with an Intel Pentium 4 (3.00 GHz)
CPU and 1 GB of RAM, purchased c. 2005, running
openSUSE 11.1 and using the Java 1.6.0_22 32-bit virtual
machine with a maximum heap size of 512 MB. The
results are summarised in Table 1 and Table 2.
From these data, it can be seen that OSCAR4 per-

forms significantly faster than OSCAR3. Initialisation
times for the MEMMRecogniser and PatternRecogniser
have been reduced by 17% and 20% respectively, while
bulk processing times have been reduced by 18% and
46% respectively. The OSCAR4 MEMMRecogniser and
PatternRecogniser processed approximately 26 and 76
paragraphs per second respectively, demonstrating that
bulk processing of text is achievable on an acceptable
timescale on desktop computers.

Deployment
OSCAR4 has generated significant interest in the com-
munity, and has been the subject of two meetings at the
Unilever Centre for Molecular Science Informatics in
Cambridge. The talks from the second of these are
available to view online [34]. To our knowledge, the
software is in use at the National Centre for Text
Mining (NaCTeM), the European Bioinformatics Insti-
tute (EBI) and the European Patent Office (EPO) as well
as various pharmaceutical companies.
We are aware of successful and straightforward inte-

grations into the Bioclipse and Taverna frameworks, and

believe that this is similarly straightforward for other
Java environments. We were also pleased to see that at
the recent MIOSS meeting at the EBI, OSCAR and
OPSIN had been integrated into the .NET environment.
For example, OPSIN was demonstrated as running
within the JVM in Microsoft Excel, which is acceptable
to commercial organisations as the JVM is of proven
security.

Future Prospects
This is a useful opportunity to reflect on the high cost of
producing robust, re-usable software. OSCAR3, and
OPSIN, were produced as a continuing activity by a mix-
ture of summer students, PhDs and PDRAs and, until ca.
2009, evolved rather than having a top-down software
design. When the project became valuable to the world, it
was a clear indication that re-factoring was going to be
essential, and it is important to realise the necessary but
high cost of doing this. In times of lean funding, it will
become increasingly difficult to obtain this type of support,
and therefore it is always tempting to transfer academic
code to commercial entities which can raise revenue.
The downside of this is that we know of very few

commercial codes, and certainly none in chemical text
analysis, that provide public metrics let alone expose the
architecture on which the program is based. Text-
mining as an academic subject requires metrics and
increasingly requires Openness of the components of
the system, as we have done in OSCAR and OPSIN. We
are investigating continuing business models where we
can continue to re-factor and improve the product while
not closing the code and therefore reducing scientific
credibility and innovation.
Very recently we have been exploring the use of OSCAR

for areas other than organic and biological chemistry.
Because OSCAR can be customised by different diction-
aries, we have been able to adapt it to process reports of
atmospheric chemistry and, more generally, atmospheric
science. In conjunction with the European Geosciences
Union (EGU, which publishes Open Access papers), we
have analysed abstracts and full text for chemical entities
and related numerical quantities (e.g. amounts, conditions
etc.) This has led to a design where the domain-indepen-
dent parts of OSCAR4 can be applied to many physical
sciences with bespoke dictionaries and ChemicalTagger
rules. We have submitted grants in both the biosciences
("OSCAR-BIO”) and physical sciences ("OSCAR-PHYS”).
As part of this work, we will be actively addressing generic
tools for metrics and training.

Appendixes
Appendix A: Additional OSCAR4 resources
The source code, mailing list, tutorials, documentation
and support are available at

Jessop et al. Journal of Cheminformatics 2011, 3:41
http://www.jcheminf.com/content/3/1/41

Page 10 of 12

https://bitbucket.org/wwmm/oscar4/wiki/Home
This page also includes instructions for accessing pre-

compiled JAR files from the Unilever Centre’s Maven
repository.
The source code used to measure OSCAR perfor-

mance is available at https://bitbucket.org/dmj30/oscar-
performance
The OSCAR4 Javadoc is available at http://apidoc.ch.

cam.ac.uk/oscar4-4.0.1

Appendix B: Building on the OSCAR4 API
The core methods are given in each case. In some cases
it will be valuable to extract further information recur-
sively from the results.

a) Searching a given text for Named Entities. These
can then be displayed, computed etc.

Oscar oscar = new Oscar();
List < NamedEntity >namedEntities
= oscar.findNamedEntities(text);

b) Where the named entity can be resolved to a che-
mical structure, extract it:

Oscar oscar = newOscar();
List < ResolvedNamedEntity >entities
= oscar.findAndResolveNamedEntities(s);
for (ResolvedNamedEntity entity : entities) {
ChemicalStructure structure = entity.get-
FirstChemicalStructure (FormatType.INCHI));
...
}

c) Find only those entities which are resolvable to
structures (e.g. “benzene” but not “ the methyl ester":

Oscar oscar = newOscar();
List < ResolvedNamedEntity >entities
= oscar.findResolvableEntities(s);

d) Tailor the system to use different recognizers and
dictionaries:

ChemicalEntityRecogniser myRecogniser = new-
PatternRecogniser()
Oscar oscar = newOscar();
oscar.setRecogniser(myRecogniser);
oscar.setDictionaryRegistry
(myDictionaryRegistry);
List < ResolvedNamedEntity >entities = oscar.
findResolvableEntities(s);

Acknowledgements
We gratefully acknowledge OMII-UK, JISC (ChETA project) and EPSRC
(Sciborg, Pathways to Impact awards) for funding and Dr Charlotte Bolton
for her assistance in the preparation of this article.

Authors’ contributions
DMJ wrote the manuscript and was lead developer in the OSCAR4 re-
factoring.

SEA was the architect and project manager for the OSCAR4 re-factoring and
was involved in the original Experimental Data Checker project.
ELW contributed to the OSCAR4 re-factoring and investigated its use in
Bioclipse.
LH contributed to the OSCAR4 re-factoring and was involved in the CheTA
project.
PMR had the overall vision for, and was involved in, all stages of the various
OSCAR projects, and wrote the manuscript.
All authors have read and approved the final version.

Competing interests
The authors declare that they have no competing interests.

Received: 23 June 2011 Accepted: 14 October 2011
Published: 14 October 2011

References
1. Kemp N, Lynch M: Extraction of Information from the Text of Chemical

Patents. 1. Identification of Specific Chemical Names. J Chem Inf Comput
Sci 1998, 38:544-551.

2. Wilbur WJ, Hazard JF, Divita G, Mork JG, Aronson AR, Browne AC: Analysis
of Biomedical Text for Chemical Names: A Comparison of Three
Methods. Proc AMIA Symp 1999, 176-180.

3. Wren JF: A scalable machine-learning approach to recognize chemical
names within large text databases. BMC Bioinformatics 2006, 7(Suppl. 2):
S3.

4. Klinger R, Kolářik C, Fluck J, Hofmann-Apitius M, Friedrich CM: Detection of
IUPAC and IUPAC-like chemical names. Bioinformatics 2008, 24:268-276.

5. Hettne KM, Stierum RH, Schuemie MJ, Hendriksen PJM, Schijvenaars BJA,
van Mulligen EM, Kleinjans J, Kors JA: A dictionary to identify small
molecules and drugs in free text. Bioinformatics 2009, 25:2983-2991.

6. Jiao D, Wild DJ: Extraction of CYP Chemical Interactions from Biomedical
Literature Using Natural Language Processing Methods. J Chem Inf
Comput Sci 2009, 49:263-269.

7. Kolářik C, Klinger R, Friedrich CM, Hofmann-Apitius M, Fluck J: Chemical
Names: Terminological Resources and Corpora Annotation. Proceedings of
the Workshop on building and evaluating resources for biomedical text mining
(6th edition of the Language Resources and Evaluation Conference Marrakech,
Marokko; 2008, 51-58.

8. Grego T, Pezik P, Couto FM, Rebholz-Chuhmann D: Identification of
Chemical Entities in Patent Documents. Distributed Computing, Artificial
Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living
Berlin, Germany. Springer-Verlag; 2009, 942-949.

9. Hettne KM, Williams AJ, van Mulligen EM, Kleinjans J, Tkachenko V, Kors JA:
Automatic vs manual curation of a multi-source chemical dictionary: the
impact on text mining. Journal of Cheminformatics 2010, 2:3.

10. Müller B, Klinger R, Gurulingappa H, Mevissen H, Hofmann-Apitius M,
Fluck J, Friedrich CM: Abstracts versus Full Texts and Patents: A
Quantitative Analysis of Biomedical Entities. Advances in Multidisciplinary
Retrieval Springer-Verlag; 2006, 152-165.

11. Sun B, Mitra P, Giles CL, Mueller KT: Identifying, Indexing and Ranking
Chemical Formulae and Chemical Names in Digital Documents. ACM
Trans. Inf. Syst 2011, 29:Article 12.

12. Lowe DM, Corbett PT, Murray-Rust P, Glen RC: Chemical name to
structure: OPSIN, an open source solution. J Chem Inf Model 2011,
51:739-753.

13. OPSIN, Open Parser for Systematic IUPAC Nomenclature. [http://opsin.ch.
cam.ac.uk/], Accessed 2011-06-15.

14. Hawizy L, Jessop DM, Adams N, Murray-Rust P: ChemicalTagger: A tool for
semantic text-mining in chemistry. J Cheminf 2011, 3:17.

15. ChemicalTagger. [http://chemicaltagger.ch.cam.ac.uk/], Accessed 2011-06-
15.

16. Adams SE, Goodman JM, Kidd RJ, McNaught AD, Murray-Rust P, Norton FR,
Townsend JA, Waudby CA: Experimental data checker: better information
for organic chemists. Org Biomol Chem 2004, 2:3067-3070.

17. RSC Experimental Data Checker. [http://www.rsc.org/Publishing/Journals/
guidelines/AuthorGuidelines/AuthoringTools/ExperimentalDataChecker/
index.asp], Accessed 2011-06-15.

18. Corbett P, Murray-Rust P: High-Throughput Identification of Chemistry in
Life Science Texts. In Computational Life Sciences II, Second International
Symposium, CompLife 2006 Cambridge, UK, September 27-29, 2006,

Jessop et al. Journal of Cheminformatics 2011, 3:41
http://www.jcheminf.com/content/3/1/41

Page 11 of 12

https://bitbucket.org/wwmm/oscar4/wiki/Home
https://bitbucket.org/dmj30/oscar-performance
https://bitbucket.org/dmj30/oscar-performance
http://apidoc.ch.cam.ac.uk/oscar4-4.0.1
http://apidoc.ch.cam.ac.uk/oscar4-4.0.1
http://www.ncbi.nlm.nih.gov/pubmed/17254308?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17254308?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759196?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19759196?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20331846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20331846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21384929?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21384929?dopt=Abstract
http://opsin.ch.cam.ac.uk/
http://opsin.ch.cam.ac.uk/
http://chemicaltagger.ch.cam.ac.uk/
http://www.ncbi.nlm.nih.gov/pubmed/15505708?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15505708?dopt=Abstract
http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/AuthoringTools/ExperimentalDataChecker/index.asp
http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/AuthoringTools/ExperimentalDataChecker/index.asp
http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/AuthoringTools/ExperimentalDataChecker/index.asp

Proceedings. Lecture Notes in Computer Science. Edited by: Berthold MR, Glen
RC, Fischer I. Heidelberg: Springer; 2006:107-118.

19. Corbett P, Copestake A: Cascaded classifiers for confidence-based
chemical named entity recognition. BMC Bioinformatics 2008, 9(Suppl 11):
S4.

20. UIMA. [http://uima.apache.org/], Accessed 2011-06-15.
21. U-Compare. [http://u-compare.org/], Accessed 2011-06-15.
22. Kano Y, Baumgartner W, McCrohon L, Ananiadou S, Cohen KB, Hunter L,

Tsujii J: U-compare: Share and compare text mining tools with UIMA.
Bioinformatics 2009, 25:1997-1998.

23. Kolluru B, Hawizy L, Murray-Rust P, Tsuji J, Ananiadou S: Using workflows
to explore and optimise named entity recognition for chemistry. PLoS
ONE 2011, 6:e20181.

24. Jessop DM: Information extraction from chemical patents. PhD thesis
University of Cambridge: Cambridge, UK; 2011.

25. Jessop DM, Adams SE, Murray-Rust P: Mining chemical information from
Open patents. J Cheminf 2011, 3:40.

26. McNaught A: The IUPAC International Chemical Identifier. Chemistry
International 2006, 12-14, November-December.

27. IUPAC International Chemical Indentifier. [http://www.iupac.org/inchi/],
Accessed 2011-06-15.

28. Hearst MA: Automatic acquisition of hyponyms from large text corpora.
COLING ‘92 Proceedings of the 14th conference on Computational linguistics-
Volume 2:539-545.

29. YourKit java profiler. [http://www.yourkit.com/], Accessed 2011-06-15.
30. OSCAR3 alpha 5. [http://sourceforge.net/projects/oscar3-chem/], Accessed

2011-06-15.
31. Corbett P, Batchelor C, Teufel S: Annotation of Chemical Named Entities.

Proceedings of BioNLP 2007: Biological, translational, and clinical language
processing (ACL 2007 workshop) 2007, 57-64.

32. Taverna. [http://www.taverna.org.uk/], Accessed 2011-06-15.
33. Bioclipse. [http://www.bioclipse.net/], Accessed 2011-06-15.
34. OSCAR4 Launch. [http://sms.cam.ac.uk/collection/1130934], Accessed 2011-

06-15.
35. Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen EL: Recent

Developments of the Chemistry Development Kit (CDK)-An Open-Source
Java Library for Chemo- and Bioinformatics. Curr Pharm Des 2006,
12:2111-2120.

36. Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttman E, Willighagen E: The
Chemistry Development Kit (CDK): An Open-Source Java Library for
Chemo- and Bioinformatics. J Chem Inf Comput Sci 2003, 43:493-500.

37. Chemical Development Kit (CDK). [http://sourceforge.net/projects/cdk/],
Accessed 2011-06-15.

38. Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A,
Alcantara R, Darsow M, Guedj M, Ashburner M: ChEBI: a database and
ontology for chemical entities of biological interest. Nucl Acids Res 2008,
36(Suppl. 1):D344-D350.

39. de Matos P, Alcántara R, Dekker A, Ennis M, Hastings J, Haug K, Spiteri I,
Turner S, Steinbeck C: Chemical Entities of Biological Interest: an update.
Nucl Acids Res 2009, 38(Suppl. 1):D249-D254.

40. ChEBI. [http://www.ebi.ac.uk/chebi/], Accessed 2011-06-15.
41. FIX ontology. [http://www.berkeleybop.org/ontologies/owl/FIX], Accessed

2011-06-15.
42. REX ontology. [http://www.berkeleybop.org/ontologies/owl/REX], Accessed

2011-06-15.
43. Weininger D: SMILES, a chemical language and information system. 1.

Introduction to methodology and encoding rules. J Chem Inf Comput Sci
1988, 28:31-36.

44. Weininger D, Weininger A, Weininger JL: SMILES. 2. Algorithm for
generation of unique SMILES notation. J Chem Inf Comput Sci 1989,
29:97-101.

45. Murray-Rust P, Rzepa HS: Chemical Markup, XML and the Worldwide
Web. 1. Basic Principles. J Chem Inf Comput Sci 1999, 39:928-942.

doi:10.1186/1758-2946-3-41
Cite this article as: Jessop et al.: OSCAR4: a flexible architecture for
chemical text-mining. Journal of Cheminformatics 2011 3:41.

Open access provides opportunities to our
colleagues in other parts of the globe, by allowing

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

Jessop et al. Journal of Cheminformatics 2011, 3:41
http://www.jcheminf.com/content/3/1/41

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/19091027?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19091027?dopt=Abstract
http://uima.apache.org/
http://u-compare.org/
http://www.ncbi.nlm.nih.gov/pubmed/19414535?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21633495?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21633495?dopt=Abstract
http://www.iupac.org/inchi/
http://www.ncbi.nlm.nih.gov/pubmed/21871588?dopt=Abstract
http://www.yourkit.com/
http://sourceforge.net/projects/oscar3-chem/
http://www.taverna.org.uk/
http://www.bioclipse.net/
http://sms.cam.ac.uk/collection/1130934
http://www.ncbi.nlm.nih.gov/pubmed/16796559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16796559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16796559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12653513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12653513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12653513?dopt=Abstract
http://sourceforge.net/projects/cdk/
http://www.ncbi.nlm.nih.gov/pubmed/17932057?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17932057?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19854951?dopt=Abstract
http://www.ebi.ac.uk/chebi/
http://www.berkeleybop.org/ontologies/owl/FIX
http://www.berkeleybop.org/ontologies/owl/REX

	Abstract
	Introduction
	Historical Funding and Collaboration
	Limitation of OSCAR3 and design goals for OSCAR4
	Library as a design
	Architecture and tests
	Input and Output Formats
	Non-core functionality
	Performance
	Deployment
	Future Prospects

	Appendixes
	Appendix A: Additional OSCAR4 resources
	Appendix B: Building on the OSCAR4 API

	Acknowledgements
	Authors' contributions
	Competing interests
	References

