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Abstract

A retrospective view of the design and evolution of Chemical Markup Language (CML) is presented by its original
authors.

The genesis of CML
The modern online era has brought with it the need to
rethink many of the mechanisms by which chemistry as
a subject is researched, conducted and disseminated.
This retrospective review describes how one infrastruc-
ture for doing so, CML or Chemical Markup Language,
had its origins, and how the design evolved over a per-
iod of around 16 years (see also the accompanying
spreadsheet for a breakdown of the historical timeline
[Additional file 1]). In order to appreciate those origins,
we start by describing the backgrounds and motivations
of the present authors (Endnote 1) (Figure 1).
PMR recounts the early background to CML from his
point of view: “What are the origins of CML? I think I
go back to ca. 1980 when I was writing code to extend
Sam Motherwell’s great FORTRAN toolkit for the Cam-
bridge database [1]- BIBSER (bibliographic search),
CONNSER - the first and greatest chemical substructure
algorithm, and GEOM78 - a geometry calculation tool.
Between 1977 and 1980 I used to visit Cambridge (from
Stirling) and work with Sam on extracting structures
from the database and analysing them (Figure 2). There
was a rough division of labour and ideas between us. I
came with a number of ideas and Sam would modify
CONNSER and GEOM to support these - literally
within a day or so.
I took the problems back to Stirling and “integrated”

Sam’s output with SPSS [2]. I did the analysis on the
floor of our living room with an acoustic modem [3]
where the handset was plugged into rubber cups. It
used to run at 110 baud. The sums were originally done
at Cambridge (on Phoenix) but I ported the software to
UMRCC (the Regional Computing Centre at

Manchester) on a CDC 7600. The results were printed
out on folding line printer paper on a boustrophedonic
ASR33 teletype. I would then extract data by hand and
enter them into the statistical programs, but gradually
moved to doing the statistics remotely. Remote graphics
was always difficult - we could get printer plots posted
from Aberdeen but it took a week. So I generally
evolved ASCII (line printer output) plots. One conse-
quence is that during these sessions I had a lot of time
to think about how to do it better. It was obvious the
software had to be modular and I gradually got to think-
ing about modular data.
In 1981/2 I spent a sabbatical with Jenny Glusker [4]

in Philadelphia and there developed a VAX-VMS ver-
sion of the software. I extended this to plot aggregations
of data in two and three dimensions. Again the idea of
modular components was clear. I returned to start up
molecular modelling/computer graphics in Glaxo and
found myself working with a completely different set of
data files -ChemX, MDL molfile, etc. I couldn’t use
these with my analysis code. This burgeoning of porta-
ble chemical computational systems had began in the
early 1980s with a number of software products, mainly
codes but also datafiles, being developed for the molecu-
lar graphics and computational chemistry community.
In general, each resource developed its own representa-
tion of information, often referred to as a ‘file format’ or
‘file type’. For example, by the mid 1980s there were
probably fifty different file formats in chemistry includ-
ing PDB, CSSR, MDL molfile and more specific program
outputs [5] (Endnote 2). It was a major problem to con-
vert between these formats, but despite some initiatives
many software producers regarded the formats as pro-
prietary and were resistant to ideas of inter-operability.
It seemed completely wasteful not to have a common

format, so I started an activity within the Molecular
Graphics Society [6] to systematize file types. In effect
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this was an attempt to build a chemical ontology. I
didn’t get much take up and there was active resistance
from some software companies who regarded their for-
mats as a commercial weapon.
During this period I had gradually advanced my lan-

guage skills from FORTRAN to BBC-BASIC and C (part
of this was through teaching the MSc in Birkbeck). So
when C++ came along (late 1980s) I translated my
approach to C++ and started to develop a toolkit/library.
That’s effectively when CML as a data modelling
approach started.”
HSR recalls his own early experiences in writing mod-

ular code: “In 1977, I had returned from the USA to
Imperial College to continue my researches in quantum
mechanical molecular modelling. Whilst at Austin in
Michael Dewar’s group, where I was learning about this
area, I had encountered the famous ORTEP [7] program
for displaying images derived from molecular coordi-
nates, overkill of course for what I needed. So in 1977,
armed with a Tektronix 4014 vector graphics terminal
[8], I started to write a simplified molecular renderer
(STEK) optimized for computational chemistry using
FORTRAN code. A number of modules were aggre-
gated, including a much simplified ORTEP-style mole-
cular renderer with an appropriately semi-interactive
interface for rotating the molecule into an effective pro-
jection, simple XY plotting routines, 2D contour and
isometric plotting routines for potential energy surfaces
and molecular orbitals, and various labelling and anno-
tating routines. Data was read in from separate files
(mostly the output of the MOPAC molecular orbital
program) and written out into a (human- readable) sin-
gle history file which could be used to restore the com-
posite diagram. To separate the various data types, I
developed a simple, rather ad hoc markup language,
with a linear parser which could read back the data
objects and associated display attributes to reconstruct
the content model for the diagram. The project ground

to a halt after about 10 years, largely because I had
come to rely on a system graphics library (SIMPLE) tar-
geting solely the Tektronix devices and the CDC com-
puters my institute then operated. Remove this library
and the hardware, and my (FORTRAN) program
became very difficult to port (especially to the raster
devices which were starting to replace the vector dis-
plays in the mid 1980s). It did teach me the value of
markup (I was already used to word processing using
troff [9]), of separating data elements into modular com-
ponents, and in particular of stateless “round tripping”,
the ability to generate the output of a session in either a
human- or a machine-readable manner that could be
read back without loss, and in a reasonably error toler-
ant fashion, or with some components re-used for a dif-
ferent context. These absorbed concepts re-emerged
some 10 years later when the ideas for CML started
circulating.
I think my STEK program lasted perhaps 12 years,

since I found that even in 1989, I was still using it
[10,11] (good examples can be found in Figure one and
Figures three & four respectively of these publications,
which are not reproduced here for reasons of copyright).
The molecule renderer had one feature unique to MO
calculations not found in ORTEP, i.e. the ability to dis-
play the vibrational displacement vectors for a transition
state, which was essential for understanding potential
energy surfaces and the stationary points located.
The history of molecular orbital rendering is in itself

an interesting one, since it introduces the connection
between data, and its most effective representation.
Hückel [12,13] was the first to apply MOs to “interest-
ing molecules” such as benzene, but he famously never
showed any diagrams. Dewar, starting in the early
1950s, did much to promote the use of molecular orbi-
tals as a conceptual tool in chemistry, but he rarely pro-
vided quantitative representations in his articles. The
great era of PMO theory in the 1950s was described
using largely equations and tabulations of numbers
rather than images [14]. Whilst I was a post doc with
Dewar from 1974-1977, the group never in my recollec-
tion included MO wavefunctions derived using a graphi-
cal computer program in its publications! There was no
idea to enhance the group’s papers with such from
Dewar himself, or the spark from anyone in the group
to go find such a program (from e.g. QCPE [15] (if
indeed any existed)). I introduced routine ORTEP plot-
ting of molecular coordinates to the group’s output, but
never myself made the jump to rendering wavefunctions
until inspired by an article on “orbital photography” in
1984 [16].
The relevance of MO rendering is that it highlighted

in my mind the importance of data (calculated MO
coefficients as numbers) and the need to interpret them

Figure 1 The PMRz symbiote in a familiar environment.
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semantically (which only visual rendering can do), in
other words, the importance of both data and its appro-
priate rendering. Dewar’s group could do the former,
but never developed the expertise for the latter. Interest-
ingly, Hoffmann’s group did both, and acquired a major
reputation in the field, including of course the Nobel
prize for interpretations of pericyclic reactions [17].
Dewar always lamented his missing out on the Nobel
prize, and arguably it was his inefficent application of
data that might have been to blame.
One might argue that the reason the computational

and the synthetic chemistry communities rarely mixed
at that time is that the learning curve to understanding
the tables of numbers that were being produced in theo-
retical articles was too steep for synthetic chemists. Per-
haps images were also needed for impact? In 1984, the
Rubinstein brothers developed ChemDraw (a 2D repre-
sentational program), followed in 1986 by Chem3D, to

be used at that time only on an overtly graphical com-
puter (the Macintosh). This was one of a bevy of com-
mercial programs of that era that started to address
both the organic chemistry and modelling
communities.”
Back to PMR: “However the crystallographers had a

much more unified view of the world. I continue to
congratulate the International Union of Crystallography
(IUCr) for its efforts in this area. In the mid 1980s the
crystallographic community started to formalise its
approach to small molecule X-ray diffraction. There was
an active group, led by David Brown [18] aiming to cre-
ate a self-defining format for crystallography- Standard
Crystallographic File Structure[19,20]. It was essentially
a data dictionary where a controlled vocabulary was cre-
ated and specific semantics were added to items (e.g.
data type). This approach was then taken further by the
birth of the CIF initiative in 1990 and CIF is now the

Figure 2 Analysis of bond lengths (horizontal axis = frequency) from the Cambridge Crystallographic Database ca. 1995. This has
evolved into the bond length analysis tool in CrystalEye [60] which allows interactive clicking of points to bring up structures. (Note: Image is a
scan of the original line printer output).

Murray-Rust and Rzepa Journal of Cheminformatics 2011, 3:44
http://www.jcheminf.com/content/3/1/44

Page 3 of 15



standard method of exchanging crystallographic infor-
mation [21]. This was based on data supported by data
dictionaries which themselves were constrained to a dic-
tionary definition specification. I started to use the CIF
approach to model my scientific world - this was long
before XML but it was essentially isomorphic to XML -
and it inspired much of the vision of CML.
I started with the most obvious components - geome-

try and numbers. These are still an integral part of CML
(the “euclid“ library). This was then extended to
molecules, atoms and bonds and by ca. 1993 I had a set
of objects. But I needed a way to display and manipulate
them.
At that stage I met Henry Rzepa. Henry remembers

that probably around1993, the student chemical society
at Imperial College invited me to give a talk. I chose the
topic of crystallography, but in characteristic fashion,
delivered a scintillating talk (Henry’s description!) cover-
ing, well, probably almost all of chemistry! Henry
chatted to me after my talk, and one of us must have
mentioned the Internet. The topic might have been
gophers (anyone remember them?) and what their
potential was. Henry also visited me at Glaxo in Green-
ford around that time and we found we had a common
interest in the Internet and its power for disseminating
chemistry. It must have been about the time of the
NCSA Mosaic browser [22] - 1993. This, in both our
memories, is now immortalised by our working meeting
in the Black Horse pub in Greenford in January 1994
(Figure 3). I had made initial explorations into a com-
mon format for chemistry, but it was the major adop-
tion of HTML in 1993 and the announcement of the
first World-Wide-Web conference (WWW1)[23] in
1994 that demonstrated that there was by then a critical
mass of scientists and informaticians who wished to cre-
ate semantic frameworks for information.”
In the Black Horse, PMR and HSR agreed they would

both attend the WWW1 meeting; HSR ran the session

on chemistry and PMR one on biology. PMR: “We had
an early version of RasMol [24] which ran on UNIX and
Henry had prepared a demo, parts of which were even-
tually published [25]. We had it running the day before
on a Silicon Graphics machine, but when we came back
the next day someone had wiped the shared libraries to
save space. We got the thing running again 5 minutes
after Henry’s talk [26] started.
The theme of WWW1 was, of course, the use of

HTML (and HTTP) to create distributed information.
Initially the focus was on HTML (with some discussion
of the then very new MathML proposal by Raggett
[27]), but during breakout sessions (or BoFs, birds-of-a-
feather, as they were then called)[28] there emerged a
realisation that each discipline would need to create its
own approach to information that would be published
and consumed in much the same way as HTML.
Because it was in CERN and all HTTP sites at that
stage were academic, the emphasis was all on science.
Was MathML the way to carry maths in HTML? And if
so, how could you do the same for chemistry? We
didn’t know how.”
The WWW2 conference (Chicago, October 1994) had

a focus on the development of the HTML markup lan-
guage and was noteworthy for the attendance of non-
scientists and many commercial organisations, as well as
a representation from chemists [29]. It also served to
convince HSR that SGML [30] was the vehicle that
would be adopted for non-textual information. As a
result, PMR started implementing prototypes of chemi-
cal information using SGML and Tcl. At that stage
SGML was complex and fragmented, to the extent that
relatively few (if any) complete implementations existed.
There were very few Open Source implementations and
we were grateful to be able to use the nsglms parser
[31] from James Clark which would take an SGML
document and transform it into a structured representa-
tion (ESIS). At the same time, a COST project, with

Figure 3 The Black Horse pub at Greenford.
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help from Joe English, allowed the ESIS to be processed
in essentially the way that is now possible with the
DOM [32], and PMR received much online help and
guidance from Joe. By 1995, there was a prototype sys-
tem where it was possible to read an early version of
CML into a Tcl/Tk/COST processor and to display the
structure of a molecule (Figure 4).
HSR recalls: “Checking through some ancient (sic)

files on our web server, I discovered that we first went
public with CML on 21 August 1995, in the form of an
ACS poster [33]. I notice that it introduced the concept
of what I had referred to earlier to as data round trip-
ping. The idea was to formalise and normalise both the
input and output of a computer program so that the lat-
ter could also reliably serve as an input. This was in fact
implemented for the MOPAC program, and was a much
more formal and structured expression of what I had
earlier tried to do with the STEK graphical program. I
was in Chicago, and Peter was back in the UK, at a

terminal, waiting for comments from the audience on
the poster to come flooding in! In fact, when we got to
the hotel room that the ACS session occurred in, we
discovered no trace of any Internet connection (any-
where) and could not communicate (Internet connec-
tions at conference venues only started becoming
common from ~2006 onwards). Peter sat in an
unrequited silence throughout the entire presentation!
The poster was in fact presented as part of a session
grandly entitled “Chemistry on the Infobahn”.
In 1995, HSR, PMR and Andrew Payne set up the

Open Molecular Foundation (OMF) as a group to sup-
port and disseminate the creation of semantic chemistry
using CML (SGML) as the infrastructure. This still
required the combined operation of SGML processor
executable and a wrapper which was being converted to
Java 1.02. In late 1996, we became aware of the W3C
XML project [34] (SGML on the Web) and joined the
early discussion and working groups, one of which was

Figure 4 Early CML markup, ca. 1995. Many of the current concepts were prototyped at this level, such as the CONVENTION and
DICTNAME (now dictRef). The BUILTIN attribute is now hard-coded as CML attributes. The XVAR notation has now become cml:
scalar and all the elements and attribute values have become QNames. (Note: Image is a scan of an original overhead transparency with
handwritten annotation).
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located in central London (the Rembrandt Hotel meet-
ing), which both PMR and HSR attended. There, Jon
Bosak [35] declared that Java and XML were the foun-
dations of the web! It became clear at this stage that
CML should be based on XML, not SGML, and PMR
was now working to an XML/Java representation in
1997 (Figure 5). A forum for XML developers was set
up, which went live in February 1997 with a welcome
post by PMR, and where many of the important devel-
opments involving XML were first discussed during the
period of the operation of the list at its initial home
(February 1997-December 1998) [36].

The philosophy of CML
The primary purpose of CML has been and is to allow
humans and machines to communicate chemical con-
cepts without loss of semantic information. For example,
a major role is to allow the output of one program to be
converted into CML and input to another without loss.
CML is also designed to create datuments, a combina-
tion of semantic text and non-textual information [37].
Our vision is that scientific publications should be
represented semantically such that both humans and
machines can consume them, again without loss. When
CML is universally adopted for both these processes,
then the large parts of the current discourse and infor-
mation interchange in chemistry will be semantic. There
is no reason why CML, in combination with other lan-
guages such as HTML, MathML, SVG, GML etc. (Figure
6) cannot then be used for at least the following:

• Ingestion of data into data- and knowledge-bases
• Extraction of data from knowledge-bases
• Journal articles

• Theses
• Suppliers catalogues
• Textbooks
• Regulatory documents such as patents and new
drug applications
• Input to programs
• Output from programs.

The only technology capable of managing this at pre-
sent (and probably for some time to come) is XML. It is
widely used in publishing and CML can therefore be
technically adopted for any of the document-like exam-
ples above. XML is also a primary method of marshal-
ling input to databases and there are many tools which
allow the construction of db schemas from XML sche-
mas. In addition, however, CML has also shown itself to
be valuable in the following areas:

• A semantic infrastructure for physical science.
This is because none of the other scientific disci-
plines have developed markup support for diction-
aries and units and so the CML constructs can
support other areas.
• A data structure for computation. Although not
originally intended for this purpose, XML is a very
powerful data structure for internal data in compu-
ter programs (with some possible sacrifice in perfor-
mance and memory size). Many of our programs use
CML as their complete data representation and
operate by adding to, removing from or modifying
information on the DOM or infoset. For many appli-
cations this is a cleaner approach to passing data as
everything is contained within one structure and
there is no need for alternative storage of the same

Figure 5 JUMBO screenshots (ca. 1997) showing support for spectra, properties, molecular structure in 2D and 3D and a variety of
applets and widgets. Note the considerable change in syntax from the earlier picture; we have prototyped a namespace approach (e.g. XML.*
and CML.*). These were later separated into CML and STMML [61]. The molecules and spectra had clickable locations so that peaks and
molecules could be linked. (Note: Image is a scan of original overhead transparencies).
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information. This, for example, is how all informa-
tion in Chem4Word [38] and JUMBO [39] is held.
• A computable object in its own right. Because it
is extensible and because computational semantics

can be added to some of the elements, it represents
a simple functional programming language. This is
most developed in PolymerML [40] where a polymer
can contain instructions for its own elaboration and

Figure 6 A multi-namespace design from 1997 - the first use of the CML alembic logo. This was before the XML Working Group created
the current namespace syntax and while CML was still based on DTDs. (Note: Image is a scan of an original overhead transparency).
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the computation is carried out by repeatedly apply-
ing polymer extension semantics to the PML repre-
sentation of the structure.

In designing CML, we have attempted to abstract the
current common implicit and explicit concepts in main-
stream chemistry. This is done by intensive and
repeated analysis of chemical corpus linguistics. A com-
mon procedure is to take a recent journal article and to
see to what extent CML can support the chemical con-
cepts in that article. Similarly, we take the input and
output of chemical programs and abstract new concepts
and dictionary entries from those. In this way, we
believe that CML is accessible to the chemical world
and other scientists who use chemistry without a change
in their concept structure.

The evolution of CML
During the evolution of CML, we have been guided by
the following factors:

• The evolution of W3C recommendations and
web technology and practice. For example, when
W3C introduced the XSD schema [41] recommen-
dation we translated the CML DTD into XSD.
When W3C introduced the XSLT [42] specification,
we created a library of routines to process most of
the CML elements. In similar ways, CML has
reacted to incorporate SVG, RDF and OWL. These
technologies themselves have had variable amounts
of uptake. For example, until recently the main
application of SVG was in mobile devices only, but
now, 10 years after its launch, it is becoming main-
stream in most browsers. We created an early Java-
script tool (JUMBO-JS) which ran in the two current
browsers in 2000 but which because of the rapid
and uncontrolled changes in browser functionality
no longer works and has been abandoned. However,
it appears that JS is now reborn in a stable imple-
mentation and it is possible that we shall shortly cre-
ate a CML reference. Similarly it has taken at least a
decade for the concepts of RDF to mature and for a
satisfactory toolset to start to appear. In these cases,
CML had had to wait until there are clearly estab-
lished and widely-used technologies that it can rely
upon.
• The interest of chemistry and the wider scienti-
fic community in markup languages. Chemistry is
recognised to be one of the more conservative scien-
tific disciplines [43] and a new technology generally
requires wide acceptance in other communities first
or a powerful and determined commercial imple-
mentation. Although our work is well-known in the
chemical informatics community, it is often said that

“there is no demand for CML from our customers”
with the result that a vicious circle ensues. Indeed
some of the impetus comes from other subjects such
as bioscience.
• The Open Source (OS) community. The OS
community in chemistry is a relatively small part of
the volume of software creation but it is highly visi-
ble and has a wide variety of offerings. Almost all
OS chemical systems can read and/or write CML
and there is a general agreement that these systems
should converge to inter-operability. With the
increasing rise of OS in general, and specifically in
chemistry, this will be an important incentive to the
adoption of CML.
• Specific market applications. The publishing
industry is universally based on SGML and/or XML
and so it is technically straightforward to incorporate
CML in publications. The movement away from
non-semantic output (such as PDF) is still slow but
we believe that this is inevitable and again this will
create considerable incentive to use CML. The small
proportion of Open Access (OA) in chemistry
means that it is very uncommon for scientists to
extract information from the literature using
machines and indeed many publishers expressly for-
bid this. As OA increases, we expect that the value
of semantic information extracted from the literature
will be seen to provide a large amount of additional
value.
• Toolset. The chemistry community is likely to
require a range of well-proven tools before it will
adopt a new information technology. This takes time
and/or financial investment before there is a per-
ceived demand, but we believe that we are close to a
situation where the value of this is starting to
become apparent.
• Regulatory and archiving. There are several prac-
tices where XML is the recommended approach. In
archiving material, XML can represent the semantics
of a document and is frequently used by electronic
archivists. In regulatory there is a requirement for
many regulators to know the precise details of infor-
mation in the doc and to be able to extract it
rapidly. Therefore again XML is frequently required
by regulators. Both of these pressures should lead
towards a greater acceptance of CML.

JUMBO
It has always been important that CML can be imple-
mented in a reproducible and validatable manner. We
are extremely reluctant to allow new elements or attri-
butes in CML unless it can be demonstrated that they
can be implemented and deployed in a large number of
use cases without problems. It is surprising how often
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apparently small changes can severely disrupt the
greater system. For example, allowing the explicitly
declaration delimiter = ‘ ‘ as the delimiter for
arrays and matrix elements, although apparently simple,
has proved to be unworkable because of XML’s normali-
sation of whitespace. We have therefore has to redesign
the way in which the whitespace delimiter is used. Simi-
larly in several cases we have used alternative values
(such as 1 or S for single bonds) and this has resulted in
a great deal of work and confusion. We use a depreca-
tion mechanism to indicate that the reference imple-
mentations may cease to support outdated syntax. For
this reason we have felt it necessary to build a reference
implementation (JUMBO) which supports as far as pos-
sible all of the current elements and attributes and their
semantics. Although JUMBO has now become a produc-
tion system in much of our software, its primary raison
d’etre is to show that information can be reliably pro-
cessed, including round-tripping, and to provide refer-
ence examples of how various constructs should be
used. JUMBO deliberately does not add large numbers
of chemical methods (e.g. substructure search) but con-
sumes these from other OS implementations.
JUMBO has been through six iterations, each more or

less re-written from scratch. JUMBO1 used the rather
primitive features in AWT1.0 to provide a hierarchical
semantic browser of chemical documents (the name
stands for Java Universal Molecular Browser for
Objects). This was technically successful but not widely
deployed because of the relatively small number of CML
documents available at the time and the newness of
Java. JUMBO2 was a development-only version and
mapped the CML elements onto editable widgets such
as textboxes, lists and molecules. It used an early ver-
sion of Swing and because of the difficulties in that was
never formally distributed.
JUMBO3 returned to the browser concept and dis-

played a CML document in a series of windows (rather
similar to the current Bioclipse [44] tool). There was a
brief flirtation with Java 3D for molecular display but we
reverted to including Jmol [45] as a callable window
where required. At this stage it became clear that the
continued development of the schema made it very diffi-
cult to keep the specification and the software in sync.
In JUMBO4 we attempted to use the W3C DOM imple-
mentation as our data structure. This turned out to be
very problematic as the library was not designed for
subclassing and all elements had to delegate to the
W3C DOM object. There were several other problems
with the W3C DOM including the lack of any XPath
[46] functionality and towards the end we moved to the
much more satisfactory XOM from Elliotte Rusty Har-
old [47]. This has proved to be an extremely useful and
reliable choice as it not only provided a relatively simple

view on the DOM but it manages concepts such as
namespaces extremely well.
As more elements were added to the schema, mainte-

nance became a real problem, with 100 elements and
100 attributes admissible in various combinations. Con-
tent models which allowed and constrained combina-
tions of child elements became very complex and
unmanageable, and it was almost impossible to write
consistent code. Therefore, in JUMBO5 we resorted to
auto-generation of the basic code from the schema. This
meant that when new elements were added the code
was regenerated from the incremented schema.
JUMBO6 was primarily a refactoring of the functional-

ity of JUMBO5 resulting in a clean design for the imple-
mentation of converter functionality. We have
continued to modularise so that now there is a basic
CML XOM (where most methods simply represent
accessors and mutators). JUMBO6 is a set of tools pro-
viding additional chemical functionality, especially those
for manipulating the DOM, and a separate large library
of JUMBO-Converters which extract the output from
programs and documents and convert it into hierarchi-
cal CML docs. At this stage, we also developed Chem4-
Word, which uses a fully validated convention of CML
("CMLLite”). This took a much more lightweight
approach to content models and created the concept of
validation. In the Chem4Word system all potential input
is validated against a rich combination of XSLT expres-
sions which are far more powerful than XML schema
(XSD). This is now a continuing philosophy.

Code-driven CML Design
As part of the CML philosophy we have strongly
adopted the ‘rough consensus and running code’ stock
(originally coined by David Clark in 1992)[48]. An excel-
lent example of the value of developing code in parallel
with a specification was given in the early days of XML.
The initial design included a nearly-full implementation
of SGML parameter entities. At this time two or three
prototype XML parsers were being developed (Norbert
Mikula, Tim Bray, PMR) and it became clear that the
implementation of the full parameter entity model was a
major effort for relatively little reward, and it was there-
fore dropped from the specification. We have found the
same in CML, sometimes only surfacing several years
after a feature was introduced. The abstraction of data
into scalars, arrays and matrices with associated
data types (XSD data types) has been a considerable
effort but its successful deployment for several years has
shown that the design is both implementable and
valuable.
Similarly the design of the dictRef attribute value

has evolved to support qualified names (QNames). This
was not originally driven by W3C architecture but by
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the need to uniquify entries in dictionaries but it
became clear that dictRefs and other pointers/links
were isomorphous with the URI concept (which only
became relatively widely-deployed about 5 years ago).
The simultaneous development of code and specifica-
tions meant that we could implement early versions of
QNames/URI and these are now a major feature of
CML.
It is sometimes impossible to tell what the effect of a

schema design will be before deployment. A particularly
difficult problem has been white space. In many cases
(such as in formatted files like PDB), whitespace is
extremely significant (’CA’ is calcium whereas ‘CA’ is a
C-alpha). XML attributes will normalise whitespace
(trimming strings and replacing all internal whitespace
by single space characters). The use of attributes and
#PCDATA content have different consequences in XML
processors, which cannot easily be predicted before
widespread deployment.
Another major feature in the design was the need to

validate combinations of elements and attributes. At one
stage, PMR was approached by a group of pharma and
related companies, to create a specification of CML for
the Object Management Group (OMG)[49]. Hand-cod-
ing the combinations of attributes and elements proved
impossible (this is effectively a sparse 100x100 matrix)
and it was clear that automated methods of validation
and code-generation could be necessary. JUMBO4.6
therefore generated code from the schema model rather
than requiring it to be hand-coded. However, the W3C
DOM technology was not well-suited to this, leading to
the adoption of the simpler XOM model. None of this
had an immediate effect on the surface schema of CML
but has had deep influences on the subsequent design.
As a result of this, we developed the attributes and

elements largely independently; in other words, attri-
butes are generally not context-specific. The commonest
attributes are id, title, dictRef, and these can be
found on essentially every element. Content models are
now used with optional components to generate conve-
nience methods for managing child elements. An

obvious benefit is in providing auto-completion in IDEs
(e.g. the CMLProperty class might prompt for
‘addArray’) (Figure 7).
However, with increasing deployment to different

areas of chemistry, it became clear that it was going to
be impossible to find universal content models for most
elements. This is due to not only the diversity of chem-
istry but also the different ways that chemists might
wish to organise information. A molecule might have
one or more spectra as children (representing that these
are associated analytical data). Alternatively a spectrum
could have one or more molecules as children repre-
senting that these correspond to different peaks. It was
this type of experience that led us to propose an extre-
mely flexible content model, constrained by the use of
convention rather than XSD technology.
The context-free attribute design has been largely suc-

cessful. In a few cases, common words such as ’type’
have been used polymorphically, and have incompatible
enumerations. Thus the elements ’spectrum type =
“NMR"’ and ’reaction type= “reversible"’ actu-
ally use different attribute types (spectrumType and
reactionType), and it was for lexical convenience
that both of these mapped onto the string ’type’.
This approach has caused considerable implementation
problems, and, were we to re-factor the schema, we
would make these unique.
The use of enumerations (e.g. xsd:list) has been

beneficial and problematic. In some cases the enumera-
tion is fixed (e.g. periodic system of the elements); in
others (e.g. spectrumType) there are a number of
common values but we can anticipate new types as a
result of scientific discoveries and new instrumentation.
The current design tried to satisfy this by giving a list of
common enumerated types but also adding the possibi-
lity of a user-defined type (using the XSD union
approach). This has proved extremely complex to imple-
ment and has brought relatively little value. In future,
we would support semi-controlled enumerations
through conventions rather than through XSD
technology.

Figure 7 The auto-complete functionality in IDEs is underpinned by the content model approach.
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There is a special case with XSD data types. If we
adopted all (ca. 48) of these, then there would be a pos-
sible commitment that implementers had to implement
all of them. If the XML is being used in an XSD system
such as entry to a database this is manageable, but for
the more flexible requirement of heterogeneous CML it
becomes a major burden. Therefore we have arbitrarily
selected a small number of data types (xsd:string,
double, integer, date, boolean). None of these
puts any restriction on how CML holds the information
and a double can be of arbitrarily large precision.
In general, giving multiple options, even apparently

simple choices, for values is an extreme burden on
implementers. A bond order was originally allowed to
have order = ‘1’ or order = ‘S’. Managing both of
these simultaneously is a remarkably high burden and
we have deprecated and almost eliminated the use of
numeric bond orders.
The requirement that all physical quantities have

dictRefs and units of measure has been extremely
successful. The only area where this is poorly defined is
for atomic co-ordinates in molecules. By default,
these are in Ångstrom units and there was no provision
for specifying other units. With the development of
many CML systems in computational chemistry and
physics we need to be able to support nm, pm and
atomic units (Bohr). There is currently no very clean
way of doing this and it requires the units attribute to
be added to molecule which is semantically illogical
but currently just about manageable.
It is also difficult to know at the start how many con-

tainer elements should be used. For common elements
such as property, parameter and molecule there are spe-
cific container elements (*List, e.g. moleculeList).
For others, we rely either on the implicit ordering that
XML supports or provide a generic cml:list element.
The latter has proved to be extremely valuable in inter-
preting the data in computational chemistry.
The increasing availability of XPath-based technology

has had a major positive effect on the possible flexibility
of the organisation of elements and attributes. For
example, in documents as large as several megabytes, it
is possible to use XPath expressions to locate, delete,
change, add and move (sort) components. A typical
computational chemistry logfile or a crystallographic
experiment (CIF) in CML can be manipulated with
great power and flexibility. This means that content
models are almost irrelevant whilst XPath-assisted con-
ventions are a major tool in normalising and re-purpos-
ing chemical information.

Validation
The original purpose of SGML was to act as a machine-
enforceable contract between an author and a typesetter.

SGML tools could indicate that a document was valid or
invalid and each party would know whether it was their
responsibility or that of the other. The DTD therefore
also acted as a specification against which compliant
software could be written (Figure 8). This idea is very
much at the heart of CML and represents the first
major infrastructure for validating chemistry (crystallo-
graphy excepted).
Many of the problems of software and data in chemis-

try can be traced to the lack of a validation system.
Without validation, the author of a program cannot
easily write conformant software if the input is variable;
similarly the author cannot know whether an input is fit
for purpose. Unfortunately the past 30 years have seen a
wide variety of formats each with a wide variation in
conformance. For example, there is no accepted ‘stan-
dard’ for PDB files and many program authors have
modified this format for purposes other than managing
protein crystal structures (e.g. computational chemistry
output). As a result, many programs corrupt informa-
tion because they cannot validate the input, and they
make unwarranted assumptions. By ensuring that input
and output are both valid or validatable, it becomes pos-
sible to link processes and ensure no semantic corrup-
tion or loss.
There are many implicit assumptions about the repre-

sentation of chemistry that cause semantic problems.
For example, very few datafiles state the units of mea-
sure of scientific quantities and there are frequent
assumptions about the existence of hydrogen atoms.
There is much confusion between 2D and 3D coordi-
nates and few systems can hold both at the same time.
A major purpose of CML is to make sure that all che-
mical information is validatable and that the rules for
this validation are openly visible. Most recently we have
constructed Chem4Word and the CMLLite specification
[50] which shows that complete validation of input and
output chemistry is possible even in complex systems.
In that case, the validation is carried out by stylesheets/
XPath which has most of the power that is required.

Community-driven CML Design
CML has always been a community project in that its
progress has been visible and it has been possible for
anyone to provide feedback. It is not however a com-
munity-managed project and is best described by the
BDFL model [51] (’Benevolent Dictator For Life’; cf.
Linux). We feel this is necessary to ensure a consistent
vision for the infrastructure and we have also felt that
until this achieved stability it was unreasonable to
expect others to volunteer contributions when they
might be discarded at any stage. There have now been
several sub-projects in CML where the community has
been actively involved in design, including
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“CMLReact”, “CMLSpect” and some aspects of
“CMLComp” ("compchem”). There have been very few
major additions to CML in the last three years despite
its increasing deployment and we therefore feel that
the central architecture is fit for purpose and can be
extended by the community in a variety of ways that
suit their own needs (mainly through dictionaries and
conventions).

Foreseeable evolution of CML
Our explorations in a wide range of chemical docu-
ments and documents containing chemistry have shown
that CML is capable of managing disciplines as far-ran-
ging as atmospherics, minerals, enzymes, analytical and
computational chemistry. The immediate vision is that
the world would benefit enormously from having this
material available in CML. The barriers are almost all

Figure 8 A version of the CML DTD (in SGML) from ca. 1996. Note the early development of a namespace philosophy although there was
no technology to support it at the time. (Note: Image is a scan of an original overhead transparency with handwritten annotation).
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cultural; few chemists see the merit of this and therefore
few if any publishers of chemistry make any provision
for doing this. We believe that the increasing value of
semantic material (e.g. Linked Open Data, LOD) will
gradually show the community that this is enormously
important.
There are four main methods of creating semantic

chemistry: a) human authoring (as in conventional arti-
cles, reports, laboratory notebooks etc.), b) conversion
of chemical data from legacy formats, c) creation of
semantic chemistry through computer program output
and d) machine extraction of chemistry from unstruc-
tured and semi-structured material (e.g. electronic
chemistry publications). We see the following opportu-
nities and barriers to each of these, listed below. There
is a “chicken and egg” aspect to this. We are frequently
told that there is “no demand for CML” and as a result
people do not create tools that read or produce it. In
several cases we have attempted to overcome this by
creating believable prototypes in these areas.

a) Human authoring is likely to happen when there
is a sufficient range of semantic editors. We have
created Chem4Word to show that this is possible
but it needs an acceptance by the community that
semantic authoring is something that is desirable in
an editor. Although the default authoring tools are
currently Word and LaTeX, we expect that web-
based tools such as GoogleDocs and EtherPad will
lead to much more attractive environments in which
scientists will create documents. Two good examples
of this are Southampton’s Blog3 software [52], where
a blogging platform is used to create chemical docu-
ments, and Peter Sefton’s Scholarly HTML initiative
[53], showing that modern scholarship, including
science, should be managed through HTML and not
doc/pdf.
b) File format conversion. The problem of convert-
ing between different file formats has been largely
solved by the Blue Obelisk community [54]. Our
own JUMBO-Converters will convert many of the
common formats (mol, smi, pdb, cif, cdx etc.), espe-
cially the more complex ones, into structured CML
without semantic loss. There is no technical barrier
to rapid and widespread uptake by the chemical
community.
c) Conversion of legacy to include semantic con-
tent. Many programs such as quantum chemistry
and molecular dynamics produce logfiles originally
aimed at printing on fan-folded line printer paper.
We have shown that it is possible to intercept all
output statements and convert them to CML (e.g.
for SIESTA, CASTEP, MOPAC, DL_POLY). These
outputs have been used in the computational

minerals and materials communities and we have
created libraries (e.g. FoX [55]) to make this process
easy. However, at present most codes have not
adopted this and we have therefore written a series
of converters based on a declarative parsing technol-
ogy (JUMBO-Parser) which allows for very high
(greater than 95%) precision and recall of the struc-
ture and semantics of the documents. These are
being developed by the Quixote community [56] for
computational chemistry programs and are generally
adaptable to any program which produces combined
text and numeric output.
d) Machine-extraction of chemistry. Our OSCAR
program [57] has high success (80-90% precision
and recall) in extracting chemical entities from
unstructured text. The success rate depends on the
specific domain but ranges from atmospheric chem-
istry through biomedical to synthetic chemistry. In
all text-mining areas, it is much more difficult to
extract processes, relationships and sentiment from
documents. However, chemical syntheses are
reported in such a formulaic manner that we can
extract a very high degree of the underlying seman-
tics of the chemical reactions. The primary barrier
to this are the legal prohibitions demanded by main-
stream chemical publishers which are generally
agreed by subscribing institutions, meaning that it is
a contractual violation to undertake text-mining
activities. BMC journals are an exception (being
published as CC-BY) but there is relatively little
mainstream chemistry published in BMC at the
moment. We have been able to show that we can
extract chemistry from patents, although the quality
of many of these is not perfect and there are errors
due to transcription. Recently the British Library has
argued strongly for the reform of intellectual prop-
erty laws to allow text-mining for scientific and
related purposes [58], and if this were to happen,
there are enormous opportunities for CML technol-
ogy to provide near-universal semantic chemistry.

Assuming that the cultural, political and legal barriers
are removed, it is very cost-effective to produce all che-
mical information using CML. We have shown that, at
near-zero cost, the whole of published crystallographic
data can be converted into semantic form (250, 000
structures in CrystalEye). Similarly, we have read 100,
000 patents and extracted reactions; others have used
OSCAR to add semantics to information from Medline.
If the chemical community can agree identifier systems
for the components (molecules, reactions, spectra etc.),
this would create a huge resource of chemistry to be
added to the LOD cloud. We would expect this to be
indexed on compounds, substances, reactions, spectra,
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crystal structures and many aspects of physical chemis-
try. By creating dictionaries, ideally with the involvement
of authorities such as IUPAC and IUCr, we then have a
comprehensive semantic framework with a simple com-
putable ontology. It is difficult to predict exactly what
the benefits of this will be, but they will be massive.
LOD provides for linking between disciplines, e.g. the
concentration of chemicals in the atmosphere at differ-
ent times and geographical locations. It allows for sys-
tematics within a sub-discipline (e.g. comparing all
published synthetic procedures and analysing these for
the potential value of reaction conditions, catalysts etc.)
It allows experimental data (e.g. crystal structure) to be
used to calibrate computational approaches such as
quantum mechanics. With the addition of natural lan-
guage, this becomes a human-accessible resource where
we can ask simple powerful questions to the machine
such as “find me all spectra which contain NMR shifts
below zero and which do not contain metals” or “find
me all solvents involved in reactions above their boiling
point”. In computational chemistry, CML can largely
automate the process of creating multiple jobs through
parameters sweeps and analysing and searching the out-
puts. Indeed, it is reasonable to see program manuals
being replaced by CML dictionaries appropriate to that
program, and understandable both by machines and
humans.

Sustainability
Every semantic project must address its sustainability. In
the past CML has been highly dependent on its two
authors. The technical resource to support it in its cur-
rent form is now relatively modest, so that in principle
it could be forked or continued (the “Dr. Who model of
OS”[59]) were the current authors to become inactive. It
has been implicitly and explicitly endorsed by a range of
companies and organisations including the IUCr, Unile-
ver Research, Microsoft Research and the National Can-
cer Institute of the US National Institutes for Health.
There is a wide range of CML-compliant software and a
large number of examples. Its technical sustainability
therefore seems assured, and its political sustainability is
beyond the scope of this article. We are confident that
in the not too distant future publishers such as BMC
will enthusiastically accept contributions consisting
partly or mainly of CML.

Endnotes
Endnote 1
CML is a joint creation of the two authors over many
years. Some of this paper is written in the first person,
other sections refer to ‘us’ or ‘we’. Anything that appears
to refer to one or other in the singular should be men-
tally replaced by ‘the PMRz symbiote’.

Endnote 2
Open Babel represents an almost comprehensive identi-
fication of these formats, which in 2011 has reached 113
formats in chemistry.
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Language design evolution timeline.
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