
Höck and Riedl Journal of Cheminformatics 2012, 4:38
http://www.jcheminf.com/content/4/1/38

METHODOLOGY Open Access

chemf: A purely functional chemistry toolkit
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Abstract

Background: Although programming in a type-safe and referentially transparent style offers several advantages over
working with mutable data structures and side effects, this style of programming has not seen much use in
chemistry-related software. Since functional programming languages were designed with referential transparency in
mind, these languages offer a lot of support when writing immutable data structures and side-effects free code. We
therefore started implementing our own toolkit based on the above programming paradigms in a modern, versatile
programming language.

Results: We present our initial results with functional programming in chemistry by first describing an immutable
data structure for molecular graphs together with a couple of simple algorithms to calculate basic molecular properties
before writing a complete SMILES parser in accordance with the OpenSMILES specification. Along the way we show
how to deal with input validation, error handling, bulk operations, and parallelization in a purely functional way. At the
end we also analyze and improve our algorithms and data structures in terms of performance and compare it to
existing toolkits both object-oriented and purely functional. All code was written in Scala, a modern multi-paradigm
programming language with a strong support for functional programming and a highly sophisticated type system.

Conclusions: We have successfully made the first important steps towards a purely functional chemistry toolkit. The
data structures and algorithms presented in this article perform well while at the same time they can be safely used in
parallelized applications, such as computer aided drug design experiments, without further adjustments. This stands
in contrast to existing object-oriented toolkits where thread safety of data structures and algorithms is a deliberate
design decision that can be hard to implement. Finally, the level of type-safety achieved by Scala highly increased the
reliability of our code as well as the productivity of the programmers involved in this project.

Keywords: Functional Programming, chemf , Chemistry Toolkit, SMILES parser, Parallelization, Scala,
Medicinal Chemistry

Background
Since there already exist a plethora of cheminformat-
ics toolkits both open source and proprietary, one might
wonder whether there is truly a need for another one.
Most of the available toolkits such as theChemistry Devel-
opment Kit [1] or OpenBabel [2] are written in object-
oriented languages using typical imperative concepts such
as mutable data structures and opaque methods (see
below) to implement chemical entities and algorithms.
While the communities of many of the newer (and some of
the older) programming languages start to appreciate the
benefits of programming in a pure, referentially transpar-
ent fashion, these concepts have not yet had a big impact

*Correspondence: rainer.riedl@zhaw.ch
Institute of Chemistry and Biological Chemistry, ZHAW Zurich University of
Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland

on software used in chemistry. We would therefore like
to show some of the benefits of functional programming
when applied to cheminformatics and talk about the type-
safety and conciseness that can be achieved when using
this programming paradigm.

The dangers of side effects
Several widely used programming languages such as
Java [3] or C++ use object-oriented programing as a
means to structure code and build reusable components.
Such code is typically (but not necessarily) written in an
imperative style, where statements represent actions the
computer should carry out sequentially. Although it is
regarded as a best practise to favor immutable data struc-
tures over mutable ones [4], imperative code is typically
full of reassignment operations since these provide a con-
venient way to update fields in complex data structures.
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Mutable state can be hard to reason about when several
seemingly unrelated parts of a program access and pos-
sibly modify the same piece of shared data. Special care
needs to be taken when using mutable objects in paral-
lelized algorithms [5].
Not only mutable state makes parallelization and rea-

soning about programs difficult: Accessing any kind of
shared resources such as files or database connections
can lead to unexpected behavior depending on a whole
bunch of factors such as access rights, security settings,
file locks and so on. Software components that access
shared resources can be difficult to test and require spe-
cial precautions when being accessed from several threads
simultaneously. Although this has been known for quite
some time, most programming languages make no dis-
tinction between methods that perform side effects by
accessing shared resources or mutable state and func-
tions that perform pure calculations just from their input
parameters. Methods and objects written in these lan-
guages are therefore a priori unsafe to be used in par-
allel computations unless their documentation explicitly
states differently. It would of course be much safer if one
could rely on the compiler omitting errors or at least
warnings when calling some unsafe method instead of
having to trust in the accuracy of third party library
documentation.

Referential transparency [6]
An expression in a program is said to be referentially
transparent when all it does is calculating its result from
its input parameters (possibly by calling other referentially
transparent functions) and nothing else. A referentially
transparent functionmay not access or altermutable state,
nor may it perform any other form of side-effects. In an
expression, a call to a referentially transparent function
can always be replaced with the function’s result for the
given set of parameters without altering the behavior of
the program. A method that performs any number of side
effects is said to be opaque. Referentially transparent func-
tions offer several advantages over opaque ones: They are
typically easier to reason about, can easily be tested and
sometimes even proved to be correct, can be composed
at will to create more complex functions (which are then
still referentially transparent), and they can be safely used
in parallelized algorithms. Since they need no access to
resources other than their input parameters in order to
perform their tasks, theymake for highly reusable building
blocks for creating more complex functionality.
Since mutability breaks referential transparency, ref-

erentially transparent expressions can only work with
immutable data structures. This can make writing ref-
erentially transparent expressions cumbersome in typical
imperative languages where mutability is the rule rather
than the exception and the language’s syntax provides

only marginal support for working with deeply nested
immutable data structures.

Functional programming
One programming paradigm that greatly facilitates
writing referentially transparent functions and using
immutable data structures is the one of functional
programming. Functional programming languages were
designed with referential transparency in mind, and they
encourage a more declarative style of programming with-
out the control statements and value assignments typically
found in imperative ones. In functional programming,
functions are first class values that can be passed as
parameters to other functions (which are then called
higher-order functions) or be the results of other func-
tions. Functional programming languages typically are
statically typed but use type inference to prevent type
annotations from cluttering the code. Together with the
above mentioned higher order functions this can lead to
highly concise code. For instance, iterating over a list of
integers to produce a list of their squares might look like
this in an imperative language (the code is written in
Scala [7], a multi-paradigm language that is described in
more detail below):

def squares (is: List[Int]): List[Int]
=
{
val squares = new ListBuffer[Int]

{for i <- is}{
squares += i * i

}
squares.toList

}
It is typical for an imperative program to update a muta-

ble data structure during iteration. The same program
written in a more functional style might look like this:

def squares(is: List[Int]) =
is map (x ⇒ x * x)

Here we make use of the higher-order function map
that takes another function as its parameter, which is
then applied to each element in the list. Not only is this
expression much shorter than its imperative counterpart,
function map also describes such a common pattern when
working with collection-like data structures that it pro-
vides a plethora of functionality all of which can be used
with almost no syntactic overhead.
Given that objects of type List are immutable, both

code examples shown above are referentially transpar-
ent. Although the imperative example uses a (mutable)
ListBuffer to accumulate its result, this is an imple-
mentation detail hidden behind the function’s interface.
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Some functional programming languages like Haskell
[8] enforce referential transparency through their type
system and can therefore exploit its advantages to their
full extent. This includes several optimization techniques
during compilation as well as memoization of a function’s
results for given parameter sets at runtime.
Although the advantages of functional programming

have been known for a long time [9], many of the concepts
described above where not or only partially implemented
in the mainstream programming languages and a major
part of the programming community does not exploit the
benefits they provide.

Functional programming and chemistry
We believe that the abovementioned aspects of functional
programming make this paradigm very well suited for
writing scientific applications where the main focus often
lies on running complex calculations rather than perform-
ing long cascades of side effects. For instance, the only side
effects involved when running a high throughput screen-
ing with a typical command line based docking software
are reading from and writing to files (and possibly to the
console). The rest is pure, stateless calculations that are
well suited to be written in a purely functional manner
and run in parallel on a multi-core system. When we set
out to write the first prototype of our in-house data man-
agement tool CyBy2 [10], we used Java as the language
of choice, since there already existed several chemistry
toolkits written in that language. It was only after CyBy2
was already running on our servers and several hard to
find bugs took us hours if not days to get rid of that we
decided to go for a change in the style of programming.
We decided to give the Scala programming language a try
since programs written in Scala run on the Java Virtual
Machine (JVM) and existing Java libraries can be accessed
directly from within Scala source code. Scala is a mod-
ern multi-paradigm programming language that is fully
object-oriented with a strong support for typical concepts
from functional programming such as higher-order func-
tions, type inference, and pattern matching. It also has
one of the most sophisticated and expressive type systems
written so far [11]. Scala is not a pure functional pro-
gramming language that enforces referential transparency
through its type system (this can be achieved by using
the effect system provided by scalaz though; see below),
but programming in a pure manner as well as the use of
immutable data structures are strongly encouraged and
facilitated by the language.
While our style of programmingmoved from imperative

to functional, we found it cumbersome and sometimes
error prone to interact with the methods and classes com-
ing from third-party Java libraries that make heavy use
of mutable data structures and side effects. We therefore
started looking for cheminformatics toolkits written in a

more functional style and were surprised to find only one
such toolkit at an early stage written in Haskell [12]. It
was this lack of purely functional third-party libraries that
made us decide to go ahead and write our own toolkit.
In this article we present our first experiences along that
road. We will show how molecular graphs can be rep-
resented using persistent, immutable data structures and
how parsing input can be done in a referentially trans-
parent way leading to highly reusable code that can be
run in parallel out of the box. We do this by implement-
ing a purely functional SMILES parser [13], a reasonable
complex task to get a feeling for some of the higher-order
abstractions typically used in functional programming.
Along the way we will show how to deal with input val-
idation, error handling, and parallelization in a purely
functional, type-safe manner.

A short introduction to Scala
In the remainder of this article we will often show snippets
of code to discuss the aspects of functional programming
when encountering certain problems.We will use Scala as
the implementing language for the reasons given above.
It will not be necessary to be fluent in Scala to grasp
the concepts being presented here, yet we think that a
short introduction to this deep language and its syntax
will make it easier to understand the examples in this arti-
cle. For a more thorough introduction please see [14].
A note on terminology: In object-oriented programming
languages, subroutines are typically called methods with-
out making a distinction between those that perform side
effects and those that do not. For the remainder of this
article we use the term method for side-effect performing
subroutines and function for pure calculations.

Basic syntax
Scala’s syntax is similar to the one of Java and other C-
like languages. Statements are usually enclosed in curly
braces and delimited by semicolons. Many of these struc-
tural delimiters can be inferred by the compiler leading
to less cluttered code when writing the short expressions
typically found in functional programming. The following
two function definitions both compile:

def square (i: Int): Int = {
i * i;

}
def square (i: Int) = i * i

As can be seen in the example above, type annota-
tions come after variable names and can in many cases be
inferred by the compiler.
In terms of object-oriented programming, Scala – like

Java – has classes and interfaces (which are called traits
and can contain method implementations and state).
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Scala also has singleton objects, which are defined using
the object keyword. There are no static methods in Scala:
Every method definition belongs to a class or an object.
There is the special case of companion objects, which have
the same name as their companion class and are typ-
ically used to define class-related constants and ’static’
functions:

class AClass {
. . .

}
object AClass {
//a factory method
def create: AClass = . . .

}
A special case that is often used in functional program-

ming to define algebraic data types [15] is the sealed
keyword: Subclasses of a sealed class or trait must be
defined in the same file as the sealed class itself.

Function literals
In Scala, functions are first-class values and the language
provides a lot of syntactic sugar to help declaring them. A
typical function literal looks as follows:

val add: (Int,Int) ⇒ Int =
(a: Int, b: Int) ⇒ a + b

(Int,Int) ⇒ Int is a type annotation: A function
from two integers to another integer. Type inference lets
us remove some code duplication:

val add: (Int,Int) ⇒ Int =
(a,b) ⇒ a + b

If both parameters appear in the function’s body only
once and in the same order as in the function’s parameter
list, we can replace them with placeholders:

val add: (Int,Int) ⇒ Int = +

We can use function literals to create anonymous
functions as parameters for higher-order functions. For
instance, we can double all the integers in a list like so:

def dbl (xs: List[Int]) = xs map (2*)

Lazy evaluation and by-name parameters
By default, Scala is a strict language, meaning function
parameters are evaluated before the function’s body is exe-
cuted. However, Scala facilitates lazy evaluation of values
as well as by-name function parameters:

lazy val aVal = . . .

def aMethod (byNameParam: ⇒ Int) . . .

Values marked with the lazy keyword are not evalu-
ated until they are accessed for the first time. They are

evaluated only once. By-name parameters are also eval-
uated only when needed, but unlike lazy values they are
reevaluated each time the parameter is accessed.

Parametric polymorphism
Similar to Java, Scala supports subtype polymorphism
as well as parametric polymorphism (aka generics). Type
parameters are declared within brackets and can be anno-
tated with variance annotations:

trait Invariant[A]

trait Covariant[+A]

trait Contravariant[-A]

Variance describes subtyping for classes with type
parameters. In the case of covariance, Covariant[A]
is a subtype of Covariant[B] if A is a subtype of B.
On the other hand, Contravariant[A] is a subtype of
Contravariant[B] if A is a supertype of B.
In contrast to many other programming languages,

Scala does not stop at first-order parametric polymor-
phism, but also allows type constructors as type param-
eters (higher-kinded types) [16]. Only these constructs
make the implementation of some of the more powerful
type classes possible (see below).

Case classes and patternmatching
In the tradition of other functional programming lan-
guages, Scala supports pattern matching, which can be
used to query and match even complex nested data struc-
tures. Case Classes are like other classes in Scala but
are enhanced automatically by pattern matching func-
tionality by the compiler. Also, constructor parameters
are automatically added as immutable fields with pub-
lic scope to case classes. For instance, a simple setup of
chemistry-relevant classes may look as follows:

sealed abstract class Element (
val atomicNr: Int

)
. . .

case object C extends Element(6)
case object N extends Element(7)
. . .

case class Isotope (
element: Element,
massNumber: Int

)

case class Atom (
isotope: Isotope,
charge: Int

)
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Pattern matching can now be used to count all carbon
atoms in a molecule:

def isCarbon (a: Atom) = a match {
case Atom(Isotope(C, ), ) ⇒ true
case ⇒ false

}
def carbonCount (m: Molecule): Int =
m.atoms count isCarbon

Underscores act as placeholders that match any value
while lower case identifiers can be used to access a value
in the following code block:

def carbonMass (a: Atom): List[Int] =
a match {
case Atom(Isotope(C, mass) ) ⇒

List(mass)
case ⇒ Nil
}

The first case statement matches carbon atoms of an
arbitrary mass number and the mass number is returned
wrapped in a List. In case of non-carbon atoms, the
function returns the empty list Nil.

Implicits and the pimpmy library-pattern
Scala supports implicit conversions from one type to
another in order to enrich classes from third-party
libraries with additional functionality. This is called the
pimp my library pattern [17] within the Scala community.
For instance, if one wanted to add the ability to calculate

the exact mass distribution to a class Molecule from a
third-party library that does not yet provide such a func-
tion, one would first have to define a wrapper class that
defines the function in question together with an implicit
conversion from Molecule to MoleculeWrapper:

class MoleculeWrapper (m: Molecule) {
def exactMasses = . . .

}
implicit def mol2Wrapper (m: Molecule) =

new MoleculeWrapper(m)

It is now possible to call exactMasses on Molecules
as if the function was provided by class Molecule itself:

def printMasses (m: Molecule) {
m.exactMasses foreach println

}
Type classes
In addition to implicit conversions, Scala also supports
implicit parameter lists for functions. These parameters

need not be provided explicitly if an implementation of
the type in question can be found in implicit scope.
One use case for implicit parameters is the definition of
type classes [18] similar to those found in Haskell. Type
classes are a way to implement ad-hoc polymorphism
(method overloading) in purely functional programming
languages. For instance, the scalaz library (see below)
defines a type class Equal for type safe structural equality
checking as follows:

trait Equal[-A] {
def equal(a1: A, a2: A): Boolean

}

Via the pimp my library-pattern, scalaz then adds oper-
ators ?= and �= to all types. These are defined in wrapper
class Identity and are implemented as follows:

def
?= (a: A)(implicit e: Equal[A])

: Boolean = e equal (value, a)

def and �=ă(a: A)(implicit e: Equal[A])

: Boolean = !(
?=(a))

All objects for which an instance of type class Equal
can be found in implicit scope can now be compared in
a type-safe manner using these operators. There exists
a shorthand notation using context bounds for functions
that require an instance of a type class with a single type
parameter to be in implicit scope:

def isEqual[A:Equal] (a1: A, a2: A) =

a1
?= a2

The scalaz library [19]
Several of the more advanced techniques and abstractions
found in functional programming did not make it into
the Scala standard library. Many of these are provided
by scalaz, a collection of type classes and purely func-
tional data structures. Many of the type classes defined in
scalaz come from the world ofHaskellwhere a lot of infor-
mation on things like Monoids, Functors, Applicatives,
Monads and others are available. For a gentle and highly
entertaining introduction to some of these concepts see
[20].

Results and discussion
We studied the aspects and benefits of functional pro-
gramming in cheminformatics by first designing an
immutable data structure for representing molecules and
then implementing a SMILES parser in accordance with
the OpenSMILES specification [21]. We then tested how
immutable data structures and referentially transparent
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functions can be used in parallelized bulk operations out
of the box and had a closer look at our algorithms in terms
of performance. The full source code of the data struc-
tures and algorithms discussed in this section is available
in Additional file 1. We also created a repository on
github to further advance the development of our toolkit.
The repository can be found at https://github.com/stefan-
hoeck/chemf.

Molecules as immutable data structures
There exist many ways to represent a chemical molecule
in a computer, many of which depend on the concrete
aspects one is focussing on. Lewis structures of molecules
are typically represented as undirected labeled graphs
with the atoms at the vertices and the bonds at the edges
[22].

Immutable undirected graphs
We used a simple unlabeled connectivity list as the basis
for our molecular graphs. The graph’s vertices are num-
bered from 0 to order - 1 where order is the total
number of vertices.

sealed trait Graph {
def order: Int
def edges: Set[Edge]

}
We provided a couple of helper functions for adding

and removing edges and vertices, all of which return a
new, immutable copy of the updated graph. Trait graph
is backed by an immutable Set of Edges, which provides
effective constant time add, remove, and lookup opera-
tions [14]. Since all edges in the graph potentially have to
be adjusted when removing a vertex, this operation takes
linear time with respect to the size (= number of edges) of
the graph.
Some of the typical graph algorithms make heavy use

of adjacency lists [23] which we provided as a lazily ini-
tialized value in trait Graph. Adjacency lists were imple-
mented using scalaz’s ImmutableArray providing fast
constant time random access.

lazy val adjacencyList
: ImmutableArray[Set[Int]] = . . .

Edges in graphs were implemented as ordered pairs of
integers:

sealed trait Edge {
def a: Int
def b: Int

}
To make it easier to compare and sort edges, we added

an invariant to the edge class stating that vertex b is the
higher of the edge’s two vertices. Edges can therefore only

be instantiated via a factory method to guarantee that
this invariant is fulfilled. This very basic graph imple-
mentation has a low memory footprint and can be used
to determine structural parameters such as atom and
bond count as well as number and size of rings in a
molecule.

Molecules as labeled graphs
In order to represent the Lewis structures of molecules,
we needed to label the vertices and edges of the graph
with additional information.We therefore introduced trait
LGraph:

trait LGraph[+E,+V] {
def graph: Graph
def vLabel (v: Int): V
def eLabel (e: Edge): E

}

Trait LGraph is parameterized over the types of both
the edge and vertex labels, giving us maximum flex-
ibility when working with different representations of
molecules. The trait again provides functions for adding
and removing edges and vertices as well as some higher
order functions like map and foldLeft typically found
in functional data structures. We also implemented type
classes Functor, Foldable, and Traverse (all defined in the
scalaz library) for LGraph, giving us a lot of functional
power when iterating over the elements of LGraph as we
will show further below.
The core functionality of LGraph was implemented

using a private case class LgImpl:

private case class LgImpl[+E,+V] (
graph: Graph,
vertices: IndexedSeq[V],
eMap: Map[Edge,E]

) extends LGraph[E,V] {
def vLabel (v: Int) = vertices (v)
def eLabel (e: Edge) = eMap (e)

}

Implementing functions graph and eLabel was
straight forward. For function vLabel there were sev-
eral possible implementations to consider. We decided
to use an IndexedSeq to store vertex labels, which
provides effective constant time append, prepend, and
random access operations. Using an Array would give
us (fast) constant time random access but other oper-
ations might be considerably slower. Later it might be
convenient to provide two or more different imple-
mentations depending on the performance character-
istics needed by the algorithms working with our
graphs.

https://github.com/stefan-hoeck/chemf
https://github.com/stefan-hoeck/chemf
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Atoms and bonds
We favored composition over inheritance when imple-
menting the core classes needed to represent typical
chemical entities. At the root stands class Element:

sealed abstract class Element (
val atomicNr: Int

)
object Element {
case object H extends Element (1)
case object He extends Element (2)
. . .

}
A lot of additional information can be requested from

Element objects, all of which is lazily loaded from the Blue
Obelisk Element Repository [24].
Next come the isotopes, which unlike the elements

were not implemented as constants to give us a bit more
flexibility when working with newly-discovered or purely
hypothetical isotopes:

sealed trait Isotope {
def element: Element
def massNumber: Option[Int]

}
Objects of type Isotope either represent a natural

mixture of the isotopes of a given element or a single iso-
tope with a concrete mass number. Value massNumber
may therefore be undefined, which is represented by
its type: Option[Int]. Option[A] is an algebraic
data type with two possible values: Some(a) with a
being a wrapped value of type A, or None. It is used
as a type-safe alternative to using null as the result
of unsuccessful calculations or for undefined values.
Using Option makes checking for null and throwing
NullPointerExceptions in client code obsolete.
Again additional information about isotopes is lazily

loaded from a file, this time from the Blue Obelisk Isotope
Repository. Since in chemistry we are usually dealing with
the same (small) set of isotopes most of the time and since
our isotopes are immutable they make good candidates
for applying the Flyweight pattern [25]. Instead of creat-
ingmany new objects when assembling amolecular graph,
the most commonly used isotopes are stored in an array
and returned when new isotopes are requested by clients.
Therefore we made isotopes only available through two
factory methods:

object Isotope {
def apply (e: Element): Isotope = . . .

def apply (e: Element, mn: Int)
: Isotope = . . .

}

Scala provides a shorthand notation for calling func-
tions named apply. For instance a carbon isotope can be
requested like so:

val c = Isotope(Element.C)

Here we truly profited form using immutable objects:
Using the Flyweight pattern keeps the memory foot-
print of our molecules low while letting us store a lot of
additional information for all isotopes and elements that
has to be loaded and calculated only once.
We were now able to define a basic Atom

implementation:

case class Atom (
isotope: Isotope,
charge: Int,
hydrogens: Int,
stereo: Stereo

)

Further fields like hybridization or coordinates might be
necessary for some algorithms but instead of cluttering
Atoms with lots of optional fields, we argue that in those
cases a more specialized class should be used which will
lead to an increase in terms of type-safety. An algorithm
requiring coordinates for atoms might be able to work
with an object of type LGraph[Bond,Atom3D] but will
reject LGraphs with other vertex types.
We distinguished between the different bonds possible

in Lewis-structures via a couple of constants:

sealed trait Bond
object Bond {
case object Single extends Bond
case object Double extends Bond
. . .

}

Molecules can now be defined as a simple type alias:

type Molecule = LGraph[Bond,Atom]

Some basic operations onmolecules
We implemented a couple of basic operations on
molecules to demonstrate some of the higher order con-
cepts typically found in functional programming.
First, we wanted to calculate the molar mass of a chem-

ical compound. For that we defined function mass that
calculates the mass of a single Atom together with the
masses of its implicit hydrogen atoms:

def mass (a: Atom): Double =
a.isotope.mass + a.hydrogens * H.mass
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Themolar weight of a molecule could then be calculated
as follows:

def molarMass (m: Molecule): Double =
m foldMap mass

Method foldMap comes from the scalaz library and is
similar to the reduce function described by McBride and
Paterson [26]. It requires two type class implementations
to be in implicit scope: Foldable for the data struc-
ture over which we iterate (in our case this is LGraph)
and type class Monoid for the return type of the function
we pass as the sole parameter to foldMap. Foldable
defines several functions for accumulating values when
iterating over a data structure. We will not discuss it in
more detail here but refer the reader to the scalaz source
code. Type class Monoid has many applications in pro-
gramming. It defines two functions: Function append
defines some form of combining two values into a sin-
gle value of the same type, while zero is the neutral
element of this operation such that zero append x
== x and x append zero == x. Here is the Monoid
implementation for floating-point addition:

implicit val DoubleMonoid =
new Monoid[Double] {

val zero: Double = 0.0D
def append (a: Double,

b: ⇒ Double) = a + b
}

While it is nice to implement molarMass with just a sin-
gle line of code our implementation is not very safe. It
could be that mass is not known for all possible isotopes.
This should be reflected in the function’s return type, and
the function was adjusted accordingly:

def mass (a: Atom): Option[Double] =

We dealt with the possibility of failure by returning
a value of type Option[Double]. Interestingly, scalaz
defines a Monoid instance for Options of Monoids.
We therefore only had to change the return type of
molarMass and our code still compiled and behaved as
expected:

def molarMass (m: Molecule)
: Option[Double] = m foldMap mass

Themolarmass of amolecule is nowwrapped in a Some
if the masses of all its isotopes were known, otherwise the
function returns None. Unlike the many methods writ-
ten in Java that return null in case of an unsuccessful
calculation or an undefined value, function molarMass

is absolutely type-safe and we can rely on the compiler
to make sure we deal with the possibility of an unknown
molar mass properly.
We could have gone even further and use scalaz’s

Validation class instead of Option. In that case
we would have either gotten the molar mass wrapped
in a Success or a list of error messages explaining
exactly for which isotopes the mass could not be deter-
mined. Even in this case we would have been able
to use foldMap to accumulate the validated isotopic
masses. We used Validation when implementing our
SMILES parser and will describe its applications further
below.
Next, we implemented a function to determine the total

formula of a molecule. We represented this as a Map from
Isotope to Int. First, we generated such a Map for a
single atom:

type Formula = Map[Isotope,Int]

def atomFormula (a: Atom): Formula =
Map(a.isotope ⇒ 1) ++ (
(a.hydrogens > 0) ?
Map(Isotope(H) ⇒ a.hydrogens) |
Map.empty
)

Since scalaz defines a Monoid for Maps for whose value
type a Monoid is defined, we again were able to use
foldMap:

def formula (m: Molecule): Formula =
= m foldMap atomFormula

We wanted to show with these examples how com-
mon abstractions like Monoid can be used to write highly
reusable functions like foldMap. We also argue that it is
almost impossible to achieve the same levels of abstrac-
tion and code reuse by using object-oriented concepts like
inheritance instead of type classes.

A purely functional SMILES parser
Now that we had a way to handle molecular graphs it
was time to implement some parsing capabilities for text-
based user input. SMILES is well suited for this task since
its syntax is easy to learn and SMILES strings for reason-
ably small molecules can be generated by hand without
the help of a computer.
In the following sections we will describe several issues

that might come up when reading user input. Our focus
always was more on type-safety, referential transparency,
and code reuse than on optimizing performance, which
we believe can still be done once one has a properly
running application.
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First things first: The parser as a finite state automaton
Parsing a SMILES string means interpreting a single line
of data one character at a time while accumulating an
increasingly complex molecular structure. We therefore
needed two things: A data type representing the accu-
mulated molecule and a finite state automaton (FSA)
where each state of the automaton takes a character
and the last molecule as input and returns an updated
molecule together with a new automaton state. The fol-
lowing code listing shows how we modeled such an
FSA:

type FARes[A] = (FAState[A], A)

sealed trait FAState[A] {
def next(a: A, c: Char): FARes[A]

}
object FAState {
def apply[A](f: (A,Char) ⇒ FARes[A])

: FAState[A] = new FAState[A] {
def next(a: A, c: Char) = f(a, c)

}
}

Trait FAState represents the finite automaton’s actual
state. Since this class describes a very general concept and
might be used for different types of parsers, we abstracted
over the type of the accumulated data using a type param-
eter. The return type of function next is a pair consisting
of a new FAState and the updated data object. We
defined a general-purpose factory method apply that
takes a single function as its argument in the companion
object of FAState.
We then defined function parse, which takes a sin-

gle string and an initial automaton state and returns the
parsed value:

val EOT = ’0̆004’

@scala.annotation.tailrec
def parse[A] (
s: String, fas: FAState[A], a: A

): A = s match {
case "" → fas.next(a, EOT). 2
case cs ⇒ fas.next(a, cs.head) match

{
case (newFas, newA) ⇒
parse(cs.tail, newFas, newA)

}
}

We used a tail-recursive function for parsing strings.
A function is tail-recursive if the only place the function

calls itself is the last operation of the function [14].
The Scala compiler can optimize tail-recursive functions,
so that in our parser the call stack will not overflow
even when parsing strings with thousands of charac-
ters. Annotation tailrec is a safety measure to make
sure that our function is indeed tail-recursive. If this is
not the case, the code will not compile. The parser is
informed that the end of the string is reached by pass-
ing value EOT (end of transmission) as a parameter. This
is necessary since the parser might still expect further
input. For instance, if the last character in a SMILES
string is ’C’ the parser will only know whether a car-
bon or chlorine atom must be added to the molecule
upon parsing the next character in the string. If this
happens to be EOT, a final carbon atom should be
added.
The classes and functions presented here describe a

general purpose incremental string parser. So far they are
completely unrelated to molecules and chemistry.

Enhancing the Builder pattern with type classes
We distributed the responsibility for parsing SMILES
strings over three classes. First, we defined type class
SmilesBuilder[A] whose instances know how to
accumulatemolecular information using objects of type A.
A SmilesBuilder provides all actions required when
parsing a SMILES string:

trait SmilesBuilder[A] {
type STrans = A ⇒ A
val empty: A
def addAtom (a: SmilesAtom): STrans
def clear: STrans
def closeBranch: STrans
def openBranch: STrans
def ring (i: Int): STrans
def setBond (b: Bond): STrans
def setDbStereo (c: Char): STrans

}

It is important to note that the builder was designed to
work on immutable data structures. All its methods return
functions, while in an imperative implementation using
mutable state their return type would be Unit (similar to
void in Java).
Next, class SmilesParser[A] is responsible for

traversing the SMILES string and interpreting the char-
acters it encounters. Instead of directly accumulating a
molecular graph, it delegates data accumulation to an
implementation of SmilesBuilder[A], which must be
in implicit scope when creating a new SmilesParser.
Parts of the implementation of SmilesParser are
shown below:
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First, we defined type alias STrans, which is just a
function from one accumulated molecule to the next. The
main entry point for parsing a SMILES string is the initial
automaton state char, which performs a pattern match
against the character to be parsed. Seven cases had to
be distinguished: EOT returns the accumulated molecule
without further modifications together with a dummy
parser, ’C’ and ’B’ await the next character in order to
decide between adding one of two possible atoms, ’[’
will start bracket accumulation while the next two cases
have to do with ring formation. The final catch-all pattern
looks up the character in map unique and applies the
returned state transformer to molecule a. Map unique
contains all characters that can be encountered outside
of brackets in a valid SMILES string other than the few
special ones just described.
For interpreting the detailed data coming in brackets,

we used regular expressions together with Scala’s pat-
tern matching capabilities to great effect. Thus, the whole
parser consisted of less than one hundred lines of code
and should be able to parse all strings in accordance with
the OpenSMILES specification [21] with the exception of

chemical reactions, where the participating molecules are
delimited by character ’>’. Since we believe that a reac-
tion is not the same thing as a molecule, parsing reactions
will have to be treated separately. This is trivial though,
since we can just split the string into three (possibly
empty) parts at the proper places, and treat each part as a
separate molecule. Finally we needed a class to represent
the accumulated SMILES state:

type AtomInfo = (Int, Boolean)
type RingInfo = (AtomInfo,
Option[Bond])
type Rings = Map[Int,RingInfo]

case class SmilesMol (
graph: LGraph[Bond,SmilesAtom],
keep: Boolean,
stack: List[AtomInfo],
bond: Option[Bond],
dbStereo: Option[Char],
rings: Rings
)
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Field graph stores the growing molecular graph. Flag
keep is set to true when a new side chain is started,
in which case the next atom’s index together with is
information about aromaticity will be added to the atom
stack. Fields bond and dbStereo are used when
explicit information about bonds is encountered in a
SMILES string, and map rings represents all cur-
rently opened rings including the type of the ring bond
(if specified) and whether the first atom at the ring
bond is aromatic. We thought that these fields will
hardly ever be used outside of class SmilesMol, there-
fore we did not define a new data type for each of
them but used tuples and type aliases instead. For class
SmilesMol an implementation of SmilesBuilder
was written in about one hundred lines of code so that
we were finally able to define our first concrete SMILES
parser:

val Default = SmilesParser[SmilesMol]

What we applied here is almost exactly the Builder pat-
tern described by the famous Gang of Four [25]. Class
SmilesParser plays the role of the director with type
class SmilesBuilder[A] being the builder for prod-
uct type A. The only difference is that we used Scala’s
type class mechanism to bring the builder to the director.
The big advantage of the builder pattern is the decou-
pling of parsing and state accumulation. When parsing
a SMILES string we might not always be interested in
accumulating a full molecular graph. In that case we
might go for a completely different product type A.
All we had to do in such a case would be writing a
new implementation of SmilesBuilder[A] which is
typically much easier than writing a new parser from
scratch.

Implicit hydrogen detection
A SMILES string has not only to be parsed accord-
ing to syntactic rules, it usually also needs to be
interpreted chemically. Typical additional calculations
include perceiving aromaticity, interpreting stereochem-
ical information, and detecting implicit hydrogen atoms.
Implementing the latter was pretty straight forward: For
the organic subset atoms, SMILES defines one or more
valid default valences. We therefore only had to count the
total number of bonds to organic subset elements and add
implicit hydrogen atoms until we reached the next higher
valid valence:

def implicitHydrogens (
bs: List[Bond], e: Element

): Int = {
def calc (v: Int): Option[Int] =
valences get e flatMap ( find (v<=))

calc (bs foldMap ( .valence)) get
}

private val valences
: Map[Element,Seq[Int]] = Map(
B ⇒ Seq(3),
C ⇒ Seq(4),
N ⇒ Seq(3,5),
. . .

)

We used foldMap to sum up the valences of all bonds
connected to the atom in question (this list is directly
available from the molecular graph) and then search for
the lowest valid valence equal to or greater than this value.
The difference between the two are the implicit hydrogen
atoms.
While the above code is nice and short , it goes horribly

wrong in the presence of aromatic bonds. There is no
single valence defined for an aromatic bond therefore
they need to be interpreted on a case by case basis. We
enhanced the above algorithm to check for the presence
of aromatic bonds by first sorting list bs (aromatic bonds
were at the head of the list after sorting) and then per-
forming several pattern matches taking up about fifteen
lines of code in total. This allowed us to finally transform
a graph of type LGraph[Bond,SmilesAtom] to one
of LGraph[Bond,Atom] which could then be used to
calculate the molar mass and total formula of the parsed
molecule using the functions described earlier in this
article.
Using function implicitHydrogens it was straight

forward to transform a SmilesMol to a Molecule and
we defined function toMolecule for just that purpose:

object SmilesMol {
def toMolecule (sm: SmilesMol)

: Molecue = . . .

}

Functionally handling exceptions: The Validation
Applicative Functor
We have stressed the usefulness and safety of using refer-
entially transparent functions several times in this article.
At the same time, our SMILES parser is not referentially
transparent at all. For instance, the following expression
in our parser will throw an exception if character c is not
found in map unique:

lazy val char: FAS = FAState[A](
(a, c) ⇒ c match {

. . .

case x ⇒ (char, unique(x)(a))
}

)
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This is not a type-safe solution. Clients of our code
would have to rely on the documentation of our library
in order to know what kinds of exceptions to expect
when using our parser. We will now describe an alter-
native strategy for dealing with exceptions that is type-
safe, purely functional and composable at the same
time.
We have seen how the Option data type can be used

in cases where a calculation might have no valid result.
While this is already an improvement in terms of type-
safety, it has one drawback: We cannot tell the client of
our function what exactly went wrong. What we would
like to have is a data type that lets us return the results of
successful calculations while returning some information
about what went wrong in case of a failure. We have actu-
ally two options to get this behavior: The Scala standard
library defines the algebraic data type Either[A,B]
which has two subclasses Left[A,B] and Right[A,B]
where a Left wraps a single value of type A and a
Right one of type B. By convention a Left is returned
in case of a failed calculation and a Right in case of
a success. While this is already very useful, Either
was not designed to accumulate error messages. If we
parsed a file of many strings using function traverse
(see below) with Either[String,SmilesMol] as
the return type, our program would stop at the first
invalid string encountered in the file returning a sin-
gle error message wrapped in a Left. The clients of
our parser would not know if there were other erro-
neous SMILES strings in the file until the one that
stopped the parser was fixed and the application run
again. If possible, clients typically want to know about
all things that went wrong during a calculation. This is
especially the case when running bulks of independent
calculations.

An alternative to Either is provided by scalaz in
form of the Validation[E,A] data type. Again, two
subclasses are available: Failure[E,A] which wraps a
single value of type E and Success[E,A] wrapping a
value of type A.
Unlike Either, Validation was designed to

accumulate failures. We will show how this is done
in a moment. First we had to change parts of our
parser so that they no longer threw exceptions but
returned validated values of type Validation
[NonEmptyList[String],A] instead. A Non-
EmptyList is just that: A list that contains at least one
value. It is provided by scalaz and is often used as a means
to accumulate error messages.

A referentially transparent SMILES parser
First, we had to redefine some of our type aliases:

type ValRes[+A] =
Validation[NonEmptyList[String],A]

type FARes[A] = ValRes[(FAState[A], A)]

trait SmilesBuilder[A] {
type STrans = A ⇒ ValRes[A]
. . .

}
sealed abstract class SmilesParser[A] {
type STrans = A ⇒ ValRes[A]
. . .

}

Of course we had to adjust some of the functions
in classes SmilesBuilder and SmilesParser. For
instance, the catch all case in FAState char was
changed as shown below:

unique get c returns an Option[STrans]. The
two possible cases Some and None are handled in
function fold: If a state transformer was found, it is
applied to the last state a and the validated result is
mapped to a pair consisting of the next automaton state
and the updated molecule. This pattern came up sev-
eral times in our SMILES parser therefore we moved

it to helper function next. If no state transformer was
found, the parser returns an error message wrapped in a
Validation. Other functions in SmilesBuilder and
SmilesParser were adjusted accordingly.
Finally, we adjust function parse in the companion

object of class FAState as shown in the following code
listing:
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This time we did the tail recursion using an inner func-
tion, since we also wanted to keep track of the position
in the SMILES string. That way, if a string cannot be
parsed, all error messages are adjusted to include the exact
position at which the parsing failed.
We also adjusted function toMolecule in the com-

panion object of class SmilesMol to return validated
molecules, since some errors in a SMILES string can
only be detected upon implicit hydrogen calculation. We
were then able to go directly from a string to a validated
molecule by defining function smiles:

def smiles (s: String)
: ValRes[Molecule] =
SmilesParser.Default(s) flatMap
SmilesMol.toMolecule

Function flatMap is a more powerful version of func-
tion map (which can actually be expressed in terms of
flatMap) in that it does not take a function from A to B as
its parameter but one from A to ValRes[B]. By the way,
when using flatMap the error messages of the two func-
tions will not be accumulated since the second can only be
called if the first was successful.
In order to provide some human-readable output for our

molecular graphs, we implemented type class Show for
trait LGraph. We could then test our parser directly from
the console by using the following function:

def smilesShow (s: String): String =
smiles(s) fold (
.list mkString " n",
.shows

)

This is typical when working with types like Option
and Validation: At one point one has to break out of

the context and either handle the successfully calculated
results or deal with the accumulated error messages. In
this case we do just that by converting both possible out-
comes into strings: In case of a failed calculation we collect
all error messages in a single string (one error per line),
in case of a success we present the molecular graph in
human readable form. Both possible outcomes are shown
in Tables 1 and 2 for several input strings.

Bulk operations
This section describes some of the more advanced tech-
niques used in functional programming. These were
described in greater detail by McBride and Paterson [26]
as well as Gibbons and Oliveira [27].
Given a file containing a large number of molecules each

as a SMILES string on a separate line, we were now able

Table 1 Output when parsing valid SMILES strings

CCO [cH+]1cc1 [NH3+][C@H](C)C(=O)[O-]

LGraph: LGraph: LGraph:

0: CH3 0: CH(+1) 0: NH3(+1)

1: CH2 1: CH 1: CH(@)

2: OH 2: CH 2: CH3

3: C

0 - 1: - 0 - 1: : 4: O

1 - 2: - 0 - 2: : 5: O(-1)

1 - 2: :

0 - 1: -

1 - 2: -

1 - 3: -

3 - 4: =

3 - 5: -

Molecular graphs are displayed as lists of atoms followed by lists of bonds. Each
bond shows the indices of the connected atoms followed by the SMILES symbol
representing the type of the bond.
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Table 2 Output when parsing invalid SMILES strings

Input Message

CCuCC Pos. 3 in CCuCC: Unknown character in SMILES-String: u

C%12CCCC%1 Pos. 11 in C%12CCCC%1: % is not followed by two digits

C#OC Invalid bond set for element O: Triple,Single

In the last example no position is given since this failure did not happen during
parsing but during implicit hydrogen detection which is a separate algorithm
and therefore has not notion of a ’position in a string’.

to parse the whole sequence of lines in a single line of
code:

import SmilesParser.Default

def bulkParse (ls: Seq[String]) =
ls traverse Default.parse

The result of bulkParse will either be a sequence
of SmilesMols wrapped in a Success or a
NonEmptyList of error messages wrapped in a
Failure. Method traverse is again provided
by scalaz and has the following quite daunting
signature:

def traverse[F[ ],B](f: A => F[B])
(implicit a: Applicative[F],
t: Traverse[M]): F[M[B]] = . . .

It is added via the pimp my library pattern to an object
of type M[A] and takes a function from A to a value of
type B in a context F as its argument. It also takes two
implicit parameters: An instance of type class Traverse
must be defined for type constructor M (which is usu-
ally some kind of container such as a list or a tree) and
one of type class Applicative for context F. Method
traverse is highly versatile in that it not only abstracts
over the input and output types of a function but also
over the container over which we iterate as well as the
context F in which the calculation runs. We will not
describe how these type classes are defined and imple-
mented any further but refer the interested reader to the
articles given at the beginning of this section as well as the
scalaz source code. Suffice to say that the Applicative for
Validation requires a Semigroup (which like aMonoid
defines a function append but without the zero value)
to be defined for its error type E. Errors are then accu-
mulated via Semigroup append. For instance there is a
Semigroup for NonEmptyLists (append simply being
list concatenation).
One good thing about Applicatives is that they com-

pose very nicely. It can be shown that both the prod-
uct (M[ ],N[ ]) and the composition M[N[ ]] of two
Applicatives M[ ] and N[ ] are again Applicatives [26].
This gives us incredible flexibility in our code. We will

demonstrate this by adding another piece of informa-
tion to our error messages: The line number at which
a certain error occurred. To keep track of the actual
line number, we use the State Monad [28]. We define
a couple of new type aliases together with function
parseLine:

type IntState[A] = State[Int,A]
type ValIntState[A] =
IntState[ValRes[A]]

implicit val ValIntStateApplicative =
Comp.CompApplicative[IntState,ValRes]

def parseLine[A] (f: String ⇒
ValRes[A])
: String ⇒ ValIntState[A] =
s ⇒ state(i ⇒ (i + 1, f(s) fold (

map (
"Line %d: %s" format (i, )
) fail,
.success

)))

Method parseLine parses a string and if this fails,
prepends the actual line number to all error messages.
At the same time the line number is increased by one.
Since we are working with a composition of Applicatives,
the Scala compiler needs some help to figure out that
ValIntState is still an Applicative. scalaz defines func-
tion CompApplicative for just this purpose. We can
now define a function parseSmilesLine and use it
again in a bulk operation as before, but this time, our error
messages will include the exact position (line and column),
where in a file an error occurred:

def parseSmilesLine = parseLine(smiles)

def bulkParseSmiles(ss: Seq[String]) =
(ss traverse parseSmilesLine) ! 1

We use the ! operator to run the computation with an
initial line index of 1.

Parallelization and performance
At the beginning of this article we claimed that ref-
erentially transparent functions can safely be used in
parallel algorithms. Indeed, we were able to parse a
reasonably large file (about 10 MB) of SMILES strings
with only a few lines of code using Scala’s parallel
collections:

val path = "/home/. . ."

def src = io.Source fromFile path
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def ls = src.getLines.toSeq

val results: ValRes[Molecule] =
(ls.par map parseSmiles seq).sequence

Function par transforms a collection to a parallel one,
while seq transforms it back to a single threaded one.
Calling map and sequence in succession does the same
as calling traverse but the list is traversed twice. On the
other hand, the implementation of traverse is too strict
to be run in parallel; scalaz provides function parMap
for that purpose, but this makes use of Futures which
we will not describe here in more detail. Table 3 shows
the time used to count the implicit hydrogen atoms in
all molecules (about 350’000) in a sample SMILES file
downloaded from the ZINC database [29] on a stan-
dard laptop with a quadcore processor, once when run
in a single thread and once when run in parallel on all
four cores. As can be seen, performance is increased by
about a factor of two without any further tuning from our
part.
We also used VisualVM [30] as a profiler to further

improve the performance of our SMILES parser and our
graph implementation. A couple of simple adjustments
increased the performance by another 30%. Applying the
Flyweight pattern to edges by caching the most com-
monly used ones as well as changing the order in the
pattern match of the implicitHydrogens function
each reduced the time needed to parse the ZINC library
by about half a second. In the first case we could cache
the commonly used edges’ hashCode which was other-
wise reevaluated many times when they were being used
as keys in the edge label map in our labeled graphs. In

Table 3 Performance of SMILES parsing

Run Singlethreaded Multithreaded Multithreaded

(after profiling)

1 17’149 10’295 7608

2 15’659 7123 5488

3 15’663 7248 5433

4 15’880 7508 5425

5 15’809 7669 5534

6 15’720 7197 5471

7 15’665 7174 5448

8 15’390 7296 5513

9 15’423 7687 5696

10 15’523 7564 5491

average 15’788 7676 5711

Time (in milliseconds) taken to parse part of the ZINC database containing about
350’000 structures on a quadcore laptop. The multi-threaded runs ran on all four
cores without further optimization of Scala’s parallel collections settings.

the second case we could restrict the sorting of a con-
siderable amount of bond lists to only those cases where
aromatic bonds were involved. Finally we saw that build-
ing the adjacency lists of our graphs took quite some time.
This could be somewhat improved by changing their type
from Array[Set[Int]] to Array[List[Int]]. It
is not yet sure, whether we will have to undo this last
change, since Sets have constant time random access,
while for lists it is linear with respect to the list’s size.
The effect on overall performance of our parser will not
be very big if this change has to be undone in a future
version.
Finally we tested the efficiency of parallelizing the

parsing of large lists of SMILES strings on a hexa-
core processor supporting hyperthreading. The results
are summarized in Table 4. The drop in efficiency and
reduced speedup when running more than nine threads
in parallel might be related to the computer’s hardware
architecture or Scala’s implementation of parallel collec-
tions but we did no further investigations along those
lines.

Comparison with other open-source toolkits
In this section we are going to have a closer look at other
cheminformatics toolkit implementations and compare
their design with the one chosen for chemf .

Ouch: ouch uses chemical Haskell [12]
Ouch is the only other purely functional cheminformat-
ics toolkit we are aware of. It is written in Haskell
and is similar in functionality to chemf . It also pro-
vides SMILES parsing capabilities that result in a basic

Table 4 Speedup and efficiency of parallelized SMILES
parsing

Number of Threads Time [ms] Speedup Efficiency

1 9493 1.00 1.00

2 5309 1.79 0.89

3 4134 2.30 0.77

4 2988 3.18 0.79

5 2785 3.41 0.68

6 2647 3.59 0.60

7 2273 4.18 0.60

8 2091 4.54 0.57

9 2037 4.66 0.52

10 2061 4.61 0.46

11 2061 4.61 0.42

12 2096 4.53 0.38

The test runs were performed on a hexacore processor supporting
hyperthreading. Again our testing excerpt of the ZINC database was parsed
using Scala’s parallel collections.
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molecular graph. In addtion, Ouch supports output to
several file formats as well as some nice algorithms for
enumerating chemical structures which are described in
more detail in the author’s blog [31]. There are several
differences between chemf and Ouch in terms of design
decisions.
First, chemf abstracts over the bond and atom types in

its graph implementation through type parameters while
in Ouch a molecule is simply a mapping from an inte-
ger to an atom plus a set of additional information in
terms of molecular markers. All available information for
a given atom is provided by the Atom data type which
can again be annotated by various markers. This makes
Ouch’s Atom and Molecule data types quite versatile
but not really type safe. The presence or absence of a
given type of marker is not visible at the type level, and
algorithms that rely on certain markers will have to explic-
itly query the molecule and its atoms for their presence.
Here we believe that the design of chemf is somewhat
superior in terms of flexibility and type safety. We can
describe different aspects of a molecule simply by vary-
ing the type parameters of an LGraph and algorithms
working on molecular graphs can define via the types
of their parameters, which additional pieces of informa-
tion about a molecule’s atoms and bonds are required.
Parameterizing over the edge and node type of LGraph
also allowed us to define some powerful type classes like
Functor, Foldable, and Traverse for our labeled graphs.
This makes many highly versatile higher order functions
available for working with LGraphs as has been demon-
strated when implementing a couple of basic operations
on molecules.
Another difference is the implementation of the SMILES

parser. Ouch makes use of the parsec [32] library of
parser combinators, meaning that the low level parsing
capabilities of Ouch’s parser did not have to be imple-
mented from scratch. On the other hand, Ouch does not
abstract over the return type of its parser. The parser
simply reads a SMILES string and returns a Molecule.
In our implementation we abstracted over the parser’s
return type by means of the builder pattern. This leads
to greater flexibility when accumulating the information
available from a SMILES string and will make a pos-
sible future change in the representation of molecules
easier. Ouch’s SMILES parser also handles the potential
of failure during parsing differently: Errors and warn-
ings are stored as markers together with the parsed
molecule. While this also allows for the accumulation
of error messages when several things go wrong, the
presence or absence of errors is not visible at the type
level and can only be determined upon inspecting the
molecule’s set of markers. Our implementation describes

the potential of failure already in the parser’s return
type. This gives us once more access to many useful
higher order functions provided by the Validation
data type and its various type class implementations
as we have shown when performing bulk operations.
It also makes error handling in follow-up algorithms
obsolete. This is demonstrated in the following code
listing:

def formula (m: Molecule): Formula =
= m foldMap atomFormula

def parseFormula (s: String) =
smiles(s) map formula

Here, function formula is only called if the parsing was
successful. Its implementation does not have to concern
itself with the possibility of failure during parsing, and it
is therefore not necessary to query the molecule for the
presence or absence of errors.

CDK: the chemistry developement kit [1]
CDK is an open-source cheminformatics and bioinfor-
matics toolkit written in Java. It provides a plethora of
chemistry-related data structures and algorithms as well
as UI widgets that can be used for structure drawing
and editing in graphical user interfaces. It also supports
reading from and writing to many file formats typically
used in chemical applications.
CDK was designed as a purely object-oriented toolkit,

based on mutable data structures and subtyping for code
reuse and loose coupling between components. The main
data structures are defined as Java interfaces for which
default implementations are provided. Algorithms typi-
cally operate on these interfaces which makes it possi-
ble to use them with tailor-made implementations. In
chemf we use type classes to achieve the same (or an
even higher) degree of flexiblity. Theoretically, the algo-
rithms provided by CDK could also be used from within
chemf by implementing the interfaces of the data struc-
tures in question. However, even CDK ’s interfaces where
designed with mutability in mind so that one has typically
to provide getters (accessors) and setters (mutators) for
all editable fields of a data structure. This of course does
not go well with referential transparency and purely func-
tional programming. It is also not always clear whether
algorithms like substructure searching or ring detection
mutate parts of the data structures they operate on. From
a functional programmer’s point of view it might there-
fore be interesting to adjust CDK ’s design so that two
types of interfaces are defined for all data structures:
One for accessing and one for mutating an object’s fields.
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Ideally, most algorithms would then work solely with the
immutable interface of a data type, thereby guarantee-
ing via the type system that no inplace mutation will
occur.
CDK ’s SMILES parser is similar in functionality to our

parser, however an algorithm for aromaticity perception
is provided as well. CDK ’s parser is also implemented
via the builder pattern though its return type is always
IMolecule. The builder is only needed as a factory to
create a new instance of IMolecule when parsing a new
string. It is also worth noting that CDK ’s SMILES parser,
written in an imperative style in Java consists of more than
ten times the number of lines of code than our imple-
mentation. While fewer lines of code is not necessarly a
sign of quality or efficiency, less boiler plate code can well
increase both the readability and maintainability of the
code base escpecially when the difference is a whole order
of magnitude.
We planned to compare the efficiency of CDK ’s SMILES

parser with our implementation when parsing bulks of
SMILES strings in parallel. However, we found that
CDK ’s parser is not referentially transparent and oper-
ates on mutable state internally. In order to parse SMILES
strings in parallel we had to create a new instance of
SmilesParser for every string to be parsed instead of
using the same instance for all strings. Even then CDK ’s
SMILES parser failed with a NullPointerException
at irregular occasions when we used the singleton instance
of DefaultChemObjectBuilder as described in the
parser’s documentation. The code we used in this test is
listed below:

This demonstrates one of the major advantages of
functional programming over classical object-oriented
programming: Referentially transparent functions and
immutable data structures can be used at will in paral-
lel algorithms while with mutable data structures thread
safety is a deliberate design decision and can be hard to
implement and even harder to test.

Conclusions
In this article, we described our first steps in putting
together a purely functional cheminformatics toolkit in
Scala. We showed how typical calculations required in
chemical applications can be written with a drastically
reduced amount of code due to the increase in abstraction
and type-safety gained by applying typical concepts from
functional programming. We also showed how the result-
ing referentially transparent functions and immutable
data types can be used at no risk in all parts of client
code including multi-threaded algorithms. We also com-
pared our code with existing toolkits, and showed how it is
superior in terms of type-safety and flexibility as well as –
when compare to a typical object-oriented toolkit – thread
safety. Last but not least, we experienced a drastic increase
in productivity when programming in a purely functional
way. Typically, code that compiled ran as expected and
passed all unit tests at first take.
Of course our work is by far not finished here. In a

next step we will focus on supporting other file formats
in our toolkit before moving to file output and (SMILES)
canonicalization. Especially the latter will be interesting
to implement since it is known to be performance critical.
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Once canonicalization is implemented to our satisfac-
tion we will move our focus towards data storage and
experiment with our own implementation of a chemical
database system that should also support substructure and
similarity searches embedded in our computer aided drug
design projects.

Methods
Benchmarking the SMILES parser
We used the scala.testing.Benchmark trait for
benchmarking our application. For this task the block of
code listed below was executed, either with or without
using parallel collections.

The first run was typically slower by a factor of at least
two than the following ones. This is a known effect due to
Java’s Just In Time compilation [34].

Additional file

Additional file 1: chemf src.zip. This file contains the source code of the
version of chemf described in this article as an SBT [33] project. To try out
some code samples, install SBT and start it from within the chemf directory.
From within SBT start the console by typing console. Several functions
are loaded and can be used out of the box: smiles(s) will parse SMILES
string s, prettySmiles(s) will do the same but print the resulting
molecule (or error messages) in human readable form.
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