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Abstract

Background: The past decade has seen an upsurge in the number of publications in chemistry. The ever-swelling
volume of available documents makes it increasingly hard to extract relevant new information from such
unstructured texts. The BioCreative CHEMDNER challenge invites the development of systems for the automatic
recognition of chemicals in text (CEM task) and for ranking the recognized compounds at the document level (CDI
task). We investigated an ensemble approach where dictionary-based named entity recognition is used along with
grammar-based recognizers to extract compounds from text. We assessed the performance of ten different
commercial and publicly available lexical resources using an open source indexing system (Peregrine), in
combination with three different chemical compound recognizers and a set of regular expressions to recognize
chemical database identifiers. The effect of different stop-word lists, case-sensitivity matching, and use of chunking
information was also investigated. We focused on lexical resources that provide chemical structure information. To
rank the different compounds found in a text, we used a term confidence score based on the normalized ratio of
the term frequencies in chemical and non-chemical journals.

Results: The use of stop-word lists greatly improved the performance of the dictionary-based recognition, but
there was no additional benefit from using chunking information. A combination of ChEBI and HMDB as lexical
resources, the LeadMine tool for grammar-based recognition, and the regular expressions, outperformed any of the
individual systems. On the test set, the F-scores were 77.8% (recall 71.2%, precision 85.8%) for the CEM task and
77.6% (recall 71.7%, precision 84.6%) for the CDI task. Missed terms were mainly due to tokenization issues, poor
recognition of formulas, and term conjunctions.

Conclusions: We developed an ensemble system that combines dictionary-based and grammar-based approaches
for chemical named entity recognition, outperforming any of the individual systems that we considered. The
system is able to provide structure information for most of the compounds that are found. Improved tokenization
and better recognition of specific entity types is likely to further improve system performance.

Background
The past decade has seen a massive increase in the
number of chemical publications in the scientific litera-
ture. The ever-swelling volume of available documents
makes it increasingly hard to manually find and extract
relevant information from such texts [1,2]. Automatic
indexing of individual publications by the chemical enti-
ties mentioned in them, can make it easier to find new
information. Ranking these chemical entities by recogni-
tion confidence can be helpful in judging the relevance

of the publication. Also, knowing the location of every
mention of chemical compounds in these publications is
of use to establish relationships with other entities or
concepts [3].
Different text-mining approaches can be taken to

extract chemical named entities from text. The various
approaches have been categorized as dictionary-based,
morphology-based (or grammar-based), and context-
based [3]. In dictionary-based approaches, different
matching methods can be used to detect matches of the
dictionary terms in the text [3]. This requires good-
quality dictionaries. The dictionaries are usually pro-
duced from well-known chemical databases. This
approach may well capture non-systematic chemical
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identifiers, such as brand or generic drug names, which
are source dependent and are generated at the point of
registration. The drawback of a dictionary approach is
that it is nearly impossible to also include all systematic
chemical identifiers, such as IUPAC names [4] or
SMILES [5], which are algorithmically generated based
on the structure of the chemical compound and follow
a specific grammar [6]. These predefined grammars are
sets of rules or guidelines developed to refer to a com-
pound with a unique textual representation (systematic
term or identifier). These terms should have a one-to-
one correspondence with the structure of the compound.
Grammar-based approaches expand their extractions
through the capture of systematic terms by utilizing
these sets of rules, for example by means of finite state
machines [7]. Therefore grammar-based approaches can
extract systematic terms that are missing from the dic-
tionaries. Both dictionary-based and grammar-based
approaches may suffer from tokenization problems [3].
Following the third approach, context-aware systems use
machine learning techniques and natural language pro-
cessing (NLP) to capture chemical entities. Machine
learning techniques utilize the manually annotated che-
mical terms in a training set of documents to automati-
cally learn and define patterns to extract terms from text
[3]. The drawback of machine learning approaches is the
need for a sufficiently large annotated corpus for training
the system.
Extraction of chemical entities from text has shown to

be difficult. Among the main reasons are the large num-
ber of terms and synonyms within the chemical domain,
the failure to follow guidelines when creating systematic
terms by authors, the use of characters such as hyphens
and commas within chemical terms, and the ambiguity
and inconsistency within and across chemical databases
[2,6,8]. Studies have tackled these difficulties using the
approaches previously mentioned. Hettne et al. [9]
extracted chemical terms from text using a dictionary-
based approach (through a system called Peregrine [10]).
Funk et al. [11] evaluated the performance of three differ-
ent dictionary-based systems (MetaMap [12], NCBO
Annotator [13], and ConceptMapper [14]) by examining
different parameters over multiple ontologies. Lowe et al.
developed Opsin, which uses a grammar to transfer che-
mical nomenclature into structures [15].
In a later study Lowe et al. [16] further improved dic-

tionary-based approaches by introducing 485 grammar-
based rules to identify systematic terms. Others (e.g., Lea-
man et al. [17]) have investigated machine-learning
approaches with a focus on conditional random fields
(CRFs) [18], hidden mark models (HMMs), and maximum
entropy markov models (MEMMs) [19] to extract chemi-
cal terms from text. In a recent study, Campos et al. [20]
developed Neji, an open source package that integrates

dictionary-based and machine-learning approaches to
extract biomedical terms from text.
The BioCreative CHEMDNER challenge [8] intends to

encourage the development of systems that can index
chemical entities (especially the ones that are associated
with a chemical structure) in scientific journals. Chal-
lenge participants were invited to submit results for two
different tasks. The chemical document indexing (CDI)
subtask pursues the creation of a list of the chemical enti-
ties in a document, ranked according to their confidence
of recognition [8]. The chemical entity mention recogni-
tion (CEM) subtask aims at establishing the location of
every mentioned chemical entity within a document [8].
The CHEMDNER organizers provided the participants
with a manually annotated gold standard corpus [21] for
training their systems. Overall 65 groups registered for
the challenge and 27 groups (both academic and com-
mercial) submitted results [8].
We investigated an ensemble approach where dictionary-

based named entity recognition is used along with gram-
mar-based recognizers and chemical toolkits to extract
compounds from text. We analyzed the performance of
ten different commercial and publicly available lexical
resources using Peregrine, an open source indexing system
[10,22], along with three different chemical compound
recognizers. Different combinations of resources and
recognizers were explored to find the best combination to
extract the compounds.

Methods
Our approach was to extract non-systematic chemical
identifiers using dictionary-based methods and systema-
tic identifiers using grammar-based methods. We
extracted compound family names using a defined ChEBI
family dictionary, and database identifiers using a set of
manually defined regular expressions. We merged the
extractions of these systems. We first concentrated on
the CEM subtask where we carried out chemical entity
mention recognition. For the CDI subtask we determined
confidence scores for all recognized terms and used these
to rank the mentions.

Corpus
The CHEMDNER corpus [21] was used for the develop-
ment and the evaluation of our system. The corpus con-
sists of 10,000 manually annotated Medline abstracts
divided in a training set and a development set (3,500
abstracts each), and a test set (3,000 abstracts). An addi-
tional sample dataset with 30 abstracts was also made
available through the corpus. The abstracts in the test set
were provided as part of a blinded set of 20,000 abstracts
(participants did not know which of these abstracts were
part of the test set), which the teams had to process in
the evaluation phase of the challenge. The corpus has
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been annotated with the following entity types: abbrevia-
tion (e.g., “DMSO”), family (e.g., “Iodopyridazines”), for-
mula (e.g., “(CH3)2SO”), identifier (e.g., “CHEBI:28262”),
multiple (e.g., “thieno2,3-d and thieno3,2-d fused oxazin-
4-ones”), systematic (e.g., “2-Acetoxybenzoic acid”),
trivial (e.g., “Aspirin”), and undefined (e.g., “C4-C-N-
PEG9”), concentrating on mentions with practical rele-
vance as to potential target applications (focusing on che-
mical entities with structures) [21]. Therefore general
compounds not associated with chemical structures were
not annotated throughout the corpus. The combination
of sample set, training set, and development set, collec-
tively called the training material further on, was used to
develop the ensemble system.

Lexical resources
We extracted all the terms (a term denoting a com-
pound and consisting of one or more words) from the
databases described below, including brand names,
synonyms, trade names, generic names, research codes,
Chemical Abstracts Service (CAS) numbers, and any
other compound-relevant information. Since we wanted
to focus on compounds with structures, only records
with MOL file representations of chemical structures
[23] were extracted.
ChEBI [24]
Chemical Entities of Biological Interest (ChEBI) is a
freely accessible dictionary of small molecular entities.
Manually checked and annotated (three star) com-
pounds and their associated MOL file representations of
chemical structures were extracted, including all syno-
nyms, brand names, ChEBI names, and International
Nonproprietary Names (INNs).
ChEMBL [25]
ChEMBL is a freely accessible database of bioactive
molecules with drug-like properties. Chemical records
are manually curated and standardized. Relevant infor-
mation was extracted from ChEMBL records with asso-
ciated MOL files.
ChemSpider [26]
The ChemSpider database is a freely accessible chemical
structure database, owned by the Royal Society of
Chemistry [27]. It contains structures, properties and
associated information for compounds gathered from
more than 470 data sources. The information in the
database is validated automatically by robot software,
and manually by annotators and crowdsourcing
[26,28,29]. We only used the subset of compounds that
were manually validated.
DrugBank [30]
DrugBank is a freely accessible database containing
information on drugs and drug targets. Most of the data
in DrugBank is expertly curated from primary literature
sources [31]. All synonyms, brand names, CAS numbers,

INNs, and generic names were extracted from Drug-
Bank records with MOL files.
HMDB [32]
The Human Metabolome Database (HMDB) contains
human body-related small molecule metabolites infor-
mation. The database links chemical, clinical and biolo-
gical data. All compounds within HMDB are manually
annotated by at least two annotators [33].
NPC [34]
NIH Chemical Genomics Center Pharmaceutical Collec-
tion (NPC) contains clinical approved drugs from the
USA, Europe, Canada and Japan. The data are automati-
cally screened for curation [34]. The NPC browser 1.1.0
was used to extract synonyms, CAS numbers, and struc-
ture names for compounds with structures.
TTD [35]
Therapeutic Target Database (TTD) contains known
and explored therapeutic targets and their correspond-
ing drugs. Targets are only included in TTD if they
have been described in the literature [36]. All synonyms
and drug names were extracted.
PubChem [37]
PubChem is a database that provides information
regarding biological activities of small molecules. Pub-
Chem stores molecular structures and bioassay data
from different contributors [37]. A subset of compounds
likely to have structure-activity relationships and/or
other biological annotations [38] with all of their corre-
sponding synonyms derived from PubChem substances
were downloaded.
In addition to the databases above, which all contain

information on compound structure, we also explored
two large lexical resources that do not provide structure
information.
Jochem [9]
The joined lexical resource Jochem is a dictionary of
small molecules and drugs, containing information from
multiple sources. The dictionary is designed for text
mining and all integrated data have been filtered,
curated and disambiguated automatically [9]. All com-
pounds and their corresponding information were
extracted from Jochem.
UMLS [39]
The Unified Medical Language System (UMLS) is a col-
lection of biomedical concepts from different lexical
resources grouped by 135 different semantic types [39].
UMLS provides a mapping among these lexical resources.
Automatic auditing tools are used to discover and resolve
possible errors [40,41]. Concepts belonging to a subset of
21 chemical-related semantic types were selected and
extracted from UMLS.
To capture family names, we also created a dictionary

from the ChEBI ontology where we only took parent
compounds that did not appear in the ChEBI three-star
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database, assuming that these terms have a high likeli-
hood of being a family name. We call this dictionary
ChEBI family.
Table 1 shows the number of compounds and the

number of terms for each of the resources. The total
number of unique (case-sensitive) terms was 25,795,580.

Stop words
In a recent study, Funk et al. [11] described the effect of
different parameters such as use of stop words on auto-
matic extraction of biomedical concepts from text. In
this study we investigate the influence of stop words on
automatic extraction of chemical terms from text. Several
stop-word lists were analyzed for their ability to improve
system performance, viz. English basic words (100 words)
[42], the PubMed stop-word list (133 words) [43], the
Jochem stop-word list (258 words) [9], and stop-words
derived from the CHEMDNER annotation guidelines
(116 words) [21]. Terms found by dictionary-based or
grammar-based matching were disregarded if they were
part of the stop-word lists. The basic English stop-word
list and the PubMed stop-word list contain common
English words, with 51 shared terms like “about”, “all”,
“most”, and “make”. The Jochem stop-word list and the
CHEMDNER derived stop-word list focused on more
specific ambiguous terms, such as “crystal” or “acid” for
the Jochem set, and “insulin” or “lead” for the CHEMD-
NER set. These two sets only shared five words.

Dictionary-based recognition
We employed the Peregrine tagger [10,22] to analyze the
performance of the individual terminological resources.
Tokenization of text that contains chemical terms can
be complicated as compound names may include punc-
tuation, such as commas or brackets. We used Peregrine
with the tokenizer previously developed by Hettne et al.
[9]. All the terms from the terminological resources
were used to index the training material with different

settings for case sensitivity and noun-phrase (NP)
chunking.
Case sensitivity
To study the effect of case sensitivity of characters
within chemical names on the performance of the sys-
tem, we indexed the text in separate runs with different
matching settings: case insensitive, case sensitive, and
partial case sensitive (only case sensitive for abbrevia-
tions, defined as terms where the majority of characters
consists of capitals and digits, e.g. “BaTiO3”).
NP chunking
Assuming that chemical compounds will mostly be pre-
sent in the noun phrases of a sentence, the experiments
were also repeated by only feeding noun phrases
extracted with the OpenNLP chunker [44] to Peregrine.
The OpenNLP chunker has previously been shown to
score best in performance and usability on NP recogni-
tion in biomedical text [45].

Grammar-based recognition
A number of public and commercial software packages
that can find chemical entities in text were used for the
grammar-based recognition approach. ChemAxon’s
Document-to-Structure toolkit (D2S) [46], NextMove’s
LeadMine [47], and OSCAR 4 [48] were used for this
purpose. These tools have also implemented grammar-
based recognition of systematic chemical identifiers. D2S
uses grammars along with dictionaries to extract chemi-
cals from text. D2S can also extract information from
optical character recognition text and has the ability to
recognize chemical structures from text (image extrac-
tion) [46]. NextMove’s LeadMine uses a filtered diction-
ary along with 485 rules (grammars defined for chemical
nomenclatures naming) to find and extract systematic
names. The tool provides automatic spelling correction
which allows the tool to extract misspelled terms from
documents. The tool also supports multiple languages
[47]. Oscar is an open-source software package for
extracting named entities from chemical publications.
The tool uses different types of models (such as a Baye-
sian model, pattern recognition, and a Maximum Entropy
Markov Model) to extract terms from documents [48].
All the tools were used with their default settings, with-
out further training, adjustment or tuning.

Regular expressions
Database identifiers of compounds are one of the entity
types annotated in the CHEMDNER corpus [21], e.g.,
LY541850 or AMN082. This subset was used to define a
set of regular expressions that served to index the
abstracts for chemical database identifiers. As an exam-
ple, “LY[\ ]{0,1}[1-9][0-9]{5,6}” captures the letters “LY”
followed by a space (optional) and six or seven digits
(the first of which is not 0).

Table 1 Number of records and number of terms in the
terminological resources

Resource Number of compounds Number of terms Structure

ChEBI 23,240 85,036 Yes

ChEMBL 22,245 29,488 Yes

ChemSpider 2,957,105 5,235,393 Yes

DrugBank 6516 31,991 Yes

HMDB 40,200 364,541 Yes

NPC 14,666 131,795 Yes

TTD 3,196 127,568 Yes

PubChem 4,235,189 19,420,462 Yes

Jochem 362,928 2,062,333 No

UMLS 329,464 743,791 No

ChEBI Family 22,635 90,166 No
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Ensemble system
The stop-word lists were employed for both dictionary-
based and grammar-based recognition. The dictionary-
based recognition was applied using different settings
for case sensitivity and NP chunking. We used the Bio-
Creative evaluation script [49] to calculate precision,
recall, and F-score (using exact matching of entity
boundaries without considering entity type). The scores
for the grammar-based recognizers and the regular
expressions were also calculated in the same manner.
We then heuristically selected different combinations of
terminological resources, grammar-based recognizers
and regular expressions, and assessed the performance
of each ensemble. Our strategy was to have at least one
system from each approach. The ensemble system
merged the outputs of the various systems. All combina-
tions of up to three lexical resources, the grammar-
based recognizers, and the regular expressions were
assessed, and the ensemble system with the highest
F-score was determined. For comparison, we also investi-
gated a simple voting scheme, where a term is accepted if
the number of resources and systems by which the term
is found, is at least equal to a voting threshold.
In the final setup we tried to improve our system by

extending our dictionary with all gold-standard annota-
tions from the training material that our system initially
missed. Further improvement was reached by singling
out indexed terms that overlapped. In these cases, the
longest term (greater number of characters) was kept. If
the terms had the same number of characters, they were
ranked based on the subsystems that extracted them:
regular expressions, grammar-based, dictionary-based
(decreasing priority). If any or both of the overlapping
terms were captured by more than one system, the term
with highest priority was chosen. In rare cases where
the overlapping terms had the same size and the same
priority, one term was randomly chosen.

Ranking
To perform the CDI subtask, we needed a sorted list of
unique mentions of the chemical terms in each docu-
ment. The terms should be ranked according to an esti-
mated confidence of recognition. We therefore
determined a “confidence score” for each chemical term
as follows. Abstracts from the whole of Medline were
divided into two subgroups based on subject categories
from the ISI Web of Knowledge [50] (Table 2). The first
group consisted of 1,979,485 abstracts from chemical
journals, employing the same subject categories as
described in the CHEMDNER guidelines [21]. The sec-
ond group contained 73,603 abstracts from non-chemi-
cal journals (e.g., journals in the subject category
“Agricultural economics & policy”) carefully chosen
through the ISI Web of Knowledge classification. All

abstracts were indexed by Peregrine with all lexical
resources. We assumed that chemical terms would be
present more frequently in chemical abstracts than in
non-chemical abstracts. For each term, the ratio of the
tf*idf (term frequency times inverse document fre-
quency) scores for both abstract sets was computed and
transformed into a confidence score between zero and
one: if ratio < 1 then score = ratio * 0.5 else score = 1 -
0.5/ratio. A term with high confidence is found more
frequently in chemical abstracts than in non-chemical
abstracts and therefore is likely to be a chemical term.
Vice versa, a term with low confidence is likely to be
non-chemical, or highly ambiguous. For example, the drug
“Indomethacin” (with DrugBank id DB00328) was found
15,421 times in the chemical abstracts and only once in
the non-chemical abstracts, resulting in a high confidence
score of 0.99. The ambiguous term “Merit” (synonym of
“Imidacloprid” with HMDB id HMDB40292) was found
779 times in the chemical and 101 times in the non-che-
mical abstracts and obtained the low score of 0.14 after
normalization.
The confidence score was taken to rank the term. If it

was not available (due to time constraints for the chal-
lenge we did not compute scores for terms only captured
by regular expressions or grammar-based recognition,
which took much more processing time than dictionary-
based recognition), the term was ranked according to the
precision of the system that indexed the term. In cases
where multiple systems indexed the term the highest
score was applied.

Results
Individual systems
Table 3 shows the baseline performance of the diction-
ary-based and grammar-based named entity recognition
with and without stop-word removal on the 7030
abstracts in the training material. The dictionary-based

Table 2 Subject categories in the ISI Web of Knowledge
that contain chemical or non-chemical related journals

Chemical related Non-chemical related

Biochemistry & molecular Agricultural economics & policy

Biology Automation & control systems

Chemistry, applied Computer science, information systems

Chemistry, medicinal Computer science, software engineering

Chemistry, multidisciplinary Computer science, theory & methods

Chemistry, organic Education, scientific disciplines

Chemistry, physical Instruments & instrumentation

Endocrinology & metabolism Mathematics

Engineering, chemical Mechanics

Polymer science Physics, mathematical

Pharmacology & pharmacy Robotics

Toxicology Telecommunications
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named entity recognition was performed with case sen-
sitive matching.
The baseline F-scores without stop-word removal fluctu-

ate between 12.8% and 57.8%, with Jochem, ChemAxon
and LeadMine performing the best. ChEMBL obtained a
high precision of 87.9% but with a poor recall of 18.7%.
Oscar, PubChem and Jochem had the highest recalls, but
with moderate to poor precisions. ChEBI Family gained
the lowest F-score, which can be explained by the fact that
its scope was limited to chemical family names. Further
analysis revealed that 40.3% of the annotated family names
were captured by ChEBI Family. The low precision of
ChEBI Family is mainly due to the presence of terms such
as “role”, “proteins”, “inhibitors”, “metabolites”, which are
not blocked as they are not present in the stop-word list.
The use of the stop-word lists greatly improved the preci-
sion and F-score of the majority of resources. The perfor-
mance of ChEMBL and ChemAxon remained nearly
constant showing that these systems extract few of the stop
words in our lists. Use of the stop-word lists hardly affects
recall, with a largest decrease of only 1.1% for PubChem.
Table 4 gives a further breakdown of the performance

improvement for the individual stop-word lists that
were used. Clearly, the largest improvements are seen
for the Basic English terms (up to 23.7 percentage
points with an average of 4.1) and the PubMed stop-
word list (up to 22.3 percentage points with an average
of 3.6). Among the terms that had a large effect on pre-
cision were basic English terms such as “In” (extracted
32367 times of which only 5 are annotated in the corpus
as Formula) and “As” (extracted 7087 times of which
33 cases are annotated as Formula). Many more general

terms were also extracted mostly as false positives, such
as “protein”, “DNA”, “insulin”, and “water”.

Case sensitivity
To study the influence of case sensitivity on the diction-
ary-based approach, we indexed the training data using
case insensitive, case sensitive, and partial case sensitive
matching for all terminological resources (Table 5). The
results did not show a large difference in most of the
cases although (partial) case sensitive matching improved
the F-score of ChEBI by 7.1 percentage points and
reduced the score of TTD by 2.7 percentage points.

NP chunking
To study the possible gain through NP chunking on dic-
tionary-based approaches, we applied the OpenNLP
chunker to extract noun phrases from the training mate-
rial. The noun phrases were then indexed with Peregrine
using all terminological resources. Table 6 shows higher
precision and F-scores for most of the systems as com-
pared to the baseline values (cf. Table 3), in particular for
PubChem and ChEBI. As expected, recall drops, but only
by 0.3 to 1.9 percentage points.
The removal of stop-words in combination with the

NP chunking system gives a further improvement of
performance, but to a much smaller extent than for the
baseline system. This is largely because most of the
stop-words are not part of the noun phrases and disre-
garding them has no effect. Based on a comparison
between the performances in Table 3 and Table 6 we
decided to dispense with NP chunking as there was
no gain.

Table 3 Performance (in %) of individual systems on the training material, before and after stop-word removal

Baseline Baseline + stop-word removal

Precision Recall F-score Precision Recall F-score

Dictionary-based

ChEBI 28.3 40.6 33.4 77.7 39.7 52.6

ChEMBL 87.9 18.7 30.8 88.8 18.7 30.9

ChemSpider 65.4 39.0 48.9 80.4 38.4 51.9

DrugBank 63.0 17.2 27.0 78.1 17.1 28.1

HMDB 53.2 34.5 41.8 81.3 33.9 47.9

NPC 46.8 26.7 34.0 59.7 26.4 36.6

TTD 43.9 14.7 22.1 82.9 14.4 24.6

PubChem 17.4 59.0 26.9 61.1 57.9 59.5

Jochem 64.2 52.5 57.8 67.1 52.5 58.9

UMLS 37.7 51.1 43.4 45.4 50.8 47.9

ChEBI Family 10.4 16.6 12.8 29.4 16.3 21.0

Grammar-based

Oscar 25.1 63.2 35.9 28.4 62.4 39.0

LeadMine 64.9 47.4 54.8 74.6 47.1 57.7

ChemAxon 80.9 41.8 55.1 82.5 41.7 55.4

The highest score in each column is bolded.
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Regular expressions
The regular expressions detected 44.4% of the chemical
database identifiers, with a precision of 90.4%. Further
analysis of the false-positive and false-negative detec-
tions showed many partial extractions, e.g., “LY2090314”
was extracted as an identifier while a prefix had also
been annotated as part of the identifier ("[(14)C]
LY2090314”).

Ensemble system
We evaluated different combinations of terminological
resources (applying different case-sensitivity settings),
grammar-based recognizers, and regular expressions on
the training data. The ensemble system with the best F-
score consisted of the combination of ChEBI, HMDB,
LeadMine, and the regular expressions, yielding an F-
score of 66.6% (Table 7).

The dictionaries performed best with case-sensitive
matching but the differences with partial case-sensitive
and with case-insensitive matching were marginal.
Further addition of terminological resources to the
ensemble system improved recall but decreased preci-
sion to a larger extent. For example, the addition of
PubChem provided the largest increase in recall (about
7 percentage points), but decreased precision with about
8.9 percentage points, resulting in a drop in F-scores of
2.1 percentage points. Also note that the ensemble sys-
tem had a better F-score than any of the individual sys-
tems (cf. Table 3). When we applied a voting approach,
using all our sources and resources and varying the vot-
ing threshold between 1 and 15, the best F-score was
65.3% (precision 76.6%, recall 56.9%) for a threshold of 4.

Table 4 Effect of individual stop-word lists on F-score

Baseline Basic English PubMed stop words Jochem stop words CHEMDNER guidelines

Resource P R F P R F P R F P R F P R F

ChEBI 28.3 40.6 33.4 69.0 40.3 50.9 63.0 40.3 49.2 28.5 40.1 33.3 29.3 40.6 34.0

ChEMBL 87.9 18.7 30.8 87.9 18.7 30.8 87.9 18.7 30.8 88.8 18.7 30.9 87.9 18.7 30.8

ChemSpider 65.4 39.0 48.9 74.4 38.8 51.0 65.3 38.8 48.7 69.3 38.6 49.6 67.9 39.0 49.5

DrugBank 63.0 17.2 27.0 63.0 17.2 27.0 63.0 17.2 27.0 78.1 17.1 28.1 63.1 17.2 27.0

HMDB 53.2 34.5 41.8 74.6 34.4 47.1 72.6 34.4 46.7 55.7 34.0 42.2 55.2 34.5 42.5

NPC 46.8 26.7 34.0 47.6 26.5 34.0 46.6 26.5 33.7 52.2 26.7 35.3 53.3 26.7 35.6

TTD 43.9 14.7 22.1 64.9 14.5 23.7 66.0 14.5 23.8 50.6 14.7 22.8 43.9 14.7 22.1

PubChem 17.4 59.0 26.9 44.5 58.7 50.6 42.4 58.6 49.2 18.9 58.3 28.5 17.9 59.0 27.4

Jochem 64.2 52.5 57.8 65.2 52.5 58.2 64.2 52.5 57.8 64.1 52.5 57.7 67.1 52.5 58.9

UMLS 37.7 51.1 43.4 45.4 50.8 43.6 38.0 51.1 43.6 40.0 50.8 44.9 42.4 51.1 46.4

ChEBI 10.4 16.6 12.8 21.0 16.6 18.5 21.0 16.6 18.5 10.8 16.4 13.1 11.6 16.6 13.7

Family Oscar 25.1 63.2 35.9 25.4 63.0 36.2 25.3 62.9 36.1 25.7 62.7 36.4 27.7 63.2 38.5

LeadMine 64.9 47.4 54.8 66.4 47.4 55.3 64.9 47.4 54.8 68.0 47.1 55.7 72.8 47.4 57.4

ChemAxon 80.9 41.8 55.1 80.9 41.8 55.1 80.9 41.8 55.1 81.1 41.7 55.1 83.3 41.8 55.5

Table 5 F-score of terminological resources for different
case sensitivity matching

Insensitive Sensitive Partial sensitive

Resource P R F P R F P R F

ChEBI 71.2 33.5 45.6 77.7 39.7 52.6 76.7 40.2 52.7

ChEMBL 91.6 18.9 31.3 88.8 18.7 30.9 88.5 18.8 31.1

ChemSpider 78.4 40.5 53.4 80.4 38.4 51.9 80.3 39.6 53.0

DrugBank 76.0 17.5 28.4 78.1 17.1 28.1 78.4 17.5 28.6

HMDB 79.3 35.1 48.6 81.3 33.9 47.9 81.5 35.1 49.1

NPC 58.5 26.8 36.8 59.7 26.4 36.6 59.9 27.1 37.4

TTD 78.3 16.8 27.6 82.9 14.4 24.6 81.1 14.7 24.9

PubChem 56.4 57.2 56.8 61.1 57.9 59.5 60.4 58.6 59.5

Jochem 67.1 52.5 58.9 67.1 52.5 58.9 66.4 53.5 59.3

UMLS 44.7 51.6 47.9 45.4 50.8 47.9 45.3 51.3 48.1

ChEBI Family 29.4 16.3 21.0 29.4 16.3 21.0 29.4 16.4 21.1

Table 6 Performance (in %) of individual systems in
combination with NP chunking, before and after stop-
word removal

Baseline + NP chunking Baseline + NP chunking +
stop-words

Precision Recall F-score Precision Recall F-score

ChEBI 56.3 39.4 46.4 77.5 38.5 51.5

ChEMBL 87.8 18.2 30.1 88.6 18.2 30.1

ChemSpider 70.1 37.9 49.2 81.5 37.3 51.2

DrugBank 62.9 16.8 26.5 76.6 16.7 27.5

HMDB 73.5 33.7 46.2 82.0 33.1 47.2

NPC 46.8 26.0 33.5 59.1 25.7 35.9

TTD 66.6 14.4 23.6 83.0 14.0 24.0

PubChem 32.7 57.0 41.6 61.5 55.9 58.6

Jochem 64.3 50.6 56.7 67.4 50.6 57.8

UMLS 36.6 49.2 42.0 44.3 48.9 46.5

ChEBI Family 18.4 15.9 17.1 28.8 15.6 20.3
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We further analyzed the number of unique true posi-
tives (TPs) per entity type found by each of the systems
within the ensemble system (Table 8). From a total of
37469 TPs captured by the ensemble system, 4139 cases
were unique to ChEBI (mostly formula and abbrevia-
tion), 1878 were unique to HMDB (mostly trivial and
abbreviation), 9480 cases were unique to LeadMine
(mostly systematic terms) and 280 cases were unique to
Regular expressions.
We tried to further improve our system by expanding

our dictionary with the gold-standard annotations from
the training material that were missed by our system.
This greatly improved the recall and F-score values
(Table 7), although these estimates are optimistically
biased since we evaluated the performance on the same
dataset from which the newly added terms were derived.
We also added all false-positive terms, i.e., terms indexed
by our system but not annotated within the corpus (e.g.,
“peptide” and “carcinogen”), to our stop-word list, which
further improved performance. Furthermore, we
removed the shorter of two overlapping terms, which
added 2.5 percentage points to the F-score, to reach
90.9% for the CDI task and 89.5% for the CEM task.
We submitted various runs to evaluate the system per-

formance on the test set for both the CDI task and the
CEM task (Table 9). The F-score of the baseline ensem-
ble system improved by 9 percentage points after adding
the false-negative terms of the training material to the
dictionary and the false-positive terms to the stop-word
list. A small further improvement was seen after the
removal of overlapping terms, corroborating our findings
on the training material. The best ensemble system

obtained F-scores of 77.6% and 77.8% for the CDI and
CEM tasks, respectively. Additional runs with a more
recall-oriented system that included PubChem improved
recall only slightly (about 3 percentage points) but greatly
reduced precision (about 16 percentage points). We also
tested whether removal of dictionary terms with low con-
fidence scores would further improve the results, but this
was not the case.

Discussion
Extracting chemical terms from unstructured text has
proven to be a difficult task [3]. Here we present an
ensemble approach that combines a grammar-based
approach to capture systematic chemical identifiers with
a dictionary-based approach and regular expressions to
capture non-systematic names. The ensemble system
performed better than any individual system. Stop-word
removal was shown to greatly improve system perfor-
mance, as did the addition of false-negative and false-
positive terms from the training material to the diction-
ary and stop-word list, respectively. The effect of different
types of case-sensitive matching, use of NP chunking,
and removal of dictionary terms that were likely to be
highly ambiguous or non-chemical, did not essentially
change the performance.
Our initial assumption about the beneficial effect of NP

chunking on compound recognition was only partially
met, in that the use of NP chunking alone improved per-
formance but there was no additional value in combina-
tion with stop-word removal (cf. table 6). In a previous
study by Kang et al. [51] dictionary-based recognition of
diseases in scientific abstracts was improved by employing
NLP techniques, including NP chunking. However, in that
study only a small stop-word list was used. Also, chunk
recognition in disease-related abstracts may be easier than
in chemical abstracts, which can contain complex chemi-
cal names with multiple punctuation marks (e.g., hyphens,
brackets).
On the test set, our best ensemble system achieved

F-scores of 78% for both challenge tasks. The results of
our ensemble system on the training material are much
better than on the test set (cf. Tables 7 and 9), but
clearly this is due to the fact that we used the training
data to improve the system. However, if we compare the
baseline ensemble system, for which no training was

Table 7 Performance of the ensemble system on the training material

CDI task CEM task

Ensemble system Precision Recall F-score Precision Recall F-score

ChEBI, HMDB, LeadMine, and RegEx 70.1 63.7 66.7 70.9 62.8 66.6

+ Missed terms added to dictionary 73.4 91.0 81.3 73.8 89.4 80.9

+ False-positive terms added to stop-word list 87.6 89.4 88.5 86.4 87.6 87.0

+ Removal of overlapping terms 91.8 89.1 90.9 91.8 87.4 89.5

Table 8 Number of unique true positives found by each
system in the ensemble system

Entity type Regex LeadMine CHEBI HMDB

Trivial 8 1655 888 711

Systematic 0 3945 198 136

Family 0 2643 79 325

Formula 0 613 1866 110

Abbreviation 39 515 1093 596

Multiple 0 11 2 0

Identifier 229 98 13 0

Total 280 9480 4139 1878
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needed, the F-scores on the training and test sets were
almost similar for the CDI and CEM tasks.
From the 27 teams that participated in the BioCreative

CHEMDNER challenge, 20 teams used machine-learning
methods to extract chemical terms from text. The most
frequently used method was CRF [8]. The best scoring sys-
tem for the CDI subtask [52] managed to gain a precision
of 87%, a recall of 89%, and an F-score of 88%. This system
uses CRF along with word clustering to extract terms. The
state of the art system for the CEM subtask [17] obtained
89% precision, 86% recall, and 87% F-score. This system
also uses CRF along with several pre-processing steps to
extract chemical terms from text. With an F-score that
was about 10 percentage points lower than the best sys-
tems, our ensemble system ranked eighth for the CDI task
and seventh for the CEM task. Tuning of the grammar-
based systems that we considered, could have resulted in a
higher F-score. For example, LeadMine also participated
in the challenge as a separate software system [16]. After
tuning, LeadMine achieved an F-score that was nine per-
centage points higher than our ensemble system, and
32 percentage points higher than the baseline LeadMine
system that we used. Also ChemAxon participated in the
challenge and obtained an F-score of 77% (an increase of
22 percentage points compared to the version we used).
Among the teams who used lexical resources, ChEBI, Pub-
Chem and DrugBank were most often used; 13 teams also
used a stop-world list. Irmer et al. [53] used a dictionary-
based approach along with modules to recognize formulas
or handle specific scenarios (such as abbreviation or acro-
nym expansion) and obtained an F-score of 77%. They
introduced a set of words in a so-called grey list. Terms in
this list were only annotated in specific circumstances.
Some systems (e.g. [54]) also tried to create an ensemble
system by combining machine learning, dictionary-based
approaches and regular expressions, but obtained lower
F-scores than our ensemble system. Finally, in our
approach the ensemble system merges the outputs of a
selected set of individual systems. Our results indicate that
this approach produced a better result than a simple vot-
ing scheme. However, we did not explore more sophisti-
cated approaches, such as weighted voting or integration
into a learning framework [55]. Application of these tech-
niques may further improve the performance of an ensem-
ble system.

Our approach has several advantages. First, use of the
terminological resources and grammar-based recogni-
zers did not have to be trained. This is an advantage
over machine-learning approaches that require a large
training set, which is laborious and expensive to create.
On the other hand, our results also indicate that a sub-
stantial performance improvement can be gained by
using the training data to expand the dictionary and the
stop-word list. Thus, if training data are available, they
can straightforwardly be used to improve system perfor-
mance for both dictionary-based and grammar-based
approaches.
A second advantage is that our system can provide

structures for most of the found terms. Although the
supply of information about structures was not required
for the CHEMDNER tasks, chemists are generally inter-
ested in the chemical structure of a chemical identifier
recognized in text. The terminological resources in the
ensemble system (ChEBI and HMDB) contained MOL
files, and also the grammar-based method (LeadMine)
can provide structures for the extracted terms. Only the
terms extracted with the regular expressions and terms
that were added based on the training data, are not
linked to structure information.
There are also several limitations. While the precision

of our best ensemble system was an acceptable 86%, the
recall was a more modest 71%. Including other diction-
aries in the ensemble improved recall, but deteriorated
precision to a much larger extent. Also, we noticed that
many of the missed chemical terms were due to tokeni-
zation issues, e.g., the formulas “WC” and “Na” were
missed in the context of “(nano-WC)” and “(I(Na))”,
respectively (PMID 22954532). Improvement of our
tokenizer will further be investigated.
Another limitation of the current ensemble system is

that some of the entity types were poorly recognized, in
particular the entity types Multiple and Formulas. Terms
of these types are not well covered in our dictionary. Bet-
ter recognition may be possible by the use of regular
expressions specifically developed for these types.
Finally, it should be noted that we used the grammar-

based recognition tools with their default parameter set-
tings, and did not try to tune them to the tasks at hand.
Further improvements may be possible if such tuning
were done.

Table 9 Performance of the ensemble system on the test set

CDI task CEM task

Ensemble system Precision Recall F-score Precision Recall F-score

ChEBI, HMDB, LeadMine, and RegEx 71.5 64.8 68.0 73.1 64.6 68.6

+ Missed terms added & extended stop-word list 81.0 72.1 76.3 82.5 71.6 76.7

+ Removal of overlapping terms 84.6 71.7 77.6 85.8 71.2 77.8
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Conclusion
We developed an ensemble system that combines diction-
ary-based and grammar-based approaches to chemical
named entity recognition, and obtained F-scores of 78%
on the two CHEMDNER challenge tasks. The baseline
version of the system did not require training, but we were
readily able to improve performance by making use of the
available training data. The system is capable of providing
structure information for most of the compounds that are
found. Improved tokenization and better recognition of
specific entity types will likely further increase system
performance.
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