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Abstract

Background: In order to improve information access on chemical compounds and drugs (chemical entities)
described in text repositories, it is very crucial to be able to identify chemical entity mentions (CEMs) automatically
within text. The CHEMDNER challenge in BioCreative IV was specially designed to promote the implementation of
corresponding systems that are able to detect mentions of chemical compounds and drugs, which has two
subtasks: CDI (Chemical Document Indexing) and CEM.

Results: Our system processing pipeline consists of three major components: pre-processing (sentence detection,
tokenization), recognition (CRF-based approach), and post-processing (rule-based approach and format conversion).
In our post-challenge system, the cost parameter in CRF model was optimized by 10-fold cross validation with grid
search, and word representations feature induced by Brown clustering method was introduced. For the CEM
subtask, our official runs were ranked in top position by obtaining maximum 88.79% precision, 69.08% recall and
77.70% balanced F-measure, which were improved further to 88.43% precision, 76.48% recall and 82.02% balanced
F-measure in our post-challenge system.

Conclusions: In our system, instead of extracting a CEM as a whole, we regarded it as a sequence labeling
problem. Though our current system has much room for improvement, our system is valuable in showing that the
performance in term of balanced F-measure can be improved largely by utilizing large amounts of relatively
inexpensive un-annotated PubMed abstracts and optimizing the cost parameter in CRF model. From our practice
and lessons, if one directly utilizes some open-source natural language processing (NLP) toolkits, such as OpenNLP,
Standford CoreNLP, false positive (FP) rate may be very high. It is better to develop some additional rules to
minimize the FP rate if one does not want to re-train the related models. Our CEM recognition system is available
at: http://www.SciTeMiner.org/XuShuo/Demo/CEM.

Background
There is an increasing interest to improve information
access on chemical compounds and drugs (chemical enti-
ties) described in text repositories, including scientific
articles, patents, health agency reports, or the Web [1]. In
order to achieve this goal, it is very crucial to be able to
identify chemical entity mentions (CEMs) automatically
within text. The recognition of chemical entities is also
crucial for other subsequent text processing tasks, such
as detection of drug-protein interactions [2], adverse
effects of chemical compounds and their associations to
toxicological endpoints, or the extraction of pathway and

metabolic reaction relations and so on. Though many
methods and strategies to recognize chemicals in text
have been proposed [3], only a very limited number of
publicly accessible CEM recognition systems have been
released [4].
The BioCreative (Critical Assessment of Information

Extraction Systems in Biology) challenge is a community-
wide effort to build an evaluation framework for asses-
sing text mining systems in biological domains [5]. The
chemical compound and drug named entity recognition
(CHEMDNER) challenge in BioCreative IV was specially
designed to promote the implementation of systems that
are able to detect mentions of chemical compounds and
drugs, which has two subtasks, CDI (Chemical Document
Indexing) subtask and CEM (Chemical Entity Mention)
subtask. CDI subtask is the task to return a ranked list of
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chemical entities described within a given documents.
CEM subtask is the task to provide for a given document
the start and end indices corresponding to all the chemi-
cal entities mentioned in the document.
Here, we present the method, the results and recogni-

tion system from our participation in the CEM subtask
of CHEMDNER challenge [1,6] with some postchallenge
systems improvement. In our recognition system,
instead of extracting a CEM such as “(+)-antiBP-7,8-
diol-9,10-epoxide” as a whole, we regard it as a
sequence labeling problem. Our main focus on this
improved system was to explore the effectiveness of cost
parameter optimization [7,8] and word representation-s
[9-11] feature for our approach to CEM subtask. The
proposed method combines natural language processing
(NLP) strategies with machine learning (ML) techniques
to utilize word representations feature from large
amounts of relatively inexpensive un-annotated PubMed
abstracts along with small amounts of annotated ones.
As shown in Figure 1, our system first detects sen-

tence boundaries on the PubMed abstracts, and then
tokenizes each detected sentence as pre-processing.
Next, our system extracts CEMs from text with a condi-
tional random field (CRF) approach [12], followed by
some post-processing steps including a rule-based
approach and a format conversion step. We describe
each step in detail in the following sections. Although
current approach has much room for improvement, it
produced the top-ranked performance among all sub-
mitted runs in the CEM subtask of BioCreative IV
CHEMDNER challenge.
The organization of the rest of the article is as follows.

In the next section, we describe the results of our sub-
mission and post-challenge runs on the CEM subtask of
BioCreative IV CHEMDNER challenge. This is followed
by discussion and conclusions drawn from our experi-
ence. Lastly, our methods employed are explained in
detail.

Results and discussion
We analyzed the training, development and testing data
sets and found that there are many nested CEMs in the
development set, such as “polysorbate 80” (offset: 1138
to 1152) and “polysorbate” (offset: 1138 to 1149) in the
abstract of PMID: 23064325. See Table 1 for more
examples of nested CEM pairs. Since linear CRF model,

utilized in this article, cannot identify the nested CEMs,
we just omit the less spanned CEMs. In addition, there
may be some annotation errors in the development set,
such as examples in Table 2. We also manually cor-
rected these errors before training our CRF model.
Table 3 shows a brief overview of the corrected
CHEMDNER corpus. Please see [13] for more details of
CEMs annotating, classifying and splitting into training,
development and test data sets.
To evaluate the performance of submitted results, the

BioCreative IV competition relied on three performance
measures at entity level: recall, precision and F-measure.
The recall is the proportion of correct prediction of
positive CEMs. The precision is the proportion of pre-
dicted CEMs that are actually true CEMs. The F-mea-
sure provides a more balanced evaluation by averaging
precision and recall. The recall, precision and F-measure
are defined formally as follows.

r =
TP

TP + FN
(1)

p =
TP

TP + FP
(2)

Fβ = (1 + β2)
p × r

β2p + r
(3)

where TP (true positive) is the number of the correct
positive predictions, FN (false negative) is the number of
incorrect negative predictions (type II errors), and FP is
the number of incorrect positive predictions (type I
errors). The balanced F-measure (b = 1), the main eva-
luation metric used for the CEM subtask of the BioCrea-
tive IV CHEMDNER competition, can be simplified to:

F1 = 2
p × r

p + r
(4)

In order to make the best of annotated corpus, we pooled
the training and development data sets. The participating
teams are allowed to have 5 days to generate up to five dif-
ferent annotations ("runs”) for the test set and to submit the
annotations to the organizers. Thus, participating teams can
utilize different settings, models or methods when gold test

Figure 1 The system processing pipeline. The system processing pipeline that includes three major components: pre-processing (sentence
detection, tokenization), recognition (CRF-based approach) and post-processing (rule-based approach and format conversion).
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annotation set is unknown. We submitted five runs for the
CEM subtask, each using the same pipeline, but with differ-
ent values for the cost parameter in the CRF model [12,14].
Due to time constraints, we just set the cost parameter to

each element in {2−2, 2−1, 20, 2, 22}. Table 4 presents the
official performance scores of our submitted runs. Run 5
performed the best in terms of recall and balanced F-mea-
sure. Run 1 performed the best in term of precision.

Table 1 Nested CEM pairs in the development set of the CHEMDNER corpus

Offset Offset

ID PMID T/A Start End Start End

1 23064325 A 1138 1152 1138 1149

2 23353756 A 12 65 29 65

3 23425199 T 50 66 61 66

A 56 72 67 72

4 23298577 A 365 381 378 381

5 23368735 A 83 103 97 103

A 108 119 118 119

6 23562534 A 944 950 944 946

7 23288867 A 1625 1641 1625 1632

8 23500769 A 410 418 410 414

9 23435367 A 118 133 118 125

10 22401710 A 688 696 688 691

11 23350627 A 96 111 101 111

A 117 130 122 130

A 467 507 473 475

A 467 507 482 483

12 23453838 A 467 507 504 507

A 632 646 640 641

A 767 782 773 774

A 843 847 845 847

13 23401298 A 438 502 438 501

14 23567043 A 436 450 444 450

15 23425199 T 50 66 50 60

A 56 72 56 66

16 22313530 A 306 364 307 364

17 23368735 A 83 103 87 93

A 108 119 112 114

18 23229510 A 645 739 646 738

19 23562534 A 944 950 947 950

20 23294378 A 584 604 585 603

21 23295645 T 0 33 10 33

22 23435367 A 963 978 963 970

23 23350627 A 96 111 96 100

A 117 130 117 121

24 23453838 A 467 507 469 471

A 467 507 479 480

A 467 507 495 502

A 632 646 634 636

A 767 782 769 771

A 767 782 779 782

A 909 913 911 913

For each row, the CEM with offset in column 6-7 is nested in the CEM with offset in column 4-5. The CEMs with respective offsets in column 6-7 are omitted
directly when training our CRF models.
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In fact, the cost parameter trades the balance between
over-fitting and under-fitting [12,14]. With larger cost
parameter value, CRF tends to over-fit to the given
training corpus. From Table 4, one can easily see that
the predicted results were significantly influenced by
this parameter. In our post-challenge improved systems,
10-fold cross validation at document level is utilized to
optimize the cost parameter with grid search [7,8]. Spe-
cifically, the pooled training and development data sets
are randomly divided into 10 sub-corpus of nearly equal
size. For each cost ∈ {2−3, 2−2, 2−1, 20, 2, 22, 23}, a CRF
model is induced 10 times, each time leaving out one of
the sub-corpuses that is then used to calculate the
balanced F-measure. An optimal value of costs is
selected from this grid search.
In our post-challenge improved system, we reobtained

five runs for the CEM subtask, each using the same
pipeline as official submissions, but with different fea-
tures sets (Table 5). From Table 3, CHEMDNER corpus
includes large amounts of relatively inexpensive un-
annotated PubMed abstracts. In order to reduce data
sparsity and improve further the performance of our

system, word representations feature is used in our
post-challenge system, since it is a simple and general
method for semi-supervised learning [11]. Previous stu-
dies [11,15,16] show that word representations feature is
a very important feature to improve the balanced F-
measure of pre-defined categories of proper names and
bio-entity recognition.
Here, the training, development, test and background

data sets are pooled to induce word representations of
each token by Brown clustering method [10,17] with 500,
1000, 1500 and 2000 clusters, respectively. Figure 2
shows the balanced F-measure for postchallenge runs
with 10-fold cross validation by grid search [7,8]. Table 6
reports the performance results with the optimal value
for the cost parameter. From Figure 2 and by comparing
Table 4 and Table 6, it is not difficult to see that the
word representations feature improved largely the perfor-
mance of our system in terms of balanced F-measure and
recall, but with a little performance degradation in term
of precision. Run 1, Run 4 and Run3 performed the best
in term of precision, recall, balanced F-measure,
respectively.
Though the annotated CEMs are classified into eight

classes ℂ = { SYSTEMATIC, IDENTIFIER, FORMULA,
TRIVIAL, ABBREVIATION, FAMILY, MULTIPLE, NO
CLASS }, the annotations of the individual CEM classes
are disregarded in our post-challenge system. In order
to highlight the existing gaps in the CEM recognition
system, performance results for each category in C are
also given in Table 4 and Table 6 in term of precision.
As for official performance scores in Table 4, our system
worked best on recognizing the FORMULA CEMs for
Run 1, Run 2 and Run3, and SYSTEMATIC CEMs for
Run 4 and Run 5. From Table 6, one can see that our

Table 2 Nested CEM pairs in the development set of the
CHEMDNER corpus

Offset Offset

ID PMID T/A Start End Start End

1 23412114 A 977 984 977 985

2 23572392 T 42 55 42 56

3 23414800 T 69 89 68 89

4 23411224 A 278 288 277 288

5 23401298 A 438 502 438 501

The offsets in column 4-5 are corrected to the ones in column 6-7.

Table 3 The overview of the corrected CHEMDNER corpus
in terms of the number of PubMed abstracts (#Articles),
the number of CEMs (#CEMs), and the number of CEMs
for each of the CEM classes in C = {SYSTEMATIC,
IDENTIFIER, FORMULA, TRIVIAL, ABBREVIATION, FAMILY,
MULTIPLE, NO CLASS} × means the resulting figure is
unknown

Training Development Test Background

#Articles 3,500 3,500 3,000 17,000

#CEMs 29,478 29,485 25,351 ×

ABBREVIATION 4,538 4,517 4,059 ×

FAMILY 4,090 4,212 3,622 ×

FORMULA 4,448 4,117 3,443 ×

IDENTIFIER 672 639 513 ×

MULTIPLE 202 187 199 ×

SYSTEMATIC 6,656 6,814 5,666 ×

TRIVIAL 8,832 8,967 7,808 ×

NO CLASS 40 32 41 ×

Table 4 Official scores for the CEM subtask in the
BioCreative IV CHEMDNER competition

Run 1 Run 2 Run 3 Run 4 Run 5

cost 2−2 2−1 20 2 2-

TP 15,821 16,531 16,991 17,328 17,512

FP 1,834 2,007 2,009 2,129 2,211

FN 9,530 8,820 8,360 8,023 7,839

Precision(%) 89.61 89.17 89.43 89.06 88.79

Recall(%) 62.41 65.21 67.02 68.35 69.08

F1 score(%) 73.58 75.33 76.62 77.34 77.70

ABBREVIATION 53.90 55.75 56.74 57.63 58.24

FAMILY 59.50 62.20 64.80 66.23 67.28

FORMULA 72.76 74.30 74.88 75.46 75.84

IDENTIFIER 68.62 70.18 69.98 69.79 69.59

MULTIPLE 27.64 32.16 28.64 31.66 31.66

SYSTEMATIC 69.57 72.61 74.32 75.61 76.35

TRIVIAL 58.95 62.73 65.48 67.41 68.26

NO CLASS 51.22 51.22 56.10 58.54 58.54
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postchallenge improved system identified SYSTEMATIC
CEMs at the best. What’s more, it seems be very diffi-
cult to recognize MULTIPLE CEMs in both systems.
Main reason may be that the number of annotated
CEMs is not suffice for the MULTIPLE category (202,
187, 199 for training, development and test data sets,
respectively in Table 3).

Conclusions
In the article, we present our post-challenge system and
its performance for the CEM subtask of BioCreative IV
CHEMDNER challenge. Our system processing pipeline
consists of three major components: preprocessing (sen-
tence detection, tokenization), recognition (CRF-based
approach), and post-processing (rulebased approach and
format conversion). Our main focus on this improved
system was to explore the effectiveness of the cost para-
meter optimization and word representations feature for
the CEM subtask.
In our post-challenge improved system, instead of

extracting a CEM as a whole, we regarded it as a

sequence labeling problem. The famous CRF model is
utilized to solve the sequence labeling problem, whose
cost parameter is optimized by 10-fold cross validation
with grid search. Different feature types, including gen-
eral linguistic, character, case pattern, contextual, and
word representations features, were exploited for our
runs. In order to reduce data sparsity in the annotated
training and development data sets, word representations
were induced from pooled training, development, test
and background data sets by Brown clustering method.
Finkel & Manning [18] proposed a model specifically

for recognizing nested named entities by using a discri-
minative constituency parser. The model explicitly
represents the nested structure, allowing entities to be
influenced not just by the labels of the tokens surround-
ing them, as in a CRF, but also by the entities contained
in them, and in which they are contained. In ongoing
work, the model will be introduced for recognizing
nested CEMs.
Though our current system has much room for

improvement, our system is valuable in showing that

Table 5 Feature combinations used for post-challenge runs on the CEM subtask.

Word Representation

General Linguistic Character Case Pattern Contextual 500 1000 1500 2000

Run1 √ √ √ √

Run2 √ √ √ √ √

Run3 √ √ √ √ √

Run4 √ √ √ √ √

Run5 √ √ √ √ √

Figure 2 The balanced F-measure for post-challenge runs with 10-fold cross validation by grid search.

Xu et al. Journal of Cheminformatics 2015, 7(Suppl 1):S11
http://www.jcheminf.com/content/7/S1/S11

Page 5 of 9



the performance in term of balanced F-measure can be
improved largely by utilizing large amounts of relatively
inexpensive un-annotated PubMed abstracts. From our
practice and lesson, if we directly use some open-source
NLP toolkits, such as OpenNLP, Stanford CoreNLP,
false positive rate may be very high. It is better to
develop some additional rules to minimize the false
positive rate if one don’t want to re-train the related
models.

Methods
Pre-processing: sentence detection & tokenization
A sentence detector can identify if a punctuation charac-
ter marks the end of a sentence or not. Here, the sen-
tence detector in OpenNLP [19] is utilized. However,
sentence boundary identification is challenging because
punctuation marks are often ambiguous [20]. In order to
improve further the performance of the sentence detec-
tion, we collected many abbreviations, such as var., sp.,
cv., syn., etc. from the training and development sets.
Then we generated several rules, such as if current sen-
tence ends with these abbreviations or comma, or next
sentence starts with lower-case letter. In this case, the
current and next sentences are merged into a new one.
A tokenizer divides each obtained sentence above into

tokens, which usually correspond to words, punctuation,
numbers, etc. However, to capture individual compo-
nents within a CEM, similar to Wei et al. [21], we per-
formed tokenization on a finer level. Specifically, special
characters in Table 7, numbers, and Greek symbols are
divided as separate tokens. An example is shown in
Table 8. Plural upper-case abbreviations are also sepa-
rated into two tokens, such as “NPs” into “NP” and “s”.

As a matter of fact, before any pre-processing, we also
merged some special characters with the same meaning,
such as “≥” vs. “≥”, “*” vs. “*”, “≃” vs. “ ≅”, etc.

Recognition: CRF-based approach
As mentioned in Background, we see the CEM recogni-
tion problem as a sequence labeling one (see Table 8).
As a type of discriminative undirected probabilistic
model, CRFs [12,14] are often used for labeling or par-
sing of sequential data, such as natural language text or
biological sequences. CRFs [22-24] has been applied suc-
cessfully to identify various bio-entities, such as gene,
protein and so on, and shown a good performance.
Given token sequence �x = (x1, x2, · · · , xN) , CRF

defines the conditional probability distribution Pr(�y|�x)
of label sequence �y = (y1, y2, · · · , yN) as follows.

Pr(�y|�x) ∝ exp(�wT�f (yn, yn−1, �x)) (5)

Here, �w = (w1,w2, · · · ,wM)T is a global feature weight
vector, �f (yn, yn−1, �x) = (f1(yn, yn−1, �x), f2(yn, yn−1, �x), · · · fM(yn, yn−1, �x))T
is a local feature vector function, and M is the number
of feature functions. The weight vector w can be
obtained from the training and development sets by a
limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) [25] method.
The traditional BIEO label set is used in our post-chal-

lenge improved system. That is to say, each token is
labeled as being the beginning of (B), the inside of (I), the
end of (E) or entirely outside (O) of a span of interest.
Here, CRF++ [26] is adopted for the actual implementa-
tion. In CRF++, there are 4 major parameters (“-a”, “-c”,
“-f” and “-p”) to control the training condition. In our sub-
mitted predictions and post-challenge ones, the para-
meters “-a”, “-f” and “- p” were consistently set to CRF-L2,
2 and 4, respectively. The option “-c” is optimized with
10-fold cross validation, as introduced above.

Features for our CRF model
Our system exploits four different types of features:
General linguistic features
Our system includes the original uni-tokens and bi-
tokens, as well as stemmed uni-tokens, bi-tokens and
tri-tokens, as features using the Porter’s stemmer [27]
from Stanford CoreNLP [28].
Character features
Since many CEMs contain numbers, Greek letters,
Roman numbers, amino acids, chemical elements, and
special characters, our system calculates several statistics
as features for each token, including its number of digi-
tals, number of upper- and lower-case letters, number of
all characters and presence or absence of specific charac-
ters or Greek letters, Roman numbers, amino acids, or
chemical elements.

Table 6 Performance results in our post-challenge
improved system for the CEM subtask in the BioCreative
IV CHEMDNER competition

Run 1 Run 2 Run 3 Run 4 Run 5

cost 22 22 2 2 20

TP 18,025 19,259 19,389 19,495 19,355

FP 2,312 2,671 2,537 2,694 2,505

FN 7,326 6,092 5,962 5,856 5,996

Precision(%) 88.63 87.82 88.43 87.86 88.54

Recall(%) 71.10 75.97 76.48 76.90 76.35

F1 score(%) 78.91 81.47 82.02 82.02 81.99

ABBREVIATION 59.77 63.37 64.28 65.85 65.98

FAMILY 72.36 73.55 72.92 73.94 72.97

FORMULA 73.02 73.45 74.12 74.01 74.30

IDENTIFIER 64.72 63.35 66.67 64.33 66.86

MULTIPLE 23.62 32.16 35.18 33.17 30.65

SYSTEMATIC 79.19 82.86 83.25 83.22 82.56

TRIVIAL 71.41 81.76 82.38 82.70 81.56

NO CLASS 53.66 63.41 63.41 68.29 63.41
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Case pattern features
Similar to [21], any upper case alphabetic character is
replaced by ‘A’, any lower case one is replaced by ‘a’,
and any number (0-9) is replaced by ‘0’. Moreover, our
system also merge consecutive letters and numbers and
generated additional single letter ‘a’ and number ‘0’
features.
Contextual features
For each token, our system includes a combination of
the current output token and previous output token
(bigram).
Word representation features
One common approach to inducing unsupervised word
representation is to use clustering, perhaps hierarchical,
such as Brown clustering method [17], Collobert and
Weston embeddings [29], hierarchical log- bilinear
model (HLBL) embeddings [30] and so on. Here, the
Brown clustering method is used. The implementation
of Brown clustering method by Liang [31] is adopted in
our post-challenge system.
The result of running the Brown clustering method is

a binary tree, where each token occupies a single leaf
node, and where each leaf node contains a single token.
The root node defines a cluster containing the entire
token set. Interior nodes represent intermediate size
clusters containing all of the tokens that they dominate.
Thus, nodes lower in the binary tree correspond to
smaller token clusters, while higher nodes correspond to
larger token clusters. According to Huffman coding
[32], a particular token can be assigned a binary string
by following the traversal path from the root to its leaf,

assigning a 0 for each left branch, and a 1 for each right
branch.
Intuitively, the Brown clustering method will merge

the tokens with similar contexts into the same cluster.
Thus, the more similar the prefix of the token’s Huff-
man coding, the more similar the tokens. Table 9 shows
some token examples and their binary string representa-
tions with 500 clusters. Let’s take Table 9 as an exam-
ple. According to main idea of the Brown clustering
method, the token “interpeak” (01100110110) is more
similar than the token “aquaporine” (01101110011) with
the token “florbetapir” (0110011010).

Post-processing: rule-based approach & format
conversion
On closer examination, we find that the results of CRF
approach include some false positive CEMs, such as “25
(3), 186-193”, “1-D, 2-D” and so on. So, we developed
several additional regular expresses to remove them. In
addition, our post-processing step also helps adjust text
spans of CEMs, such as adding a missing closing par-
enthesis, such as “[4Fe-4S](2+” into “[4Fe-4S](2+)”. All
of the adjustment rules are listed in Table 10. Here, #(·,
str) means the number of occurrences of the string str
in the interested CEM, right(·, n) and left(·, n) denote
the substring with the length of n right or left to the
interested CEM, and offset(·, start) and offset(·, left) indi-
cate the start or end offset of the interested CEM. Let’s
take the first row in Table 10 as an example. It means
that if the number of the occurrences of “(” is higher
than that of “)” in the interested CEM, and if the sub-
string with the length of 1 right to the interested CEM
is “)”, then start offset of the interested CEM is moved
one character further to the right.
Finally, we converted the recognized CEMs into the

official format with the resulting confidence scores. In
our system, the confidence score is simply set to aver-
aged conditional probably of each tokens composed of
the interested CEM, formally defined as follows.

score(CEM) =
1

|CEM|
∑

t∈CEM
CondProb(t) (6)

Table 7 Special characters included in our tokenizer

( ) [ ] { } > < ≥ ≤ , . / \ ‘ ™ @ · ©® “ : = ≠ ≡ ≈ + - ? _
| ↑ ↓ ¬ ® ↗ ↘ ↙ ↖ ↔ ⇌ ± ~ * % ‰ ∘ # & ; ! £ € ¥ $
× ÷ ‡ † ... ∞ ∨ ∧ √ ⊥ ⊤ ∈ ∃ ⊂ ⊃ ∇ ■ ∂ ∫

Table 8 An example of CEM component labels in an
excerpt “... [C(8)mim][PF(6)] ... “ in PMID: 23265515

token ... [ C (

label O B I I

conditional prob. ... 0.994456 0.997241 0.999912

token 8 ) mim ]

label I I I I

conditional prob. 0.999914 0.999853 0.997244 0.996372

token [ PF ( 6

label I I I I

conditional prob. 0.996110 0.995940 0.996733 0.996693

token ) ] ...

label I E O

conditional prob. 0.825782 0.731261 ...

Table 9 Sample tokens and their resulting binary string
representations with 500 clusters.

ID Token Binary String

1 gracile 010011

2 quintile 010010

3 florbetapir 0110011010

4 interpeak 01100110110

5 aquaporine 01101110011
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where |CEM| means the number of token components
of a CEM. Take “[C(8)mim][PF(6)]” in Table 8 as an
example. Its confidence score is calculated as follows.

score([C(8)mim][PF(6)])

=
1
13

∑

t∈[C(8)mim][PF(6)]

CondProb(t)

= 0.963655

(7)
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