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Abstract

Background: The functions of chemical compounds and drugs that affect biological processes and their particular
effect on the onset and treatment of diseases have attracted increasing interest with the advancement of research in
the life sciences. To extract knowledge from the extensive literatures on such compounds and drugs, the organizers
of BioCreative IV administered the CHEMical Compound and Drug Named Entity Recognition (CHEMDNER) task to
establish a standard dataset for evaluating state-of-the-art chemical entity recognition methods.

Methods: This study introduces the approach of our CHEMDNER system. Instead of emphasizing the development
of novel feature sets for machine learning, this study investigates the effect of various tag schemes on the
recognition of the names of chemicals and drugs by using conditional random fields. Experiments were conducted
using combinations of different tokenization strategies and tag schemes to investigate the effects of tag set
selection and tokenization method on the CHEMDNER task.

Results: This study presents the performance of CHEMDNER of three more representative tag schemes-IOBE, IOBES,
and IOB12E-when applied to a widely utilized IOB tag set and combined with the coarse-/fine-grained tokenization
methods. The experimental results thus reveal that the fine-grained tokenization strategy performance best in
terms of precision, recall and F-scores when the IOBES tag set was utilized. The IOBES model with fine-grained
tokenization yielded the best-F-scores in the six chemical entity categories other than the “Multiple” entity
category. Nonetheless, no significant improvement was observed when a more representative tag schemes was
used with the coarse or fine-grained tokenization rules. The best F-scores that were achieved using the developed
system on the test dataset of the CHEMDNER task were 0.833 and 0.815 for the chemical documents indexing and
the chemical entity mention recognition tasks, respectively.

Conclusions: The results herein highlight the importance of tag set selection and the use of different tokenization
strategies. Fine-grained tokenization combined with the tag set IOBES most effectively recognizes chemical and
drug names. To the best of the authors’ knowledge, this investigation is the first comprehensive investigation use
of various tag set schemes combined with different tokenization strategies for the recognition of chemical entities.

Background
Studies on the effects of chemical and drug on organis-
mal growth and development under various conditions
are very valuable. As a result, both the academia and
industry are interesting in finding new ways to retrieve
and access chemical compound and drug-related infor-
mation from narrative texts in a manner that minimizes

the required effort. RI Dogan, GC Murray, A Névéol
and Z Lu [1] established that apart from bibliographic
queries (such as author name and article title), chemical
entities are some of the terms frequently used to browse
and search the PubMed database. As research within
the biomedical field has evolved, advancements of
experimental techniques, the accumulation of experi-
ences and the ease of access to publications around the
world have all contributed to the acceleration of biome-
dical studies, generating enormous repositories of scien-
tific journals and papers. Hence, traditional manual
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methods of identifying chemical entities in articles and
associating them to databases are no longer suffice to
meet the needs of researchers, motivating the develop-
ment of several chemical entity recognition approaches
that are based on natural language processing approaches
[2,3]. In contrast to previously proposed gene mention
recognition and normalization task [4,5], the recognition
of chemical entities has yet to been much improved
using limited standard corpus and evaluation tools. For
example, P Corbett and A Copestake [6] evaluated
OSCAR3 using a corpus consisting of 500 PubMed
abstracts. Unfortunately, that corpus remains unavailable
to the public. To accelerate the research into CHEMical
Compound and Drug Name Entity Recognition
(CHEMDNER), a CHEMDNER task was set by BioCrea-
tive IV [7] to improve the efficiency and accuracy of
chemical and drug recognition, to the benefit of both
academia and industry.
Identifying chemical entities in text is hindered by the

existence of highly varied ways of naming them. Such
names include trivial or brand names (such as Tylenol),
systematic International Union of Pure and Applied
Chemistry (IUPAC) names such as 6-keto prostaglandin
F(1a), generic or family names (such as alcohols), com-
pany codes (such as ICI204636), molecular formulas
(such as H2SO4) and identifiers associated with various
databases (such as CHEBI:28262). Additionally, many of
these names are used abbreviated (such as to DMS for
dimethyl sulfate). Although nomenclature organizations
such as IUPAC have been striving for systematic naming
in the biochemical field, most of their rules are treated
only as suggestions rather than regulations, leaving ample
room for variation in their use.
As indicated in the overview paper of the BioCreative

CHEMDNER task [7], the majority of the approaches
that were used by participating teams to detect chemical
entities were the machine learning method based on con-
ditional random fields (CRFs), used with a variety of fea-
ture sets, along with chemistry-related lexical resources
and several pre-/post-processing rules. Despite the pro-
mising results of the BioCreative CHEMDNER task, most
effort has been applied to the development of various fea-
ture sets. The tag set has received much less attention.
Accordingly, this study focuses on various tag sets and
their effect on the performance of chemical entity recog-
nition with CRFs. Experiments were performed using
combinations of different tokenization strategies and tag
schemes to elucidate the effects of tag set selection and
tokenization strategy on the identification of chemical
and drug entities. The results thus demonstrate that tag
set selection is as important as feature selection.
Chemical entities can be classified into various cate-

gories [3]. For instance, based on the annotation guide-
line for the CHEMDNER task, the sentence,

“Different samples will be collected and analyzed for
five PCAHs including pyrene, benzo(a)anthracene,
benzo(e)pyrene, benzoflouroanthene, and benzo(a)
pyrene.”
includes two types of chemical entity, and should be

annotated as follows.
“Different samples will be collected and analyzed for

five [PCAHs ABBREVIATION] including [pyreneSYSTE-
MATIC], [benzo(a)anthraceneSYSTEMATIC], [benzo(e)pyr-
eneSYSTEMATIC], [benzoflouroantheneSYSTEMATIC], and
[benzo(a)pyreneSYSTEMATIC].”
ABBREVIATION indicates that “PCAHs” is an acro-

nym for a chemical compound. SYSTEMATIC indicates
that “pyrene”, “benzo(a)anthracene”, “benzo(e)pyrene”,
“benzoflouroanthene”, and “benzo(a)pyrene” are IUPAC
names. The recognition of chemicals under different
categories can facilitate the following chemical entity
normalization system to link the mentions to their cor-
responding database records. For example, the abbre-
viated name “PCAHs” is linked to “polycyclic aromatic
hydrocarbons”, and the systematic name “pyrene” is
linked to the ChEBI ID: 39106. Therefore, this study not
only presents the unified results concerning the combi-
nations of various tag schemes and tokenization strate-
gies obtained using the official CHEMDNER evaluation
script, but also present results for each of the seven
categories of chemical names that were defined in the
CHEMDNER task. The influence of the proposed tag
set on the recognition performance of each individual
category is also examined.

Methods
In this study, the CHEMDNER task is formulated as a
sequence labelling problem. The same feature sets that
are utilized for machine learning are developed with var-
ious tag sets and their effect on the recognition of che-
micals is studied. The subsequent sections firstly detail
the proposed tag sets and the employed machine learn-
ing model. Then, the workflow of the proposed system
and the feature sets that are used in it are elucidated.

Conditional random fields
The machine learning model that is utilized herein is
CRFs model [8]. CRFs are undirected graphical models
that are trained to maximize a conditional probability of
random variables, and have been successfully used in
numerous sequential labelling tasks, such as named
entity recognition and Chinese word segmentation. In
this study, the linear-chain CRF was employed to recog-
nize sequentially the boundaries of chemical entities
moving from the first token to the final token of a toke-
nized sentence. Given an input sequence of tokens W, a
linear-chain CRF computes the probability associated
with its corresponding hidden labelled sequence Y as
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pλ (Y—W) =
1

Z (W)
exp

(∑
c∈C

∑
i

λifi(yc−1, yc,W, c)
)

where Z(W) is the normalization factor that makes the
probability of all state sequences sum to one; C is the set of
all cliques in this sentence, and c is a single clique, which
reflects the position of the current word, as displayed in
Figure 1. The function fi(yc-1, yc, W, c) is a binary-valued
feature function whose weight is li. Large positive values of
li indicate a preference for such the corresponding feature.
The Feature set subsection will describe the feature func-
tions that are utilized in this study.

Tag set selection
The IOB scheme is the most tag scheme used for estab-
lishing the tag set in the biomedical named entity recog-
nition task. For example, the state-of-the-art system for
recognizing mentions of genes [9] adopts the IOB tag
set in its bi-directional parsing algorithm. Even in the
CHEMDNER task, the top-ranked systems [10,11] used
the IOB scheme. Figure 1 presents the graphical repre-
sentation in CRF of “polycyclic aromatic hydrocarbons
(PAHs)” tagged using the IOB tag set (B-FAMILY,
I-FAMILY, I-FAMILY, O, B-ABBREVIATION, O). The
scheme suggests a model to learn and identify the
Beginning, the Inside and the Outside of a particular
category of chemical entities.
Various tag schemes for the task of Chinese word seg-

mentation have been proposed and showed a promising
improvement. For instance, N Xue [12] proposed the
use of a new tag to represent a Chinese “word” if it
forms only a word by itself. H Zhao, C-N Huang, M Li
and B-L Lu [13] concentrated on the subdivision of the
beginning of Chinese words into tags like B1 and B2 to
better capture longer words. Unlike in the Chinese word
segmentation task, in the CHEMDNER task, category
information of chemicals is associated with the tag set,
leading to a high computational cost and training time.
Accordingly, the IOB scheme is delicately extended into
four different schemes, whose relative performances
when applied to the CHEMDNER task were compared.
In particular, motivated by the works on Chinese word
segmentation, the tags E and S, which stand for “End of

the entity” and “Single-word entity”, are added to the
IOB tag set to form a four-(IOBE) and five-(IOBES) tag
sets. Accordingly, the labelling sequence in Figure 1
becomes B-FAMILY, I-FAMILY, E-FAMILY, O,
S-ABBREVIATION, and O when the five tag set is used.
In the experiments, the B tag is also split into B1 and B2
tags to form another five-tag scheme, IOB12E. These
extended schemes provide more precise machine learn-
ing material and establish more intelligent models.

System workflow
Figure 2 shows the system architecture that supports our
proposed method, which comprises three key stages -
pre-processing, feature extraction, and chemical entity
recognition. First, in the pre-processing stage, a rule-
based method is employed to tokenize the given docu-
ment, as will be elaborated in the following subsection.
After tokenization, the sentence splitter, implemented
using the LingPipe package [14], is used to detect the
boundary of the sentence. The GENIATagger is then uti-
lized to generate the corresponding part-of-speech (POS)
and chunk information for each token. The resulting nat-
ural language processing information, including POS and
chunking, was collected by the feature extraction compo-
nent to yield features. The representative text features,
including word, affix, orthographical and word-shape
information, are also included to enable recognition of
chemical entities within a document. Finally, the chemi-
cal entity recognition stage exploits the extracted features
to classify chemical entities by applying CRF. The follow-
ing sub-sections elucidate each feature in detail.

Tokenization strategy
In this study, two tokenization strategies are employed
to generate different tokenization results. The perfor-
mances of the generated CRF models based on these
two strategies are then compared.

Coarse-grained tokenization
In this method, the standard Penn Treebank tokeniza-
tion rules [15] are utilized to tokenize the given docu-
ment. The rules are summarized as follows.
• Most punctuation marks, including comma, period,

and quotation markers, are separated from adjoining
words.
• Contractions of verbs and Saxon genitives of nouns

are split into their component morphemes. For example,
“won’t” becomes “wo n’t”.

Fine-grained tokenization
In the fine-grained tokenization method, the coarse-
grained tokenization rules are applied first. The gener-
ated tokens are then rigorously tokenized again through
the following two steps:

Figure 1 Graphical representation of “polycyclic aromatic
hydrocarbons (PAHs)” tagged as “[B-FAMILY, I-FAMILY, I-
FAMILY, O, B-ABBREVIATION, O]”.
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• Add separations before and after symbols, such as
hyphens and dashes.
• Separation at the locations between letters and

digits, as well as at sites where a lower-case letter is fol-
lowed by an uppercase letter.

Feature sets
The feature sets that are examined in this study are based
on orthographic, morphological and shallow syntactical
features, which were selected mainly from our previous
work proposed for the biomedical NER task [16] with a
particular modification for the CHEMDNER task. These
feature sets were selected because they do not rely on any
specific resources and they allow researchers to re-produce
and generate the comparable results. Furthermore, some
of them have become the standard NER feature sets and
implemented in some open-source NER systems, such as
BANNER [17].

Word features
Words that precede or follow the target word may be
useful in its categorization. Consider, for example, the
sentence, “Mercury induces the expression of cyclooxsy-
genase-2 and inducible nitric oxide synthase”. If the tar-
get word is “oxide”, then the following word “synthase”
will help the CRF model distinguish the oxide synthase
from oxide layer, enabling it correctly to classify it as a
systematic-type chemical entity. In the developed model,
the number of preceding/following words is set to two,

and bigram and trigram words features are used as parts
of the conjunction features. All of the above features
were normalized to maximize the performance and to
reduce the use of memory resources, as described in the
authors’ earlier work [16]. For example, the term
“cyclooxygenase-2” was normalized to “cyclooxygenase-
1” in our training set.

Affix features
The affix of a word is a morpheme that is attached to a
base morpheme to form that word. Prefixes (that precede
another morpheme) and suffixes (that follow another
morpheme) are two types of affix. Some prefixes and suf-
fixes provide useful clues for classifying named entities.
For example, most words that start with “hydro” are
usually chemical entities with related component infor-
mation. The prefixes and suffixes are defined to have
between three and five characters, and they were also
normalized before they were encoded into features.

Orthographical features
The orthographical features are regular expressions that
are defined to capture the style in which the names of
chemical entities are written. Table 1 presents the
employed features and their corresponding patterns,
developed for the CHEMDNER task. Consider, for
example, the FG pattern “^\d(,\d)*\-?\w+”. The digits
that in sequence of commas and numbers, such as ‘2’ in
the systematic name “2,4-dinitrophenyl”, typlically

Figure 2 System workflow.
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denote the position of the attached functional groups.
These patterns can be used to identify chemical entities
from general English words, and are treated as binary
features, whose values are unity if the sequence of
tokens matches the patterns, or zero to indicate that it
does not match.

Word shape features
At times, chemical entities within the same category
exhibits similar patterns, such as As(V) and DMA(V),
and the word shape feature is developed accordingly. The
following process is used to generate the shape of a given
word: 1) all capitalized characters are replaced by “A”; 2)
all non-capitalized characters are replaced by “a”; 3) all
digits are replaced by “0”, and 4) all non-English charac-
ters are replaced by “_”. To form the second word shape
feature, consecutive strings of identical characters are
reduced to a single character. For instance, the term
“Aaaaa_A” is contracted to “Aa_A”. Consider the two
chemical entities “Na(2)CO(3)” and “As(2)O(3)”. The
generated word shape features are “Aa_1_AA_1_” and
“Aa_1_A_1_”. The second word shape feature captures
both chemical entities.

Syntax features
Named entities are usually found in noun phrases, and the
left or right boundaries of most chemical entities are
aligned with the edge of noun phrases. For instance, in the
noun phrase, “the polyhedral oligomeric silsesquioxane”,
the chemical name “polyhedral oligomeric silsesquioxane”

aligns with the right boundary of the noun phrase. Conse-
quently, the chunk information is encoded as a feature in
our model. Moreover, POSs such as verbs and preposi-
tions normally indicate an entity’s boundary. A context
window length of five is set for POS features herein.

Results
Dataset and evaluation metrics
The CHEMDNER text corpus [7] was utilized to exam-
ine the performance of various tag schemes. The data-
set consists of 10,000 abstracts and a total of 84,355
mentions of chemical compounds and drugs that had
been manually labelled by domain experts. During the
BioCreative IV evaluation period, the dataset was
further divided into three subsets, which were the
training set (3,500 abstracts), the development set
(3,500 abstracts) and the test set (3,000 abstracts).
Seven categories of chemical entities adapted from the
work of R Klinger, C Kolarik, J Fluck, M Hofmann-Api-
tius and CM Friedrich [3] were annotated in the corpus:
(1) SYSTEMATIC: the systematic names, such as IUPAC;
(2) IDENTIFIERS: database IDs, including CAS numbers,
PubChem IDs, company registry numbers, ChEBI and
CHEMBL IDs; (3) FORMULA: molecular formula,
SMILES, InChI, or InChIKey; (4) TRIVAL: trivial, brand,
common or generic names of compounds; (5) FAMILY:
chemical families that can be associated to chemical struc-
tures; (6) MULTIPLE: mentions that correspond to chemi-
cals that are not described by a continuous string of
characters; (7) ABBREVIATION: abbreviations and
acronyms.
In this study, the procedure for executing the BioCrea-

tive IV CHEMDNER task is utilized to report the system
performance in two tasks: the indexing of chemical
documents (CDI) and the recognition of mentions of
chemical entities (CEM). Given a set of documents, the
CDI system returns a list of unique chemical entities for
each, whereas the CEM system provides exact occur-
rence information for all mentioned chemical entities.
For both tasks, the official evaluation script that is
released by BioCreative IV is used to determine the per-
formance in terms of the micro-average recall (R), preci-
sion (P) and the balanced F-measure (F).

Rmicro =
TP

TP + FN
,Pmicro =

TP
TP + FP

,F1 =
2 × Recall × Precision

Recall + Precision

True positive (TP) refers to the number of correctly
recognized chemical mentions. False negative (FN) is
the number of human-annotated chemical mentions
that were omitted by the presented system. False posi-
tive (FP) is the number of recognized chemical mentions
that were not annotated by human annotators. The
result shows the overall system performance indepen-
dent of the categories of the chemical entities.

Table 1 Orthographical features

Feature name Regular expression pattern

FG ^\d(,\d)*\-?\w+

INITCAPS ^[A-Z].+

CAPWORD ^[A-Z][a-z]+$

ALLCAPS ^[A-Z]+$

CAPSMIX ^[A-z]*([A-Z][a-z]|[a-z][A-Z])[A-z]*$

ALPHANUMMIX ^[A-z0-9]*([0-9][A-z]|[A-z][0-9])[A-z0-9]*$

ALPHANUM ^[A-z]+[0-9]+$

UPPERCHAR ^[A-Z]$

LOWERCHAR ^[a-z]$

SHORTNUM ^[0-9]?$

INTEGER ^-?[0-9]+$

REAL ^-?[0-9]\.[0-9]+$

ROMAN ^[IVX]+$

HASDASH -

INITDASH ^-

ENDDASH -$

PUNCTUATION ^[,.;:?!]$

QUOTE ^[\"`’]$
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With respect to the CEM task, the category-pivoted
measure is evaluated by considering the individual RPF-
scores of the seven chemical entity categories, and the
macro-average RPF-scores. Since the original evaluation
script does not yield the category-pivoted results, the origi-
nal gold annotations are split into seven sub-annotation
files with regard to their category C, and then calculated
the RPF-score for each category using the official evalua-
tion script. Finally, the following equations were utilized to
report the category result in CEM.

Rmacro =
1

|C|
∑|C|

i=1

TPi

TPi + FNi
, Pmacro =

1
|C|

∑|C|
i=1

TPi
TPi + FPi

Experimental configurations
The four tag schemes that were described in the Methods
section determine the four configurations in our experi-
ments-IOB, IOBE, IOBES and IOB12E-all of which use the
feature sets that were described in the Methods section.
Two tokenization strategies were adopted to investigate
the impact of the tokenization method on each tag
scheme. The first directly exploits the tokenization results
that are generated by following the coarse-grained tokeni-
zation rules, and the second uses the rules that were
described in the Fine-grained tokenization sub-section to
produce tokens with a finer granularity. The subscripts “f”
in the following notations is used to distinguish the config-
urations with fine-grained tokenization from the first con-
figurations, IOBf, IOBEf, IOBESf and IOB12Ef. For the
CEM task, a fixed confidence of 0.5 was empirically set for
all configurations in selecting the recognized chemical
entities. The CDI results were converted from the CEM
results by removing all duplicate entities and sorting them
in order of descending confidence.

Results for CDI and CEM
First, the performance of different tag sets on the devel-
opment set was studied. Table 2 presents the results
obtained when the four tag schemes were combined with
the tokenization results that were derived by using the
coarse-grained tokenization rules. Two tag schemes per-
formed better than the others in the CDI and CEM tasks;
the IOB scheme yielded the best F-score in the CDI task,
while the IOBES scheme obtained the best F-score in the
CEM task. Overall, the IOB scheme provided the best
precision in both tasks, while the IOBES scheme resulted
in the best recall. The most representative tag set,
IOB12E, yielded the worst overall RPF-scores of the four
configurations.
The fine-grained tokenization method is paired up with

the four configurations, and the performance achieved in
each case is displayed in Table 3. Unlike in Table 2 when
finer tokenization is employed, the IOBESf scheme

outperforms the other three tag schemes as measured by
all of the RPF-scores for both tasks. Furthermore, in
order to confirm whether the slightly better performance
between the IOBESf and the other two less representative
tag schemes (IOBf and IOBEf) is statistically significant, a
two-sample paired t-test is applied. The null hypothesis
states that there is no difference between the two config-
urations. To retrieve the average F-scores and their
deviations required for the t-test, we merged the training
set and development set and randomly sampled thirty
new training sets and thirty new development sets
according to the size of the original training/development
sets. Afterwards, we summed the scores for all thirty
development sets and calculated the averages for perfor-
mance comparison. The results reveal that IOBESf out-
performs IOBf, IOBEf and IOB12Ef with statistical
significance. While more precise and expressive tag
schemes seems to perform better in combination with
finer tokenization, the most representative IOB12Ef

remains the worst of all schemes.
Figures 3 and 4 compare the performances of the four

fine-grained tokenization-based tag schemes, with those
of the IOB and IOBES schemes, when applied to the
test set of the CDI and CEM tasks. The graphs reveal
that the IOBESf configuration provided the best RPF-
scores of all six configurations, as it achieved F-scores of
0.833 and 0.815 in the CDI and CEM tasks, respectively,
and so outperformed the most-adopted tag sets, IOB
and IOBf, in terms of F-scores by 0.08 and 0.01 in both
tasks. Similar to the results of the development set, the
IOBES performs slightly better than IOB in the CEM
task, while the IOB performs better in the CDI task.

Table 2 The CDI and CEM results on the CHEMDNER
development set

Config CDI CEM

P (%) R (%) F (%) P (%) R (%) F (%)

IOB 78.40 74.60 76.45 80.37 68.74 74.10

IOBE 76.53 75.53 76.03 78.78 69.61 73.91

IOBES 76.57 75.98 76.27 78.88 70.10 74.23

IOB12E 50.70 56.48 53.43 54.28 55.51 54.88

Table 3 The CDI and CEM results on the CHEMDNER
development set with the finer tokenization

Config CDI CEM

P (%) R (%) F (%) P (%) R (%) F (%)

IOBf 83.24 81.01 82.11 83.68 77.25 80.33

IOBEf 83.37 81.13 82.23 83.71 77.31 80.38

IOBESf 83.96 81.57 82.75 84.08 77.87 80.85

IOB12Ef 54.31 56.14 55.21 57.17 58.88 58.01
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The IOB12Ef remains to exhibit the worst performance
of all schemes.

The category results of CEM
Table 4 displays the results concerning categories of che-
mical mentions on the test set. Owing to the limited
space, Figure 4 presents only the best five configurations
shown in Figure 3, and the best RPF-scores for each cate-
gory are presented in bold. The overall results (last row)
shows that the IOBESf outperformed the other configura-
tions in terms of all three macro-average RPF scores, and
had the best R and F-scores in all categories except the
Multiple category.
In summary, the widely adopted IOB tag scheme pro-

vides generally a good formulation of the word sequences
used in chemical mentions, because it can achieve com-
parable RPF-scores to more representative tag schemes
with less usage in time and memory during the training
phase. For instance, using the IOB tag in comparison to
IOBES, both the memory demand and training time are
around three time less. When coarse-grained tokeniza-
tion rules are used, more representative tag scheme
exhibited no significant advantage over the IOB tag
scheme. Nonetheless, as pointed out by M Krallinger, F
Leitner, O Rabal, M Vazquez, J Oyarzabal and A Valencia

[7], the development of a set of specialized tokenization
rules for the recognition of chemical terms is required.
The experimental results herein support this assertion,
and revealed a significant improvement of approximately
6.23% in the F-score between IOB and IOBf with an
increased memory usage (6.5%) and training time
(23.3%). Our discovery indicates that under the finer
tokenization strategy, the more representative IOBES tag
set should be preferred over others for performing the
CHEMDNER task. Given the higher training cost in the
three time of time and memory usages, we can anticipate
a further boost of the RPF scores and a stable improve-
ment in the recognition of all chemical entity categories
in both the CDI and CEM tasks.

Discussion
The experiments herein were carried out to investigate the
influence of tokenization strategy and effective tag scheme
on the CHEMDNER task. Comparing the predicted
boundaries of the chemical mentions obtained using the
best configuration, IOBESf, in the experiments with those
obtained using its counterpart, IOBES, and the most
adopted tag set, IOBf, revealed that the use of fine-grained
tokenization precisely identifies any modification of arbi-
trary symbols on chemicals and clearly defined their
boundaries. For instance, with fine-grained tokenization,
the system can retrieve “octadecanol” rather than “octade-
canol-covered” from the sentence that includes “...with an
octadecanol-covered Au(111) surface investigated...”. Like-
wise, from the sentence that includes “Among the artemisi-
nin-based combination therapy (ACT) regimens...”,
“artemisinin” rather than “artemisinin-based” is recognized.
The tokenization strategy also enables the CRF model to
recognize entities mentioned that are mentioned next to
forward slashes, such as those in “alcohols/esters”, “Plu/
PAA/Epi” and “His/Tyr”, which are often used in descrip-
tions of a group of chemicals with similar attributes.
Furthermore, the generation of fine-grained tokens

along with the more representative tag set allows the
CRF model to capture better mentions of longer entities
that were generated by the fine-grained tokenization
method. For example, in coarse-grained tokenization,
two and four tokens were generated for “N-cinnamoy-
lated chloroquine” and “10, 12-pentacosadiynoic acid”,
respectively. Either were overlooked in the coarse-grained
tokenization method, or have incomplete boundaries in
tag schemes such as IOB. The IOBES tag scheme with
fine-grained tokenization can successfully recognize enti-
ties that comprise many tokens. For instance, the IOBESf
model can correctly recognize the boundary of the che-
mical entity “a-phenyl-N-tert-butyl nitrone” using ten
tokens after fine-grained tokenization.
Since the purpose of the CHEMDNER task is to

recognize a sequence of words with various lengths that

Figure 3 The CDI results on the CHEMDNER test set.

Figure 4 The CEM results on the CHEMDNER test set.
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specify a chemical entity, the distribution of entity name
lengths in the corpus after tokenization serves as an
essential factor in determining the selection of tag
scheme. Table 5 presents the distribution of lengths of
the name of chemical entities in the CHEMDNER data-
set following the fine-grain tokenization.
According to our hypothesis, the use of tag schemes,

which can capture words that comprise a chemical entity
using different tags that identify their relative positions
within the name of the entity, should enhance the precise-
ness of entity recognition. As a result, the utilization of a
more explicit tag set, such as IOBE, increased the accuracy
of identification of chemical entities with longer names. In
the sentence “Novel N-indolylmethyl substituted spir-
oindoline-3,2’-quinazolines were designed as potential
inhibitors of SIRT1”, the tag set IOBE can retrieve the cor-
rect chemical name in bold, whereas IOB recognized “N-
indolylmethyl” and “spiroindoline-3,2’-quinazolines”,
respectively. Similarly, IOBE recognized the name “N-cin-
namoylated chloroquine” in the expression “N-cinnamoy-
lated chloroquine analogues as dual-stage antimalarial
leads”, whereas IOB determined two names “N-cinnamoy-
lated” and “chloroquine”. Specification of the end of a che-
mical name within the IOBE set rather than simply
regarding it as a part of the name seems to improve the
recognition of chemical entities with long names.
Since words that consist of four or fewer tokens have

constitute around 90.7% of the CHEMDNER corpus, the

five-tag scheme, IOB12E, should outperform the four tag
scheme IOBE. However, increasing the rigidity of the
tag set does not provide any improvement, as revealed
by the fact that the IOB12E performed most poorly.
Close scrutiny reveals that the use of the IOB12E tag set
makes difficult the recognition of chemical names that
consist of two words, such as “ammonium sulphate”,
“allyl alcohol” and “acetate esters”, which are 9.2% of the
names in the CHEMDNER corpus. Since IOB12E cap-
tures not only the first word (B1), but also the word that
follows it (B2), it may have trouble with the recognition
of two-token entities, in which the second word serves
both as B2 and the end, or is an independent entity
itself. For names with a single word, which occupies
70.9% of the entities in the CHEMDNER corpus, the
addition of the S tag to form the IOBES tag scheme
provides an improvement over IOBE and IOB. There-
fore, we believe that the IOBES tag scheme with fine-
grained tokenization is the best alternative for capturing
sufficient discriminative information for the CHEMD-
NER task.

Comparison with the other CHEMDNER systems in
BioCreative IV
Table 6 compares the performance of the best tag
scheme (IOBESf) with those of the most highly ranked
CRF-based systems when applied to the CHEMDNER
test set. Notably, the corresponding results cannot be
directly compared because these systems are all based on
different feature sets and lexicon resources. For example,
R Leaman, C-H Wei and Z Lu [11], the top ranked sys-
tem, proposed the use of semantic binary features to
represent chemical characteristics, such as alkane stems
(such as “meth,” “eth,” and “tetracos”), and trivial rings
(such as “benzene,” and “pyridine”). They also used sev-
eral patterns and the ChemSpot system [18] to capture
potential mentions of chemicals and encoded the outputs
as features. Their system, System 1, was the top-ranked
system. System 2, developed by Y Lu, × Yao, × Wei and
D Ji [19], used a word clustering algorithm to group

Table 4 The CEM category results on the CHEMDNER test set

IOBES IOBESf IOBEf IOB IOBf

P R F P R F P R F P R F P R F

Abbr. 84.1 56.7 67.8 87.5 59.6 70.9 87.5 59.2 70.6 82,9 47.1 60.1 87.2 59.1 70.5

Fam. 82.5 64.6 72.4 85.1 70.0 76.8 85.0 69.3 76.2 82.5 63.5 71.8 84.3 68.9 75.8

Form. 79.0 62.9 70.0 83.1 69.0 75.4 83.0 68.8 75.2 74.4 58.3 65.4 83.0 68.4 75.0

Ident. 91.2 46.4 61.5 94.0 70.8 80.8 93.9 69.6 80.0 93.6 70.8 80.6 94.7 70.2 80.6

Mult. 46.3 38.2 41.9 77.0 38.7 51.5 83.0 39.2 53.2 78.8 31.7 45.2 75.6 34.2 47.1

Sys. 82.4 61.2 70.2 85.2 81.3 83.2 85.4 80.1 82.6 78.7 70.2 74.2 85.2 79.9 82.5

Tri. 86.4 78.6 82.3 89.9 81.5 85.5 89.1 81.2 85.0 85.6 73.0 78.8 89.0 81.2 84.9

All 76.8 66.0 71.0 82.7 73.9 78.1 82.5 73.4 77.6 77.9 64.4 70.5 82.3 73.2 77.5

Table 5 The distribution of chemical entities with
different lengths in the CHEMDNER corpus

Entity
Length

Training
(%)

Development
(%)

Test
(%)

Overall
(%)

1 70.50 70.82 71.45 70.90

2 9.33 9.29 8.99 9.21

3 6.28 6.12 6.28 6.22

4 4.63 4.43 4.06 4.39

≦4 90.73 90.66 90.79 90.72

4 < 9.27 0.34 9.21 9.28
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words with similar meanings and encoded the semantic
groups as features for CRF training. RT Batista-Navarro,
R Rak and S Ananiadou [10] (System 3) represented sev-
eral lexicon resources, such as ChEBI, and DrugBank, as
dictionary features. However, this study uses only the
basic feature sets, which have been confirmed by most
studies to perform well in biomedical NER tasks [20].
Furthermore, the aforementioned systems all used differ-
ent pre-/post-processing steps to fine-tune the recogni-
tion performance. For instance, all systems used different
tokenization mechanisms and abbreviation recognition
tools to improve the recall rate.
Whereas comparing the aforementioned advanced fea-

tures and pre-/post-processing are beyond the scope of this
work, the observations herein may be useful for further
improving the aforementioned systems. As demonstrated
experimentally, the five-tag scheme IOBES outperformed
all others. Therefore, we believe that the performance of
Systems 1 and 3 can be further improved since both
adopted the simplest tag scheme, IOB. System 2 is the only
system that utilized the IOBES tag scheme in the CHEMD-
NER task. However, System 2 did not pay attention to the
effect of the tokenization in the combination with tag
scheme. As established by P Corbett, C Batchelor and S
Teufel [21] and S Eltyeb and N Salim [20], tokenization is
an important issue in CHEMDNER systems, and a custo-
mized tokenizer can provide clear advantages in the hand-
ling of multi-token chemical entities. Therefore, a good
CHEMDNER system must have a specialized tokenizer or
be effective in handling multi-token names. This study
demonstrated that properly choosing the representative tag
scheme to be used with the fine-grained tokenization strat-
egy, can better capture multi-token words in a chemical
name. We therefore believe that the aforementioned sys-
tems can be improved by adopting to them with the pro-
posed fine-grained tokenization strategy.

Conclusions
This study describes a system that is developed for per-
forming the CHEMDNER task, and it specifically exam-
ined the effect of tokenization and different representative

tag sets on chemical and drug name recognition. The use
of finer tokenization was generally associated with better
performance of all tag sets. Moreover, of all the tag sets
used, delicate tag schema such as the five-tag scheme
IOBES provided better performance than the others. How-
ever, the complexity of the tag set is not entirely correlated
with the proficiency of CHEMDNER, as the results herein
revealed that the IOB12E tag set performed the worst over-
all. In summary, finer tokenization combined with the ela-
borate tag set IOBES achieved the best performance in
recognizing chemical and drug names.
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