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Abstract

Background: The recognition of drugs and chemical entities in text is a very important task within the field of
biomedical information extraction, given the rapid growth in the amount of published texts (scientific papers,
patents, patient records) and the relevance of these and other related concepts. If done effectively, this could allow
exploiting such textual resources to automatically extract or infer relevant information, such as drug profiles,
relations and similarities between drugs, or associations between drugs and potential drug targets. The objective of
this work was to develop and validate a document processing and information extraction pipeline for the
identification of chemical entity mentions in text.

Results: We used the BioCreative IV CHEMDNER task data to train and evaluate a machine-learning based entity
recognition system. Using a combination of two conditional random field models, a selected set of features, and a
post-processing stage, we achieved F-measure results of 87.48% in the chemical entity mention recognition task
and 87.75% in the chemical document indexing task.

Conclusions: We present a machine learning-based solution for automatic recognition of chemical and drug
names in scientific documents. The proposed approach applies a rich feature set, including linguistic, orthographic,
morphological, dictionary matching and local context features. Post-processing modules are also integrated,
performing parentheses correction, abbreviation resolution and filtering erroneous mentions using an exclusion list
derived from the training data. The developed methods were implemented as a document annotation tool and
web service, freely available at http://bioinformatics.ua.pt/becas-chemicals/.

Background
Named entity recognition (NER) refers to the task of
identifying mentions of entities of specific types in nat-
ural language texts. This crucial initial task is required
in order to perform other information extraction steps,
such as identifying the exact concepts associated with
the entity names mentioned in the texts (a task called
entity normalization), identifying relations and events
involving those concepts, or inferring concept character-
istics and other associations [1]. One of the fields where
NER has received increasing interest is biomedicine, due
to its social and scientific importance and to the chal-
lenges brought by the intrinsic complexity of the
domain, but also because of the overwhelming rise in
the amount of published texts, namely in the form of
scientific publications. Major focus was initially placed

on the identification of gene and protein names, and
was greatly promoted by community efforts such as the
series of BioCreative challenges in biomedical text
mining [2,3]. These led to the development of various
systems addressing this specific task [4], with the best
performing systems achieving F-measure results above
85%. These community evaluations have also shown
that, at least in the case of gene and protein entity
recognition, machine-learning methods generally lead to
better overall results when compared to other
approaches such as using dictionaries or rules, and that
combining different approaches in a single hybrid sys-
tem or combining different systems may also help
improve the final prediction.
More recently, other types of concepts have deserved

attention, including diseases, anatomy, chemicals and
drugs [5-7]. In the case of diseases and anatomical con-
cepts, dictionary-based approaches are able to provide
results in the order of 65%-70%, if exact matching of the
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entity names is considered, or as high as 85% if a more
relaxed (overlap) matching is allowed [8]. Regarding che-
mical entities and drugs, different approaches based on
rules, dictionaries, and machine-learning have been pro-
posed [9]. These try to cover the different nomenclatures
used to reference this type of entity, including common or
brand names of drugs (e.g. aspirin), chemical formulas,
abbreviations, or names following a systematic convention,
such as the one defined by the International Union of
Pure and Applied Chemistry (IUPAC) (e.g. 2-acetoxyben-
zoic acid). While common or trivial names can generally
be identified using a dictionary, systematic or quasi-
systematic names and formulas are better managed
through rule (or pattern) based approaches or by using
machine-learning methods [9].
Hettne et al. [10] described the creation of a large dic-

tionary of chemical and drug names, obtained by compil-
ing information from seven different sources. The
combined dictionary was cleaned by manual checking of
highly frequent terms and by using rules for filtering and
disambiguation. To evaluate the quality of the dictionary,
the authors tested it on a corpus of 100 Medline abstracts
[11], obtaining a precision of 67% for a recall of 40%.
Corbett et al. [12], on the other hand, annotated a corpus
of 42 full-text papers based on carefully revised guidelines,
and evaluated the application of machine-learning meth-
ods for the recognition of chemical entities. They reported
a maximum F-measure of 74% using a Hidden Markov
Model (HMM) with simple token based features. The
authors also underlined the impact of customizing the
tokenization strategy for this task, namely regarding the
processing of parenthesis and hyphens. The same corpus
was also used to evaluate OSCAR3, a hybrid system com-
bining dictionary-matching, machine-learning based on
Maximum Entropy Markov Models (MEMMs), and regu-
lar expressions, to identify different types of chemical
nomenclatures [13]. This system achieved a F-measure of
81% on this corpus and of 83% on a different corpus com-
posed of 500 Medline abstracts. Klinger et al. [14] focused
their work on systematic (IUPAC) and quasi-systematic
names. They created a training corpus of 463 Medline
abstracts, containing a total of 4751 entity mentions, and a
test corpus with 1000 abstracts containing 165 entity
annotations. The best performance was achieved with a
third-order Conditional Random Field (CRF) model, with
an F-measure of 86%.
Despite the existence of previous work on the identifica-

tion of chemical entities from text, and of its agreed rele-
vance, further developments have been hindered in part
due to the limited number, scale, and lack of homogeneity
of resources for training and evaluating systems for this
task. To overcome these aspects, the BioCreative IV
CHEMDNER task [15] was organized with the dual aim of
assessing the effectiveness of using automatic tools for the

identification of mentions of chemical compounds and
drugs in scientific documents, while at the same time pro-
moting the development of such tools. To achieve these
objectives, a newly annotated corpus was created, com-
posed of ten thousand abstracts selected from over 200
journals in different sub-fields of chemistry, and contain-
ing over 84 thousand entity mentions organized in seven
different classes - systematic, trivial, abbreviation, family,
identifiers, formula and multiple - plus a small number of
unclassified annotations, accounting for around 0.13% of
the total annotations in the corpus.

Results and discussion
In this work, we propose an annotation system, based
on Conditional Random Field (CRF) models, for the
identification of chemical and drug names in scientific
texts. This section presents the performance evaluation
results obtained on the test portion of the BioCreative
IV CHEMDNER task data, for the two sub-tasks pro-
posed in this community evaluation challenge:

• Chemical Entity Mention recognition (CEM): for a
given document, the aim is to provide the start and
end indices for all occurrences of chemical entity
names, ranked according to the confidence that the
given chunk represents in fact a mention of a chemi-
cal entity;
• Chemical Document Indexing (CDI): for a given
document, the task is to provide a confidence ranked
list of individual chemical entities mentioned in the
text.

In order to fully evaluate the performance of the pro-
posed entity recognition system, we performed different
analyses of the annotation results. Specifically, we stu-
died the importance of specific feature types and their
impact on the recall results for different entity classes,
evaluated the application of a blacklist-based post-pro-
cessing module, and analysed the final results in terms
of exact and relaxed matching.
Furthermore, we present a web-based document anno-

tation interface and webservices for the tagging of che-
mical entities in MEDLINE abstracts or in user provided
texts.

Contribution of different features
Table 1 shows the results of the feature evaluation,
using first-order CRF models created with the training
set documents and tested on the development set. We
started by comparing the use of conjunctions against
the use of windows of features. The results show that
using conjunctions produces significantly better results,
with an improvement of 7% in recall and of almost 3%
in precision.
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Next, we evaluated the impact of each remaining fea-
ture. The following lines in Table 1 show the perfor-
mance achieved when removing each of the features
from our initial feature set. Note that the results shown
are for the cumulative removal of features, that is, at
each step we removed the feature that had the largest
positive impact and on the next step this feature was no
longer considered. As can be seen from the table,
removing the token feature had almost no impact on
the performance of the trained models. Nevertheless,
given the slight negative impact on precision and
F-measure, we kept this feature. Removing three of the
linguistic features, namely lemmas, part-of-speech and
chunk tags produced important negative impacts on
F-measure. Removing the lemma had a significant
impact on precision as well as recall, resulting in 2.5
percentage points decrease in F-measure. In our experi-
ments, removing POS tags led to the largest negative
impact on the results, indicating the importance of this
feature for training models to recognize chemical enti-
ties. This was mostly due to the impact on recall, with a
decrease of 12.6 percentage points compared to the
model trained with the complete feature set. Removing
chunk tags also contributed negatively to recall, with a
drop of 5 percentage points, although precision
improved by over 1.5%.
Noticeably, the model trained without the dependency

parsing features achieved better results, in terms of
F-measure, than when these features were included. This

is in some way an unexpected result since these features,
although computationally expensive, have been shown to
contribute to better recognition performance (e.g. for
genes and proteins) [19]. As can be seen, removing this
feature considerably improved precision by 4.5%, while
recall was lowered by 3%.
Further improvements were obtained by removing the

capitalization features, in addition to removing the
dependency parsing features, leading to an increase of
0.26% in recall and a slight increase in precision.
Removing any of the remaining features did not produce
improved results. Counting, symbols, and prefix features
had almost no impact on the results when removed.
Suffixes, on the other hand, showed some impact on
precision which may indicate their importance for dif-
ferentiating some types of chemical entity mentions
from other words in the text. Conversely, character
n-grams and word shape features are relevant in terms
of recall, as indicated by the results.
Another interesting result is the impact on both preci-

sion and recall of removing the domain knowledge fea-
ture derived from dictionary matching. This shows the
importance of this type of feature in training the
machine-learning model and indicates that improving
the quality of the dictionary could have an even greater
impact on the final results.

Class recall
To further understand how each feature affects the recog-
nition results, we evaluated their impact in terms of the
different chemical entity classes annotated in the corpus.
Since these classes have distinct lexical characteristics, we
expected that removing different feature types would have
different impact on each class. However, we are not able
to evaluate class-based precision, as we do not assign spe-
cific classes to the entities we recognize, and have there-
fore restricted to evaluating recall for each different class.
Table 2 shows the results obtained on the development
set, with the same models used for the overall feature eva-
luation shown above. The ‘Unclassified’ entity class was
not considered, as this accounts only for 32 annotations
on the development set.
As expected from the feature evaluation results, the

POS feature is the one with most impact on the results,
largely affecting the recall for all entity classes. Another
feature that showed a great impact on results were
chunk tags. Removing this feature affected especially the
‘Multiple’ and ‘Identifier’ classes, which are also the ones
most affected by the removal of POS tags. In the case of
the ‘Multiple’ class, this may result from the difficulty in
modelling these entity mentions using the remaining
features, as well as from the relatively small number of
occurrences in the training set. Furthermore, removing
any of the linguistic features led to significant negative

Table 1 Iterative feature elimination results.

Precision
(%)

Recall
(%)

F-measure
(%)

Windows 78.65 78.75 78.70

Conjunctions 81.37 85.83 83.54

Base Token 81.32 85.86 83.53

Lemma 78.51 83.80 81.07

Linguistic POS 81.75 73.21 77.25

Chunk 82.93 80.83 81.86

Dependency
parsing

85.88 82.78 84.30

Capitalization 85.97 83.04 84.48

Orthographic Counting 85.86 83.09 84.45

Symbols 85.99 82.96 84.45

Char n-grams 85.88 82.53 84.17

Morphological Suffix 85.74 83.02 84.36

Prefix 85.93 83.03 84.45

Word shape 85.83 82.42 84.09

Lexicons Chemicals 85.33 81.48 83.36

The first line shows the results obtained with the full set of features, together
with windows or conjunctions of features. The following lines show results
after iterative and cumulative removal of features. Values in bold indicate
improvements over the previous best result; the italic value indicates the best
result, obtained by removing dependency parsing and capitalization features.
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impact on the recall for all the entity classes, except for
lemma and dependency parsing features on the ‘Multi-
ple’ class. In the case of dependency parsing features,
the overall impact on recall was compensated by
improvement in precision, as shown before. Capitaliza-
tion features, the other type of features that contributed
positively to the overall F-measure when removed,
shows different results when analyzing the impact on
each class, with reductions in recall for ‘Multiple’ and
‘Identifier’, and small improvements for the remaining
classes.
As can be seen, removing counting and word shape

features, although with no significant impact on the
overall results, led to reductions on the recall for the
‘Identifier’ class. On the other hand, character n-gram
features seem to be unnecessary for recognizing entities
of this class. Removing domain knowledge features had
a significant impact on the recall for ‘Trivial’ and
‘Abbreviation’ entity classes, as expected, but proved
even more relevant for the ‘Identifier’ class. This seems
to indicate that, because different types of identifiers
exist, their recognition is largely dependent on being
present in the dictionary, as well as on their linguistic
role on the sentence, as denoted by the importance of
the linguistic features for this entity class.

Error analysis
In order to identify the most common annotation errors
produced by the model, we performed an error analysis
of the results. As before, we based this analysis on the
results obtained on the development set, with models
trained on the training part of the corpus.
A simple analysis showed, as expected, that a large

number of false-positive annotations is produced by

shorter annotations. In fact, 18.1% of the false-positives
stem from annotations with one or two characters in
length. In comparison, these short mentions correspond
to 5.3% of the gold-standard annotations in the develop-
ment part of the corpus. If annotations up to three char-
acters in length are considered, then these correspond
to 31.3% of the total false-positives produced, but
account only for 15.8% of the gold-standard annotations.
However, applying a blind filtering based on annotation
length alone degrades the evaluation results. In the
development set, removing annotations with a single
character improves precision by only 0.2% while degrad-
ing recall by 0.8%. If a more stringent filter is applied,
by removing annotations with three characters or less,
recall drops by 12.6 percentage points while precision
only improves slightly, by 2.6%.
We therefore tried to define an exclusion list for filtering

the annotations produced by the recognition model, by
first calculating the log odds ration between the number
of true positive counts and the number of false positive
counts for each distinct (case-insensitive) mention pre-
dicted by the model. We calculated this in ten folds and,
in each fold, we varied the filtering threshold used to
remove annotations from the 10% of documents used for
testing. Additionally, annotations were only added to this
exclusion list if they resulted in a minimum number of
false positives in the 90% of the corpus used in each fold
to define these thresholds. This number was also varied to
identify the best value. Using this strategy, we observed
that an average improvement of 0.6% in F-measure could
be achieved with an exclusion list containing the annota-
tions with a log odds ratio between true-positive and false-
positive counts lower than 0.3, and appearing at least two
times as false-positives. Applying these thresholds to the

Table 2 Impact of features on recall for each different class.

Class recall (%)

Feature Multiple Family Abbrev System Formula Identifier Trivial

Conjunctions (all features) 42.02 82.22 81.09 90.21 79.60 73.08 91.46

Base Token +1.06 -0.19 +0.55 -0.09 -0.15 0.00 +0.07

Lemma +5.32 -2.25 -1.46 -2.95 -1.16 -4.85 -1.87

Linguistic POS -18.62 -12.65 -10.93 -13.88 -16.65 -24.88 -9.61

Chunk -22.87 -6.68 -4.34 -4.91 -6.14 -12.83 -3.13

Dependency 0.00 -3.72 -3.76 -1.44 -4.45 -9.39 -2.52

Capitalization -0.53 +0.43 +0.15 +0.26 +0.31 -0.94 +0.30

Orthographic Counting 0.00 +0.24 -0.27 +0.16 -0.12 -1.72 +0.26

Symbols -1.06 -0.12 -0.11 0.00 -0.24 -0.16 +0.01

Char n-grams +1.60 -2.51 -0.64 -0.43 -1.35 +4.07 +0.47

Morphological Suffix +1.06 -0.09 -0.33 +0.16 +0.51 +0.63 -0.27

Prefix 0.00 -0.64 -0.09 +0.10 -0.05 +0.31 +0.22

Word shape +1.60 -0.07 -0.97 -0.18 -1.47 -2.50 -0.57

Lexicons Chemicals +2.66 -0.19 -2.10 -0.78 -0.75 -10.95 -2.34

Values shown are differences in percentage points to the baseline (first line).

Campos et al. Journal of Cheminformatics 2015, 7(Suppl 1):S7
http://www.jcheminf.com/content/7/S1/S7

Page 4 of 10



entire development set, an exclusion list containing 218
annotations was produced.

Final evaluation results
Based on the results of the feature evaluation, we used
the best feature set (i.e. removing dependency parsing
and capitalization features) to train various CRF models
of orders 1 to 4. Applied separately, higher-order models
produced similar or slightly inferior results when com-
pared to first-order models (between -0.02% and -0.48%
reduction in F-measure). Given that training times
increase exponentially with the model order, we
removed third and fourth-order models from further
analysis. Therefore, we trained first and second-order
CRF models on the combined training and development
sets of the CHEMDNER corpus (a total of 7000
abstracts) and used these to annotate the test set.
The results of annotating the documents in the test

set using the harmonized predictions from the two CRF
models are shown in Table 3. The first lines in the table
show the official results of the best performing runs
from all teams participating in each sub-task of the
CHEMDNER challenge, and of our best submitted run.
The following line shows the results of the same sub-
mitted run, after correcting minor errors in the genera-
tion of the annotation files, identified after the
challenge. Also shown in the table are the results
obtained with the first- and second-order CRF models,
when used separately.
Considering exact matching between the predictions

and gold standard annotations, our system achieves an
F-measure of 86.92%, with a precision of 87.35% and a
recall of 86.49% in the test set of the chemical entity
mention task. Comparing to the use of the first-order
CRF model, the harmonized predictions show an
improvement of 0.48% in F-measure. As can be seen,
although the second-order model leads to slightly worst

results, using in combination with the first-order model
helps improve recall by 1.6%, significantly contributing
to the final performance results.
Applying the exclusion list defined above, the perfor-

mance improves slightly, achieving an F-measure of
87.48% (+0.56%), with only a small drop in recall
(-0.17%). These results compare favourably with the best
results obtained during the BioCreative CHEMDNER
task, where the best system obtained an F-measure of
87.39%, for a precision of 89.09% and a recall of 85.75%.
Regarding the chemical document indexing subtask

of the BioCreative CHEMDNER evaluation challenge,
our system achieves an F-measure of 87.52%, for a pre-
cision of 87.07% and a recall of 87.97%. The application
of the exclusion list had a lower impact on this task,
improving F-measure to 87.75% (+0.23%) with a
decrease of 0.16% in recall. The model combination
also had lesser impact on the results of this task, which
could be justified by the fact that only one of the
occurrences of each distinct entity in a text needs to be
correctly identified.
Figure 1 illustrates the entity mention recognition

results in more detail, by comparing exact matching to
other less stringent matching strategies: left matching,
meaning that the start indices of the predicted mention
and the gold-standard annotation match; right match-
ing, when the end indices match; shared, when either
start or end indices match; and overlap, which consid-
ers any kind of intersection between the predicted and
gold standard mentions. Analysing the results of these
different matching methods allows obtaining a better
understanding of the types of errors generated, and
may provide hints on how to overcome some of those
errors. Additionally, some following information
extraction and document annotation steps may still be
performed correctly, even with small errors in the
matching of mentions. For example, considering left

Table 3 Final evaluation results on the CHEMDNER test set.

Entity Mention Document Indexing

System Precision Recall F-measure Precision Recall F-measure

Top scoring 89.09 85.75 87.39 87.02 89.41 88.20

Official best run 86.50 85.66 86.08 86.35 82.37 84.31

Corrected run 87.35 86.49 86.92 87.07 87.97 87.52

+0.85 +0.83 +0.84 +0.72 +5.60 +3.21

1st order CRF 88.04 84.89 86.44 88.00 86.42 87.20

+0.69 -1.60 -0.48 +0.93 -1.55 -0.31

2nd order CRF 88.35 83.79 86.01 88.14 86.65 87.39

+1.01 -2.71 -0.91 +1.08 -1.32 -0.13

Post-processing 88.67 86.32 87.48 87.68 87.81 87.75

+1.32 -0.17 +0.56 +0.61 -0.16 +0.23

The ‘Corrected run’ line shows results obtained using the same models as in the official run, after correcting the generation of the annotation files. Results
obtained with first- and second-order CRF models alone (without model combination) and after post-processing are shown with differences compared to the
corrected run. Values are shown in percentage points.
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and right matching, the precision of the results go up
by 3.38 and 3.11 percentage points, and recall also
improves by 1.51 and 1.25 points, respectively. This
corresponds to 787 (721 for right matching) annota-
tions being correct if the start (end) index of the men-
tion is considered. If either matching is allowed, then
F-measure increases to 91.60%, with a precision of
92.89% and a recall of 90.34%. These results give a bet-
ter indication of the system performance and effective-
ness for tasks such as text-mining assisted bio-curation.

Annotation service and web interface
The chemical entity recognition system described in this
work can be used through a web-based application and
a REST API for document annotation, available at
http://bioinformatics.ua.pt/becas-chemicals/. These ser-
vices are based on the more general Becas service, a
web application and API for customizable annotation of
concepts from 11 distinct semantic groups [16]. Figure 2
shows the resulting annotation for a MEDLINE abstract,
with 54 concept mentions identified in the title and
abstract. Free text can also be uploaded or copied into
the annotation window for processing.

Conclusion
This article presents a CRF-based solution for automatic
chemical and drug name recognition. The implemented
pipeline takes advantage of a rich feature set, namely
linguistic, orthographic, morphological, domain knowl-
edge (through dictionary matching) and local context
(through conjunctions) features. Post-processing mod-
ules are also integrated, performing parentheses correc-
tion and abbreviation resolution. In the end, a first- and
second-order CRF models are harmonized to obtain
improved annotations. The final performance results
achieved in the BioCreative IV CHEMDNER test set,
with F-measures of 87.48% for chemical entity mention
and 87.75% for chemical document indexing, demon-
strate the effectiveness of the method. The additional fil-
tering step, using an exclusion list derived from the
development set, resulted in improved performance in
the CEM task, with an increase of 1.32% in precision
and 0.56% in F-measure.
The entity recognition system described in this work

was developed on top of two frameworks providing effi-
cient methods for document processing, feature extrac-
tion, training machine learning (ML) models, and for
multi-threaded document annotation. The tool is freely
available through an end-user web tool and as a docu-
ment annotation API.

Methods
We applied a supervised machine-learning approach,
through the application of Conditional Random Fields
(CRFs) [17] provided by MALLET [18]. Additionally, we
compiled a dictionary of chemical entity name, and used
the matches of these names in the texts as features for
the CRF model.
The method applied for this work was developed on

top of two frameworks: Gimli [19] was used for feature
extraction and to train the machine learning (ML) mod-
els, and Neji [8] was used for pre- and post-processing

Figure 2 Web interface for recognition and annotation of chemical entities in text. Available at: http://bioinformatics.ua.pt/becas-chemicals

Figure 1 Results obtained on the CHEMDNER test set, using a
combination of a first-order and a second-order CRF model,
trained using the selected feature set.
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tasks and as the framework for multi-threaded docu-
ment annotation. Figure 3 illustrates the overall archi-
tecture and the steps performed.

Corpus and evaluation metrics
The system described in this work was trained and eval-
uated on the BioCreative IV CHEMDNER corpus [15],
which is provided in three sub-sets: a training set con-
taining 3500 Medline abstracts annotated with 29478
mentions of chemical entities, a development set com-
posed of 3500 abstracts with 29526 entity mentions, and
a test set composed of 3000 abstracts, and containing
25351 mentions. Seven chemical entity classes were
defined in the corpus annotation guidelines. However,
instead of treating each class separately, we grouped all
classes into a single class.
The training and development sets were used to train

and refine the machine learning models, and to perform
the feature evaluation studies. The final model was
trained on the combined training and development set
and evaluated on the test set.
The common evaluation metrics were used, namely

Recall = TP/(TP + FN), Precision = TP/(TP + FP) and
F1 = 2 × Precision × Recall/(Precision + Recall), were
TP refers to true positives, FP to false positives, and FN
refers to false negatives.

Corpus pre-processing
As shown in Figure 3, the first fundamental step is to
perform sentence splitting, in order to divide the texts
in the basic units of logical thought. For performing this
step, we take advantage of Lingpipe [20], which provides
a model trained on biomedical corpora that presents
high-performance results [21]. The following Natural
Language Processing (NLP) tasks are achieved through a
customized version of GDep [22], a dependency parser

for the biomedical domain built on top of the GENIA
tagger that performs tokenization, lemmatization, part-
of-speech (POS) tagging and chunking. We modified the
tokenizer in GDep so that words containing the symbols
“/”, “-” or “.” are always divided into multiple tokens,
making its behaviour more consistent. This simple
change proved to be effective when applied to gene/pro-
tein entity recognition in different corpora [19]. Finally,
the corpus annotations were encoded with the BIO
scheme.

Feature set
Given the rich and heterogeneous characteristics of che-
mical names, we defined a complex feature set to prop-
erly represent these entities, including token and NLP
derived features, orthographic and morphologic charac-
teristics, domain knowledge, provided by the occurrence
of known terms from a purpose-built dictionary, and
local context information:

• NLP features:
- Token, lemma, POS and chunk tags;
- Dependency parsing

• Orthographic features:
- Capitalization (e.g., “StartCap” and “AllCaps”);
- Digits and capitalized characters counting (e.g.,
“TwoDigit” and “TwoCap”);
- Symbols (e.g., “Dash”, “Dot” and “Comma”);
- Greek letters (e.g., features for “alpha” and “a“).

• Morphological features:
- Suffixes, prefixes and char n-grams of 2, 3 and
4 characters;
- Word shape features to reflect how letters,
digits and symbols are organized in the token (e.
g., the structure of “Abc:1234” is expressed as
“Aaa#1111”).

Figure 3 Overall architecture of the described solution, presenting the pipeline of required steps, tools and external resources. Boxes
with dotted lines indicate optional processing modules.
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• Domain knowledge:
- Dictionary matching using a combined diction-
ary with terms from Jochem [10], ChEBI [23]
and CTD [24].

• Local context:
- Lemma, POS and chunk features, extracted
from the windows {-1, 0}, {-2, -1}, {0, 1}, {-1, 1}
and {-3, -1} around the current token;
- Conjunctions of lemma and POS features, from
the same windows.

To encode the domain knowledge features, we per-
formed preliminary tests on the training and development
data, using a set of dictionaries compiled from different
sources including also PubChem [25] and Drugbank [26].
Based on these initial tests, the dictionaries extracted from
Jochem, ChEBI and CTD were selected, as their combina-
tion led to the best results when used in a dictionary-
matching approach as well as when used to train a
machine-learning model with a reduced set of features.
In order to select the best feature set for this entity

recognition task, we followed an iterative elimination
approach, starting with the full feature set defined above
and using the development data to evaluate models
trained on the training data. We started by comparing
the two methods of encoding local context information,
using windows or conjunctions as defined above,
together with the other features. When using windows,
selected features from preceding and succeeding tokens
are directly added as features for the current token. In
the case of conjunctions, on the other hand, new fea-
tures are created, consisting on the concatenation of
selected features from the surrounding tokens. In this
work, we used lemmas, POS and chunk tags from
neighbouring tokens to encode local context through
windows, and the concatenation of lemmas and POS
tags to encode local context through conjunctions.
These features were selected after preliminary tests per-
formed on the training data. Having selected the pre-
ferred local context feature, we evaluated the
importance of the remaining feature types by iteratively
removing each one and checking the impact on the
model’s performance. Whenever removing a given fea-
ture led to improved results, it was eliminated from the
set and was therefore not considered in the next itera-
tion. This process was repeated until no other feature
could be removed without negatively affecting the
results.

Machine-learning models
Since most recent results on biomedical NER indicate
that better performance results can be obtained by com-
bining annotations from systems with different charac-
teristics [27], we initially considered CRF models with

orders 1 to 4 to achieve such heterogeneity. Addition-
ally, we tested CRF models with forward (from left to
right) and backward (from right to left) parsing. How-
ever, contrary to the positive contribution in the case of
gene and protein entities, backward parsing models did
not provide positive outcomes in this task, when tested
on the development data.
A simple algorithm was used to harmonize annotations

provided by CRF models with different orders. Basically,
all the annotations with non-overlapping spans are added
to the final list of annotations. In the case two (or more)
annotations from different CRF models intersect, the one
with the highest confidence score as calculated by the
model is selected, while the remaining ones are ignored.

Post-processing steps
In order to solve some errors generated by the CRF
model, our solution integrates two mandatory post-
processing modules, implementing parentheses correction
and abbreviation resolution. To perform parentheses cor-
rection, the number of parentheses (round, square and
curly) on each annotation is verified and the annotation is
removed if this is an odd number, since it clearly indicates
a mistake by the ML model. Regarding abbreviation reso-
lution, we adapted a simple but effective abbreviation defi-
nition recognizer [28], which is based on a set of pattern-
matching rules to identify abbreviations and their full
forms. Thus, if one of the forms is annotated as an entity
name, the other one is added as a new annotation. Addi-
tionally, if one of the forms is not completely annotated,
we expand the annotation boundaries using the result
from the abbreviation extraction tool.
Additionally, we performed an error analysis on the

results achieved on the development set using a CRF
model trained on the training set, in order to collect
false positive and false negative annotations. We com-
pared the number of times a given chunk of text was
correctly annotated by the system (a true positive) to
the number of times it was incorrectly annotated (a
false positive), and calculated the log odds ratio of these
counts. These odds ratios could then be used to select
an exclusion list for improving the precision of the
results. Furthermore, in order to determine which terms
to use in this exclusion list, we defined two thresholds,
one for the log odds value and the second one for the
minimum times a chunk was found as a false positive.
To select the optimum value for these thresholds, we
performed a 10-fold analysis on the development set.

Ranking the annotations
The final step of the annotation pipeline is to rank the
predicted annotations, so that annotations that are most
likely correct appear at the top. Ranking is derived from
the confidence scores provided by the CRF models, a
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value between 0 and 1 that reflects the certainty of the
model generating each annotation. In that way, ranking
simply orders the annotations in descending order of
scores. In the case of the CDI task, an additional filter-
ing step is applied to remove repeated matches of the
same terms in each text.
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