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Abstract 

Background: Developing structure–activity relationships (SARs) of molecules is an important approach in facilitating 
hit exploration in the early stage of drug discovery. Although information on millions of compounds and their bioac-
tivities is freely available to the public, it is very challenging to infer a meaningful and novel SAR from that information.

Results: Research discussed in the present paper employed a bioactivity-centered clustering approach to group 
843,845 non-inactive compounds stored in PubChem according to both structural similarity and bioactivity similar-
ity, with the aim of mining bioactivity data in PubChem for useful SAR information. The compounds were clustered in 
three bioactivity similarity contexts: (1) non-inactive in a given bioassay, (2) non-inactive against a given protein, and 
(3) non-inactive against proteins involved in a given pathway. In each context, these small molecules were clustered 
according to their two-dimensional (2-D) and three-dimensional (3-D) structural similarities. The resulting 18 million 
clusters, named “PubChem SAR clusters”, were delivered in such a way that each cluster contains a group of small 
molecules similar to each other in both structure and bioactivity.

Conclusions: The PubChem SAR clusters, pre-computed using publicly available bioactivity information, make it pos-
sible to quickly navigate and narrow down the compounds of interest. Each SAR cluster can be a useful resource in 
developing a meaningful SAR or enable one to design or expand compound libraries from the cluster. It can also help 
to predict the potential therapeutic effects and pharmacological actions of less-known compounds from those of 
well-known compounds (i.e., drugs) in the same cluster.
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Background
PubChem [1–6] is a public repository for information on 
small molecules and their biological activities (hereafter 
simply called “bioactivities”). It has a wealthy collection 
of chemical information, with more than 180 million 
depositor-provided substance descriptions, 60 million 
unique chemical structures, and one million biologi-
cal assay results (as of December 2014). These biologi-
cal assays cover more than 8,000 unique protein target 
sequences. PubChem’s bioactivity data contents include 
those from the U.S. National Institutes of Health (NIH)’s 
Molecular Libraries Program [7], manually extracted 
results pulled from tens of thousands of scientific papers 
published in medicinal chemistry journals by data con-
tributors such as ChEMBL [8], and beyond.

For the efficient use of this vast amount of chemi-
cal information, PubChem provides various search 
and analysis tools, most of which exploit the concept of 
molecular similarity. PubChem can quickly quantify 
similarity between chemical structures at a rate of mil-
lions of pairwise comparisons per CPU core per second, 
using a fragment-based two-dimensional (2-D) similar-
ity method that employs the 881-bit PubChem subgraph 
fingerprints [9] and the Tanimoto equation [10–12] (see 
the “Methods” section for more details). However, tradi-
tional 2-D similarity methods sometimes fail to recognize 
structural similarity that can be easily realized with three-
dimensional (3-D) similarity methods [13–16]. To address 
this issue, the PubChem3D project was launched [17–24]. 
PubChem3D generates 3-D conformer models for about 
92% of chemical records in PubChem, averaging ~110 
conformers per compound [17, 24]. It also delivers tools 
and services that exploit 3-D molecular similarity between 
these conformer models, which is quantified using the 
atom-centered Gaussian-shape comparison method by 
Grant and Pickup [25–28] (see the “Methods” section for 
more details on PubChem’s 3-D similarity method). To 
understand the statistical meaning of PubChem 2-D and 
3-D similarity scores, the similarity score distributions 
for randomly selected biologically tested compounds 
were investigated using both a single conformer [22] and 
multiple conformers [23] for each compound. In addi-
tion, PubChem3D pre-computes compounds similar to 
each applicable compound in PubChem in terms of 3-D 
similarity, and provides immediate access to these “3-D 
neighbors” as well as their respective superpositions 
[19]. Our previous studies demonstrate the utility of the 
PubChem3D resources by illustrating complementarity 
between PubChem 2-D and 3-D similarity methods [19, 
21–23]. The present study describes our preliminary work 
to build a new database resource from the PubChem3D 
project, namely, PubChem structure–activity relationship 
(SAR) clusters [29].

Currently, two million compounds in PubChem have 
been tested in at least one assay, with 48% of them (0.96 
million compounds) declared active in at least one assay. 
Extracting valuable SARs from such a large corpus of bio-
activity information may provide new opportunities for 
facilitating drug discovery and development. However, it 
is not an easy task because of the heterogeneous nature 
of these data. Because biological assays in PubChem are 
contributed by many data depositors, these assays reflect 
different interests of the individual depositors. Therefore, 
biological assays that target the same protein or pathway 
may test different sets of compounds (typically with dif-
ferent scaffolds). Even if these assays do test some com-
mon compounds, the experimental conditions used in 
the assays are not necessarily identical, making it diffi-
cult to compare bioactivity data from different assays. In 
addition, the majority of these data were generated from 
high throughput screenings, which are known to contain 
many false positives/negatives [30–32]. Despite these 
difficulties, there has been an increasing interest in sys-
tematic large-scale mining of SARs from bioactivity data 
available in the public domain [33, 34].

The present study employed a bioactivity-centric clus-
tering approach to group more than 800 thousand “non-
inactive” compounds archived in PubChem according 
to their structural similarity and bioactivity similarity. 
In this study, a non-inactive compound is defined as any 
molecule that is not declared to be inactive in a biologi-
cal assay. This includes “unspecified/inconclusive” com-
pounds as well as “active” molecules. The reason for using 
non-inactive compounds instead of active compounds 
is that the unspecified and inconclusive compounds are 
indeed active in many assays. (See the “Methods” sec-
tion for more details on the definition of non-inactive 
compounds.) Clustering these non-inactive compounds 
resulted in 18 million SAR clusters, each of which con-
tains a group of structurally similar molecules that have 
similar bioactivities. Importantly, three different contexts 
of bioactivity similarity were considered. Compounds 
can have similar bioactivities to each other when they 
were tested to be non-inactive: (1) in a common assay, (2) 
against a common protein sequence, or (3) against pro-
teins involved in a common biological pathway. The use 
of the three contexts of bioactivity similarity allows for 
organizing bioactivity data of molecules tested in a sin-
gle assay, as well as those scattered across multiple assays 
that are targeting the same protein or pathway. In addi-
tion, five different structural similarity measures (one 2-D 
and four 3-D similarity measures) were used to reflect 
different flavors of chemical structure similarity that may 
be unrecognizable when only one measure is employed. 
As a result, each of the SAR clusters belongs to one of 
fifteen different cluster types (arising from combination 
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of each of the three bioactivity similarity contexts with 
each of the five different structural similarity measures: 
3 contexts × 5 measures = 15 cluster types). The detailed 
procedures for generating the SAR clusters are described 
in the present paper, with discussion on effects of the 2-D 
and 3-D similarity measures upon the clustering results.

Results
Construction of three data sets
To consider three different contexts of bioactivity simi-
larity between molecules, three different compound 
sets (Sets A, B, and C) were constructed with PubChem 
Compound records that had 3-D information available 
and that satisfied the following conditions:

1. for Set A, compounds were declared to be non-inac-
tive in at least one bioassay stored in the PubChem 
BioAssay database [3–5] (unique identifier: AID),

2. for Set B, compounds were declared to be non-
inactive against at least one target protein sequence 
that was archived in the NCBI’s Protein database [6] 
(unique identifier: GI), and

3. for Set C, compounds were declared to be non-
inactive against at least one target protein sequence 
involved in a biological pathway or biosystem that 
was stored in the NCBI’s BioSystems database [35] 
(unique identifier: BSID).

More detailed descriptions on construction of these 
sets, including the definition of the non-inactive com-
pounds, are given in the “Methods” section. Although any 
database can have unique identifiers (UIDs) to organize 

its records, the term “UID” is specifically reserved in the 
present study for any of AID, GI, and BSID (depending 
on the context) to represent the three contexts of bio-
activity similarity, but not for CID (the unique identifier 
used in the PubChem Compound database). Note that 
a single protein sequence may have multiple GIs in the 
Protein database. As explained in detail in the “Meth-
ods” section, this issue was addressed by using the pro-
tein identity group (PIG), which disambiguates different 
GIs that have an identical protein sequence. The use of 
the PIG allowed for treating identical protein sequences 
as one record and removing redundancy in the protein 
sequences considered in the present study. A side effect 
of this is that it groups identical protein sequences from 
different organisms.

As listed in Table  1, Set A had 843,845 compounds 
associated with 548,071 assays, Set B had 400,599 com-
pounds associated with 4,280 unique GIs, and Set C had 
265,470 compounds associated with 4,540 BSIDs. Note 
that not all biological assays archived in PubChem have 
information on target proteins, and that not all target 
proteins have associated pathways in the BioSystems 
database. [That is, Set A includes Set B, which in turn 
includes Set C.] As a result, Set A has the largest number 
of compounds and Set C has the smallest.

Construction of SAR clusters
To generate SAR clusters for each of the UIDs (i.e., 548,071 
AIDs, 4,280 GIs, and 4,540 BSIDs), the non-inactive com-
pounds associated with that UID were retrieved from the 
appropriate data set (i.e., Set A for AIDs, Set B for GIs, 
Set C for BSIDs) and grouped by structural similarity, 

Table 1 Counts of compounds (CIDs), assays (AIDs), proteins (GIs), and pathways (BSIDs) with PubChem structure–activ-
ity relationship (SAR) clustering results as a function of similarity type

Numbers in parentheses are percentages of the counts relative to the total count initially considered for each cluster set type. The UID represents AID, GI, and BSID for 
assay-, protein-, and pathway-centric clusters, respectively.

Initial 3-D clusters 2-D clusters Any clusters

STST-opt ComboTST-opt CTCT-opt ComboTCT-opt

Number of CIDs

 Assay-centric clusters  
(from Set A)

843,845 669,504 (79.3%) 746,042 (88.4%) 747,969 (88.6%) 747,586 (88.6%) 802,383 (95.1%) 829,279 (98.3%)

 Protein-centric clusters 
(from Set B)

400,599 313,282 (78.2%) 356,954 (89.1%) 360,200 (89.9%) 357,543 (89.3%) 382,737 (95.5%) 397,197 (99.2%)

 Pathway-centric clusters 
(from Set C)

265,470 213,738 (80.5%) 243,006 (91.5%) 245,215 (92.4%) 243,378 (91.7%) 257,170 (96.9%) 264,338 (99.6%)

Number of UIDs

 Assay-centric clusters  
(from Set A)

548,071 218,789 (39.9%) 244,381 (44.6%) 245,334 (44.8%) 246,625 (45.0%) 264,311 (48.2%) 274,435 (50.1%)

 Protein-centric clusters 
(from Set B)

4,280 3,340 (78.0%) 3,419 (79.9%) 3,438 (80.3%) 3,428 (80.1%) 3,620 (84.6%) 3,660 (85.5%)

 Pathway-centric clusters 
(from Set C)

4,540 3,973 (87.5%) 4,073 (89.7%) 4,097 (90.2%) 4,089 (90.1%) 4,149 (91.4%) 4,168 (91.8%)
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using the Taylor–Butina grouping algorithm [36, 37],  
as implemented in the software provided by Mesa Ana-
lytics and Computing, Inc. [38, 39]. The structural simi-
larity between compounds was quantified with five 
similarity measures (STST -opt, ComboTST -opt, CTCT -opt, 
ComboTCT -opt, and the 2-D Tanimoto), as defined in the 
“Methods” section, and the clustering thresholds (dthresh 
in Table  2) were derived from the summary statistics of 
these similarity measures [23]. A more detailed descrip-
tion for PubChem SAR clustering is given in the “Meth-
ods” section.

The resulting clusters can be broadly classified into 
three types, according to the context of the bioactiv-
ity similarity considered. An “assay-centric” SAR cluster 
(generated from Set A) is defined as a group of struc-
turally similar compounds tested to be non-inactive in a 
common bioassay. A “protein-centric” SAR cluster (gen-
erated from Set B) is defined as a group of structurally 
similar compounds declared to be non-inactive against 
a common protein target, and a “pathway-centric” SAR 
cluster (generated from Set C) is defined as a group of 
structurally similar compounds declared non-inactive 
against protein targets involved in a common biologi-
cal pathway. Alternatively, the clusters can be catego-
rized into five types according to the structural similarity 
measures employed: STST -opt, ComboTST -opt, CTCT -opt, 
ComboTCT -opt, and 2-D clusters. Note that all of the first 
four clusters are 3-D clusters. Combination of the three 
bioactivity similarity contexts and the five structural sim-
ilarity measures leads to 15 SAR cluster subtypes.

Summary statistics of SAR clusters
The numbers of SAR clusters generated for the 15 cluster 
subtypes are compared in Figure  1. There were 9.9 mil-
lion assay-centric clusters, 2.5 million protein-centric 
clusters, and 6.2 million pathway-centric clusters. If the 
five similarity measures employed give similar clustering 

Table 2 Average (x̄) and  standard deviation (s) of  the 
similarity scores between  10,000 randomly-selected bio-
logically-tested compounds (from Ref. [22, 23]), and  the 
dissimilarity threshold (dthresh) used in  the present study 
to generate the structure–activity relationship (SAR) clusters

Nmax is the maximum number of diverse conformers considered per compound 
for the 3-D similarity computation. The dthresh value for each of the five similar-
ity measures were determined by subtracting its (x̄ + 2s) value from unity (after 
normalization to one for ComboTST-opt and ComboTCT-opt). The statistical param-
eters for Nmax = 10 were used to determine the dthresh value for the 3-D similarity 
measures.

Similarity measures x̄ s x̄ + 2s dthresh

2-D 0.4229 0.1326 0.6881 0.3119

3-D (Nmax = 1)

 STST-opt 0.5438 0.0986 0.7410 –

 ComboTST-opt 0.6161 0.1276 0.8713 –

 CTCT-opt 0.1807 0.0609 0.3024 –

 ComboTCT-opt 0.5859 0.1440 0.8738 –

3-D (Nmax = 10)

 STST-opt 0.6464 0.1017 0.8498 0.1502

 ComboTST-opt 0.7682 0.1337 1.0356 0.4822

 CTCT-opt 0.2485 0.0706 0.3898 0.6102

 ComboTCT-opt 0.7733 0.1386 1.0505 0.4748

Figure 1 Number of structure–activity relationship (SAR) clusters. These numbers do not include clusters with only one compound (i.e., singletons). 
3-D clusters that have multiple conformers of only one compound were also regarded as singletons and not included in the statistics. Ntotal indi-
cates the total number of clusters for a given bioactivity similarity context. Numbers in parentheses on the pie charts indicate the percentage of five 
cluster types (based on structural similarity measures used in clustering) with respect to Ntotal for the corresponding bioactivity similarity context. 
For all three bioactivity similarity contexts, there are more 3-D clusters than 2-D clusters.
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results, the number of SAR clusters from a given simi-
larity measure is expected to be around 20% of the total 
number of clusters. However, for all three bioactivity 
similarity contexts, 2-D clusters corresponded only to 
3–4.5% of the total clusters. All remaining clusters were 
3-D clusters.

The summary statistics for the SAR clusters are 
shown in Table 3. The average size of the 2-D clusters 
was greater than that of 3-D clusters. For example, 
for the assay-centric clusters, the 2-D clusters had 8.2 
compounds on average, but the 3-D clusters contained 
4.0–5.9 compounds on average, depending on the 
3-D similarity measure employed. This trend is well 
reflected in Figure 2, which shows the distributions of 
the cluster sizes in terms of the number of compounds 
per cluster. Each cluster had at least two compounds 
because all singletons were removed. When a 3-D clus-
ter contained multiple conformers of only one com-
pound and nothing else, the cluster was considered as 
a singleton.

The distribution of the cluster sizes in terms of the 
number of conformers per cluster is displayed in Figure 3. 
Only the 3-D cluster data are shown because the 2-D clus-
tering does not use conformer models. Figure  3 clearly 
shows that, for all three bioactivity similarity contexts, the 
proportion of small clusters (e.g., with two or three con-
formers) increases in order of CTCT -opt < ComboTCT -opt   
<  ComboTST -opt  <  STST -opt clusters. This trend is 
reflected in the average number of conformers per cluster  

(listed in Table 3), which increases in order of STST -opt <  
ComboTST -opt < ComboTCT -opt < CTCT -opt clusters. This 
order in the cluster size among the four 3-D cluster types 
remains unchanged when the number of compounds per 
cluster is used as a measure of the cluster size (as shown 
in Figure 2; Table 3).

Figure  4 illustrates the distribution of the number of 
clusters per compound. Whereas the 2-D clusters were 
constructed through a “direct” clustering of the com-
pounds being considered, the 3-D cluster construction 
involved an “indirect” clustering of the compounds, 
meaning that their multiple conformers were clustered 
first, then the conformer identifiers were converted to 
their corresponding compound identifiers (i.e., CIDs). For 
a given UID, as a result, a compound can occur in multi-
ple 3-D clusters via its different conformers, whereas it 
can occur in only one 2-D cluster, as reflected in Figure 4. 
Many compounds occur only in one 2-D cluster across all 
UIDs considered for each biological similarity context. 
This explains why the average number of 3-D clusters per 
compound is much greater than the number of 2-D clus-
ters per compound, as listed in Table 3.

Overlap between different cluster types
One interesting question one may ask is “how similar (or 
different) are clusters from the five different similarity 
measures in the aggregate?” However, this is not an easy 
question to answer, considering that clustering of more 
than 800 thousand compounds resulted in a total of 18 

Table 3 Summary statistics of structure–activity relationship (SAR) clusters

Symbols x̄ and s indicate the average and standard deviation, respectively. UID represents AID, GI, and BSID for assay-, protein-, and pathway-centric clusters, respec-
tively. Statistics exclude singleton clusters.

3-D clusters 2-D clusters

STST-opt ComboTST-opt CTCT-opt ComboTCT-opt

x̄ s x̄ s x̄ s x̄ s x̄ s

Assay-centric clusters

 # Compounds per cluster 4.0 5.2 5.3 7.8 5.9 9.5 5.4 8.3 8.2 13.8

 # Conformers per cluster 5.8 11.5 10.3 25.4 18.3 48.2 12.2 32.0 – –

 # Clusters per compound 18.6 67.7 18.3 80.4 12.4 51.1 16.2 70.8 4.6 18.8

 # Clusters per UID 14.1 55.8 10.6 48.9 6.4 29.3 9.1 42.3 1.7 6.3

Target-centric clusters

 # Compounds per cluster 4.7 9.0 6.7 14.5 7.9 19.2 6.9 15.8 13.7 33.8

 # Conformers per cluster 6.3 18.4 11.4 40.8 21.4 84.9 13.6 52.8 – –

 # Clusters per compound 11.8 39.9 12.4 47.0 8.7 31.0 11.1 41.3 2.7 8.9

 # Clusters per UID 237.0 463.0 194.8 389.9 114.6 232.0 167.7 340.6 20.8 40.5

Pathway-centric clusters

 # Compounds per cluster 4.7 8.7 6.5 13.7 7.4 18.1 6.6 14.8 13.5 35.1

 # Conformers per cluster 6.4 17.9 11.1 37.2 19.4 79.1 12.9 47.4 – –

 # Clusters per compound 41.5 119.9 43.2 121.1 31.3 93.1 39.1 110.8 9.8 26.3

 # Clusters per UID 472.8 774.1 400.0 683.9 253.6 439.7 351.5 607.2 44.9 70.2
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million clusters. As a further complicating factor, each 
compound occurs in at most one 2-D cluster but can be 
part of any number of 3-D clusters for a given UID. In 
the present paper, overall similarity between the clusters 
from different similarity measures was estimated by the 
percentage of “overlapping” compounds occurring in 

clusters of two similarity measures relative to the total 
number of compounds occurring in clusters from a simi-
larity measure, computed as

O(i, j) =
Ncmpd(i, j)

Ncmpd(i)
× 100%

Figure 2 Distribution of 2-D and 3-D cluster sizes in terms of the number of “compounds” per cluster. Panels a, b and c are for assay-, protein-, and 
pathway-centric clusters, respectively. The proportion of small clusters (e.g., with two or three compounds) are much greater for 3-D clusters than 
for 2-D clusters. This may be related to the use of multiple conformers per compound for 3-D clustering.
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where Ncmpd(i) is the number of compounds occurring 
in clusters from similarity measure i for a given UID, 
and Ncmpd(i, j) is the number of those occurring in clus-
ters from both similarity measures i and j for that UID. A 
compound does not occur in a cluster if it was considered 
to be a singleton during the clustering procedure. There-
fore, O(i, j) quantifies the similarity in clustering behavior 

of both similarity measures i and j for a given UID. The 
cluster overlap is not necessarily symmetrical.

Figure 5 shows the average O(i, j) values over all AIDs, 
GIs, and BSIDs. Among the four different 3-D cluster 
types, the STST-opt clusters showed the least overlapping 
compounds with the other three 3-D clusters. For exam-
ple, for the assay-centric clusters, the average values 

Figure 3 Distribution of 3-D cluster sizes in terms of the number of “conformers” per cluster. Panels a, b and c are for assay-, protein-, and pathway-
centric clusters, respectively. Data for 2-D clusters are not shown because 2-D clustering does not use conformers.
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for O(STST-opt, j) and O(i, STST-opt) between STST-opt and 
the other three 3-D clusters were 71–79%, whereas the 
average O(i, j) values between the other three 3-D clus-
ter types were 85% or greater. Interestingly, the STST-opt 
clusters also showed the least overlaps with the 2-D Tani-
moto similarity, with O(STST-opt, 2-D) and O(2-D, STST-opt)  
values of 76 and 69%, respectively, which are lower than 

any other O(i, 2-D) and O(2-D, j) values between 2-D 
similarity measures and the others. This may be because, 
among the four 3-D similarity measures considered, 
STST-opt is the only one that does not take feature (or 
functional group) similarity into account. It seems that 
the other three 3-D similarity measures, to some extent, 
can take structural information into account that is 

Figure 4 Distribution of the number of clusters across all UIDs per compound. The UID indicates AID, GI, and BSID for assay-centric (panel a), 
protein-centric (panel b), and pathway-centric clusters (panel c), respectively.
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encoded in molecular fingerprints by using feature atoms 
that represent six functional group types. However, the 
STST-opt similarity uses steric shape of the molecule only, 
and this may be the reason why it produced clusters that 
least overlapped with those from other similarity meth-
ods used.

SAR clusters with high-value compounds (HVCs)
By design, compounds grouped into the same PubChem 
SAR cluster are guaranteed to be structurally similar 
(in terms of one of the five similarity measures) and to 
have a similar bioactivity (in terms of one of the three 
bioactivity similarity contexts). However, what more can 
we say about these clusters? What is known about the 
compounds contained in the clusters? Given that the 
compounds are structurally similar and have similar bio-
activity for the UID, knowing what else is known may be 
very helpful to characterize the meaning of the cluster. 
This thought led to the notion of high-value compounds 
(HVCs), which may provide some hints as to the nature 
of the cluster as defined by what is known about the 
compounds contained in the same cluster. An HVC was 
defined as a molecule whose corresponding PubChem 
Compound record satisfied any of the following three 
conditions:

1. it had a high potency, with its IC50 or EC50 value 
smaller than 10  μM in any bioassay archived in 
PubChem,

2. it had a Medical Subject Headings (MeSH) annota-
tion [40], or

3. it had a MeSH “Pharmacological Action” annotation.

MeSH [40] is the National Library of Medicine’s con-
trolled vocabulary thesaurus, consisting of a set of com-
monly used terms in the fields of health and biomedical 
sciences as well as medicine. The existence of a MeSH 
annotation to a PubChem Compound record may be an 
indication of a meaningful bioactivity of the molecule, 

evidenced by publications archived in PubMed. How-
ever, some MeSH annotations are too general (such as 
solvents, carcinogens, inhibitors, and so on) to describe 
a specific biological function of the molecule. For this 
reason, molecules with MeSH “Pharmacological Action” 
annotations were also separately included in the defi-
nition of the “high-value compounds” because these 
annotations indicate that a specific biological role is 
known. As a result, the HVCs with the “Pharmacological 
Action” annotation are a subset of those with the “MeSH” 
annotation.

Figure 6 shows the number of clusters with HVCs for 
the assay-, protein-, and pathway-centric clusters. Among 
the 9.9 million assay-centric clusters, 43.0% (4.3 million) 
of them contained HVCs. The fraction of clusters con-
taining HVCs in the protein- and pathway-centric clus-
ters were 49.5% (1.2 million of 2.5 million clusters) and 
50.9% (3.1 million of 6.2 million clusters), respectively. 
The clusters that have high-potency HVCs (with IC50 
or EC50 values smaller than 10 μM) correspond to 28.1, 
40.1, and 33.8% of the total for the assay-, protein-, and 
pathway-centric clusters, respectively. The clusters that 
have MeSH-annotation HVCs were 20.0, 20.1 and 25.7% 
of the total for assay-, protein-, and pathway-centric clus-
ters, respectively. Figure 7 depicts the distribution of the 
number of HVCs per cluster, and the summary statistics 
are listed in Table 4. Some clusters have as many as hun-
dreds of HVCs, but most clusters have only a few HVCs. 
On average, for example, the assay-centric clusters have 
1.3 HVCs with high potency, 0.5 HVCs with MeSH, and 
0.3 HVCs with Pharmacological Action annotation.

The cut-off value of 10 μM for high-potency HVC is an 
arbitrary choice. Among the 4.6 million biological activi-
ties associated with the compounds considered in this 
study, 2.0 million (44%) indicate a biological response 
less than 10 μM. When these are collapsed at the com-
pound level, 80% of the compounds are potent at less 
than 10 μM in at least one assay. The  percentages sug-
gest that it should be relatively common to find clusters 

Figure 5 Cluster overlap between similarity measures. The overlap between clusters from five different similarity measures is quantified with the 
average O(i, j) values, where i and j are indices for rows and columns, respectively (see text for the definition).
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with high-potency HVCs. In some ways, this is a funda-
mental point. Finding a group of chemicals that are both 
chemically similar and potent is the basis for determining 
an interesting structure–activity-relationship. The high-
potency HVC may help to indicate cases of polyphar-
macology (e.g., where a compound has potent biological 
activity for another target, suggesting that the chemi-
cally similar cluster members may have similar potency 
this other target) that may otherwise be missed. This can 
make the high-potency HVC a very useful annotation for 
clusters.

Examples
We have selected the following three examples that 
may help demonstrate the nature of the PubChem SAR 
clusters:

1. assay-centric clusters for AID 47904,
2. protein-centric clusters for GI 29337198, and
3. pathway-centric clusters for BSID 545294.

The PubChem SAR clusters for these UIDs are pro-
vided in Additional files 1, 2, and 3. In the examples 
below, some of the clusters are visualized as a com-
pound–compound network, or conformer–conformer 
network, as described in the “Methods” section.

Carbonic anhydrase inhibitors (AID 47904)
The first example is the clusters for AID 47904, which 
is a literature-extracted assay that targets human car-
bonic anhydrase (CA) isozyme II [41]. CAs, which cata-
lyze the interconversion between carbon dioxide and the 
bicarbonate ion, are involved in many important physi-
ological processes, including respiration and transport of 
CO2/bicarbonate, pH and CO2 homeostasis, electrolyte 
secretion in a variety of tissues and organs, and biosyn-
thetic reactions (such as gluconeogenesis, lipogenesis, 
and ureagenesis) [41, 42]. Therefore, CAs are considered 
as important therapeutic targets for many diseases, and 
some CA inhibitors are in clinical use mainly as diuretics 
and antiglaucoma agents, but also as therapeutic agents 
for other diseases [41, 42].

In AID 47904, sulfamide (H2NSO2NH2; CID 82267) 
and its 25 derivatives, as well as six CA inhibitors already 
in clinical use, were tested against human CA isozyme 
II. The PubChem SAR clusters (Clusters 1–27) for these 
32 compounds are given as Additional file  1. The cor-
responding ComboTCT-opt clusters and 2-D clusters are 
visualized in Figure  8, in which each node represents a 
compound and the edge between two nodes indicates 
that the distance between the two corresponding CIDs is 
closer than the dthresh value used for clustering. When two 

Figure 6 The number of the PubChem SAR clusters with high-value 
compounds (HVCs). The HVCs have high potencies (blue), MeSH 
annotations (red), or “Pharmacological Action” annotations (green). 
Panels a, b, and c are for assay-, protein-, and pathway-centric clus-
ters. Numbers in parentheses indicate the percentages relative to the 
respective total cluster counts.
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nodes are in different clusters, no edge is added between 
them. However, even in this case, the two nodes may still 
be closer than the dthresh value, which is an inevitable con-
sequence of the clustering algorithm employed.

A noticeable observation in Figure  8 is that the total 
number of nodes for the ComboTCT-opt clusters is 41, 
which is greater than the number of non-inactive com-
pounds used in the SAR clustering, suggesting that some 

of the compounds occur more than once. For example, 
CIDs 3038 and 5284549 occur in both Clusters 19 and 
23, making Cluster 23 appear to be a subset of Cluster 19. 
However, this is not true at the conformer level because 
the conformers involved in the two clusters are not iden-
tical. Note that it is not compounds but their conform-
ers that were clustered during the 3-D SAR clustering. 
As illustrated in Figure 9, a single compound can occur 

Figure 7 Distribution of the number of high-value compounds (HVCs) per cluster. Panels a, b, and c are for the assay-, target-, and pathway-centric 
clusters.
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in different 3-D clusters via different conformers because 
multiple conformers per compound were used for 3-D 
clustering. In contrast, a compound can occur only once 
in 2-D clusters. This explains why there are much more 
3-D clusters than 2-D clusters (as observed in Figure 1). 
In essence, by using up to ten conformers for each com-
pound, the 3-D clustering considers ten times more 
objects than the 2-D clustering does, resulting in the 
increased count of 3-D clusters over 2-D clusters.

When two compounds are grouped into a common 3-D 
cluster via their conformers, two compounds can adopt 
similar 3-D shapes and, potentially, similar protein-bind-
ing features. When the two compounds occur together 
in multiple 3-D clusters, it indicates that the compounds 
share a variety of 3-D shapes. However, it should be noted 
that the underlying conformers in these common 3-D 
clusters are not necessarily the bioactive conformers. In 
fact, the PubChem 3-D conformer models are designed 
to ensure that 90% of the conformer models have at least 
one bioactive conformer whose root-mean-square dis-
tance (RMSD) from the experimentally determined con-
formation is closer than an empirically determined upper 
limit [43]. Not knowing which 3-D shape of a molecule 
is important for binding is an inherent limitation of all 
3-D similarity approaches that require 3-D conformer 
models. Indeed, with PubChem SAR clusters there may 
be multiple “hypotheses” as to how a group of molecules 
may bind.

It is also noticeable for the example in Figure  8 that, 
for both the ComboTCT-opt and 2-D, highly potent com-
pounds tend to be clustered together. Similarly, less 
potent compounds are grouped together. As shown in 
Additional file 4: Figure S1, the compounds in Clusters 25 
and 27 have aromatic rings, whereas Cluster 26 contains 
aliphatic sulfamides. The dendrogram in Additional file 4: 
Figure S1 was generated using the PubChem Structure 
Clustering service [44]. This service uses a single-link-
age hierarchical clustering algorithm [45], which is not 
the same as the Taylor–Butina algorithm [36, 37] used 
in this study. Therefore, the clusters from the PubChem 
SAR clustering are not necessarily the same as those from 
PubChem Structure Clustering tool [44]. However, they 
should be closely related.

Agonists of aryl hydrocarbon receptor (GI 29337198)
The aryl hydrocarbon receptor (AhR, GI 29337198) [46–
51] is a ligand-activated transcription factor involved 
in the regulation of the biological response to aromatic 
hydrocarbons. In the absence of agonists, it exists in the 
cytosol as an inactive complex with chaperone Hsp90 
and co-chaperones p23 and ARA9. Upon agonist binding 
at the Per-AhR/Arnt-Sim (PAS) domain of the AhR, its 
association with the chaperones is altered through a con-
formational change, leading to translocation of the AhR 
from the cytoplasm to the nucleus, where it regulates 
gene expressions involved in detoxification and metabo-
lism of various compounds. The acute toxicity of many 
environmental pollutants including halogenated dioxins 
such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; CID 
15625) arises from their interactions with the AhR. In 
addition, because it is also involved in the regulation of 
cell proliferation and differentiation [50, 51], interest in 
AhR biology has grown, beyond a toxicological perspec-
tive, to its role in normal physiology and development of 
mammalian organisms [46].

In the PubChem BioAssay database, there are 13 bioas-
says whose target is the AhR, as listed in Table 5. These 
assays, deposited by ChEMBL [8], are extracted from 
three different scientific articles [47–49] describing stud-
ies which tested different chemical series for their ability 
to activate the AhR transcription using different experi-
mental techniques and conditions. A total of 43 com-
pounds that were tested non-inactive in at least one of 
the 13 bioassays are presented in Additional file 4: Figure 
S2, grouped according to the original publications from 
which the 13 assays were extracted. These compounds 
include 30 aurones (from PMID 20392544), 6 flavones 
(from PMID 19719119), and 4 imidazo[1,5-a]quinoxa-
lines (from PMID 2198547), as well as three other com-
pounds that were tested for comparison purposes [i.e., 

Table 4 Summary statistics of high-value compound (HVC) 
contents per cluster

Symbols x̄ and s indicate the average and standard deviation, respectively, of 
the number of HVCs per cluster.

The number of HVCs

Potency MeSH Pharm Any

Assay-based clusters

 x̄ 1.3 0.5 0.3 1.7

 s 3.9 1.9 1.5 4.2

 Minimum 0 0 0 0

 Maximum 575 485 139 575

Target-based clusters

 x̄ 2.0 0.6 0.4 2.4

 s 8.0 2.4 1.9 8.5

 Minimum 0 0 0 0

 Maximum 874 291 109 895

Pathway-based clusters

 x̄ 1.7 0.7 0.4 2.4

 s 7.1 3.0 1.9 7.8

 Minimum 0 0 0 0

 Maximum 852 256 109 886
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CIDs 15625 (TCDD), 2361, and 6476401]. CID 15625 
was tested both in PMIDs 19719119 and 21958547.

PubChem SAR clusters arising from these 43 com-
pounds and a summary of their sizes are provided in 
Additional file 2, and the ComboTCT-opt clusters and 2-D 
clusters are compared in Figure  10 for illustration pur-
poses. The most noticeable aspect is that the flavones/

isoflavones and aurones are grouped into the same clus-
ter, indicating that there may be a structural basis for 
the similarity in biological activity against AhR between 
the two groups of chemicals, although they were tested 
in different published research studies using different 
experimental methods. It is also noteworthy that while 
TCDD (CID 15625) is grouped into the same 3-D cluster 

Figure 8 ComboTCT-opt and 2-D clusters for AID 47904. Each node represents a non-inactive compound and the edge between two nodes within a 
cluster indicates that the distance between the two CIDs is closer than the dthresh value used for clustering. The node color represents the value of the 
inhibition constant (Ki) for the compound against human carbonic anhydrase (CA) isozyme II. All singletons are removed.
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as flavones/isoflavones and aurones, while it is excluded 
as a singleton after the 2-D clustering. This illustrates 
how 3-D clustering can complement 2-D clustering.

This example demonstrates that the protein-centric 
SAR clusters provide a glimpse at the structural basis of 
bioactivity similarity between compounds tested in dif-
ferent bioassays that target a common protein. It also 
shows that the SAR clusters help to join data from mul-
tiple publications aiding in their trans-publication data 
interpretation.

Modulation of visual cycle I
The last example is the pathway-centric clusters for the 
visual cycle 1 (BSID 545294), the process of recycling 
all-trans retinal, released from the bleached pigment 
(such as rhodopsin in rods and cone pigment in cones) 
to 11-cis-retinal, required for pigment regeneration [52]. 

This record in the BioSystems database is derived from 
the BioCyc database collection [53] (Record PWY-6861 
for human). Proteins in this pathway are targeted by 
13 assays in PubChem, extracted from four scientific 
papers (Table  6) [54–57]. The compounds contained 
in these assays were tested against three different pro-
teins involved in the visual cycle: rhodopsin (GI 129204) 
[54, 55], retinol-binding protein 4 (GI 62298174; RBP4) 
[56], and retinol dehydrogenase 9 (GI 74752227; RDH9) 
[57]. RDH9 is also called 3α-hydroxysteroid dehydroge-
nase or dehydrogenase/reductase SDR family member 9 
(DHRS9), the latter of which is named after the gene that 
encodes the protein.

The PubChem SAR clusters for BSID 545294 are pro-
vided in Additional file  3. The corresponding CTCT-opt, 
ComboTCT-opt, and 2-D clusters are displayed in Figure 11. 
For comparison purposes, the 2-D dendrogram for the 

Figure 9 Collapse of conformer clusters into compound clusters. A compound is represented with a square node and its conformer is represented 
with a round node of the same color. An edge between two conformer nodes indicates that the distance between them is below the dthresh value 
used for clustering, and the edge between two compound nodes indicates that at least one conformer pair arising from the two compounds is 
below the dthresh value. PubChem 3-D SAR clustering algorithm is initially applied to conformers of non-inactive compounds, resulting in conformer 
clusters (in the left panel). Compound clusters are constructed by replacing the conformers with the respective compounds (in the right panel). As a 
result, a compound can occur in multiple compound clusters (via its different conformers).
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Table 5 Comparison of assays targeting aryl hydrocarbon receptor (AhR, GI 29337198)

LRGA AhRE/XRE-luciferase reporter gene assay, EROD ethoxyresofurin-O-deethylase assay, CALUX CALUX transactivational assay, WBA western blot analysis, MA micro-
scopic analysis with DAPI staining.
a In the presence of 6-hydroxy-7-methoxyflavone, which is an AhR antagonist.

AID Assay 
methods

Ligand 
concentration (μM)

Activity 
measure

Number of compounds

Tested Active Inactive Unspecified Non-inactive

PMID 19719119

 431863 LRGA Fold change 7 0 0 7 7

 431864 LRGAa 0.001 NA 1 0 1 0 0

 431865 LRGAa 0.0003 NA 1 0 1 0 0

 431866 LRGAa 0.0001 NA 1 0 1 0 0

 431867 LRGAa 20 NA 1 0 1 0 0

 431868 WBA 20 NA 2 2 0 0 2

 431869 WBA 20 NA 2 2 0 0 2

 431870 MA 20 NA 2 2 0 0 2

PMID 20392544

 490160 EROD 10 Fold change 15 0 0 15 15

 490161 EROD 25 Fold change 10 0 0 10 10

 490162 EROD 5 Fold change 4 0 0 4 4

 490163 EROD 1 Fold change 3 0 0 3 3

PMID 21958547

 631103 CALUX ? EC50 5 1 0 4 4

Figure 10 ComboTCT-opt and 2-D clusters for aryl hydrocarbon receptor (AhR; GI 29337198). CID 15625 (2,3,7,8-Tetrachlorodibenzo-p-dioxin, also 
known as TCDD) is tested in two different publications. The numbers in the squares correspond to the CIDs. The colors of the squares indicate the 
publications where data were obtained.
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72 compounds contained in the 2-D clusters is displayed 
in Additional file  4: Figure S3. Most noticeable is that 
compounds from the same publication tend to be clus-
tered together, except for those from PMIDs 21309593 
and 21591606. Although the compounds from these two 
publications target different proteins in the visual cycle 
(rhodopsin for PMID 21309593 and RBP4 for PMID 
21591606), the natural ligands of the two proteins (i.e., 
11-cis-retinal for rhodopsin and all-trans-retinol for 
RBP4) are structurally very similar to each other: they 
differ by the configuration of one of their stereocenters 
(trans- vs. cis-configurations) and the functional group 
at the end of their carbon chain (hydroxyl vs. aldehyde 
groups). Structural similarity to these natural ligands was 
the basis for selection of the compound sets in the two 
publications.

Another important observation from Figure  11 and 
Additional file  4: Figure S3 is that, although the com-
pounds from PMIDs 1870708 and 21309503 target 
rhodopsin, they can be classified into two groups. It is 
because they are believed to target different binding 
pockets of rhodopsin. While those from PMID 21309593 
target its chromophore region where 11-cis-retinal 
covalently binds, those from PMID 1870708 target the 
interface in the intracellular loop where the activated 
rhodopsin interacts with transducin, its G-protein.

This example shows that PubChem SAR clusters help 
to interrelate bioactivity information across multiple 

publications that deal with the same biological pathway. 
It also illustrates that pathway-centric clusters are able to 
capture similarity (or dissimilarity) of chemicals that tar-
get different proteins involved in a biological pathway.

Discussion
Comparison of clustering with other grouping methods
Although clustering is commonly used to analyze com-
plex data, it often adds additional complications and sub-
jectivity. For example, the clustering algorithm employed 
in this study may result in two structurally similar mol-
ecules being grouped into different clusters using a given 
dthresh clustering value. They may be grouped into the 
same cluster, if a different value for dthresh is used. With 
that said, one may consider alternative grouping meth-
ods, such as grouping by scaffold or maximum common 
structure (MCS). These methods essentially use the 2-D 
representation of chemical structures. Because finger-
prints used in 2-D similarity comparison also encode the 
2-D structures of molecules, grouping compounds by 
scaffolds or MCS may be expected to give similar results 
to those from 2-D clustering. However, because the con-
cept of scaffolds and MCS are essentially based on 2-D 
structures, but not 3-D structures, they would not neces-
sarily be good alternatives to 3-D clustering. Considering 
that 3-D similarity often recognizes molecular similarity 
that 2-D similarity methods cannot detect, we believe 
that clustering using 2-D and 3-D similarity measures 

Table 6 Thirteen assays stored in PubChem that target the visual cycle 1 (BSID 545294)

a Retinol dehydrogenase 9. Also called 3α-hydroxysteroid dehydrogenase, or dehydrogenase/reductase SDR family member 9 (DHRS9).
b Retinol-binding protein 4.

AID Target Number of compounds

Tested Active Inactive Inconclusive Unspecified Non-inactive

PMID 17346963

 295044 RDH9 (GI 74752227)a 3 1 0 0 2 3

PMID 18707087

 365154 Rhodopsin (GI 129204) 2 1 0 0 1 2

 365155 Rhodopsin (GI 129204) 2 1 0 0 1 2

 365156 Rhodopsin (GI 129204) 6 6 0 0 0 6

PMID 21309593

 591677 Rhodopsin (GI 129204) 14 0 0 8 6 14

PMID 21591606

 606062 RBP4 (GI 62298174)b 8 8 0 0 0 8

 606063 RBP4 (GI 62298174) 21 0 21 0 0 0

 606064 RBP4 (GI 62298174) 47 46 0 0 1 47

 606065 RBP4 (GI 62298174) 1 0 0 0 1 1

 606066 RBP4 (GI 62298174) 7 7 0 0 0 7

 606161 RBP4 (GI 62298174) 7 7 0 0 0 7

 606162 RBP4 (GI 62298174) 2 1 1 0 0 1

 606163 RBP4 (GI 62298174) 7 6 1 0 0 6
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provides for a more complete structure–activity relation-
ship viewpoint than grouping by scaffold or MCS.

Future directions
The present study began as a proof-of-concept, pilot 
study. The aim was to explore if it was possible to provide 
PubChem users with quick access to pre-analyzed struc-
ture–activity  relationships implicit in biological activity 
results. While not all compounds and bioactivities stored 
in PubChem today were considered in this study, the data 
set employed is large enough to demonstrate that the 
large-scale clustering of small molecules in PubChem 
is possible. The long-term scalability of this project is a 
primary concern. Pre-computation of all 3-D similarity 
scores and the clustering of fifteen different contexts of 
structural and bioactivity similarities for all PubChem 
data can take months on hundreds of CPU cores; how-
ever, if the biological activity data is largely static, most of 
this computation is a one-time cost and the results need 
only be stored. Improvements to the SAR cluster system 
are planned, including an improved user interface as well 
as a complete and regularly updated cluster data. A new 

interface is planned as a part of on-going modernization 
of existing PubChem interfaces to give facile access to 
these pre-computed clustering results.

Conclusions
In the present study, a bioactivity-centred clustering 
approach was employed to group more than 800 thou-
sand non-inactive compounds in PubChem according 
to their structural similarity and bioactivity similarity, 
resulting in a total of 18 million PubChem SAR clus-
ters (Figure  1). Each cluster contains a group of small 
molecules similar to each other in both structure and 
bioactivity. This large-scale systematic clustering was 
performed under three bioactivity similarity contexts: (1) 
non-inactive in a given bioassay (for assay-centric clus-
ters), (2) non-inactive against a given protein target (for 
protein-centric clusters), and (3) non-inactive against 
proteins involved in a given pathway (for pathway-cen-
tric clusters). For each context, a total of five structural 
similarity measures were considered: (1) STST -opt, (2) 
ComboTST -opt, (3) CTCT -opt, (4) ComboTCT -opt, and (5) 
2-D Tanimoto. The combination of the three bioactivity 

Figure 11 CTCT-opt, ComboTCT-opt, and 2-D clusters for BSID 545294. The nodes are noninactive compounds in assays involved in BSID545294. The 
node colors represent the original literature from which the biological activities of the compounds were extracted (green for PMID 17346963, cyan 
for PMID 18707087, purple for PMID 21309593, and red for PMID 21591606). The node labels are omitted for brevity, but information on cluster mem-
bers can be found in Additional file 3.
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similarity contexts and the five structural similarity 
measures has led to fifteen cluster subtypes. Approxi-
mately half of the 18 million clusters contained at least 
one high-value compound that had high potency (with 
an IC50 or EC50 value of <10 μM), MeSH annotation, or 
Pharmacological Action annotation (Figure 6).

The summary statistics for the 2-D and 3-D SAR clus-
ters (Table 3) indicate that the 3-D clustering resulted in 
more but smaller clusters than the 2-D clustering. This is 
a result of two important characteristics of the 3-D clus-
tering. First, the 3-D clustering “indirectly” groups com-
pounds, by clustering their conformers first, and then 
collapsing conformers to corresponding compounds. 
Second, the 3-D clustering uses multiple (up to ten) con-
formers per compound. Therefore, in the 3-D clustering, 
a compound may occur multiple times in different 3-D 
clusters (via different conformers) for a given UID. As a 
consequence, 3-D clustering results in more clusters than 
the 2-D clustering, which does not use conformers of a 
molecule. This interpretation is consistent with the exam-
ples provided in this study (as illustrated in Figures 8, 11).

The three examples selected in the present study illus-
trate some important characteristics of the PubChem 
SAR clusters, such as difference between the 2-D and 3-D 
clusterings. They show how PubChem SAR clustering 
helps to organize information on compounds that tar-
get a common protein but that are scattered in different 
assays. It was also demonstrated that compounds target-
ing different proteins involved in a given biological path-
way can be organized according to their target proteins 
and binding pockets. In addition, PubChem SAR clusters 
can aid in the interpretation of bioactivity data scattered 
across multiple publications.

The SAR clusters derived from the present study are 
available at the PubChem SAR clusters homepage [29]. 
These clusters enable PubChem users to quickly navi-
gate and narrow down the compounds of interest. Each 
derived SAR cluster can be a useful resource in develop-
ing a meaningful SAR or enable one to design or expand 
compound libraries from the cluster. It can also help to 
predict the potential therapeutic effect and pharmacolog-
ical actions for less-known compounds from those well-
known compounds (e.g., drugs) in the same SAR cluster.

Methods
Datasets
In the present study, the SAR clusters were constructed 
for three different sets (i.e., Sets A, B, and C) of com-
pounds that were tested to be “non-inactive” in at least 
one assay archived in the PubChem BioAssay database 
[4] (as of September 2010). Non-inactive molecules are 
those which are not inactive against the assay target, 

including “unspecified” and “inconclusive” compounds 
as well as “active” molecules. The reason for consider-
ing non-inactive compounds, rather than active com-
pounds, in the SAR clustering is that, in many assays, 
the unspecified and inconclusive compounds are indeed 
active in many assays. For example, the unspecified com-
pounds in some assays in Table  5 do have AhR agonist 
activities (given in fold induction of AhR expression com-
pared to the untreated controls), but the assay contribu-
tor did not explicitly specify whether they are active or 
inactive. In addition, although TCDD (CID 15625) is the 
strongest AhR agonist in both AIDs 631103 and 431863, 
it was defined as “active” only in AID 631103, but not in 
AID 431863. In this sense, the use of non-inactive com-
pounds, rather than active compounds, somehow reflects 
the heterogeneous nature of the PubChem Bioassay data 
because the activity outcome of the compounds tested in 
PubChem bioassays is defined by the individual deposi-
tors, not by PubChem.

The three compound sets (Sets A, B, and C) are dif-
ferent from one another in the context in which their 
bioactivities are interpreted. As listed in Table  1, Set A 
consisted of 843,845 compounds that had a PubChem3D 
conformer model available and that were tested to be 
non-inactive in at least one of the 548,071 biological 
assays archived in the PubChem BioAssay database (as of 
September 2010). Set B consisted of 400,599 compounds 
with 3-D structures that were tested to be non-inactive 
against at least one of the 4,280 protein targets associated 
with the biological assays considered. Set C had 265,470 
compounds with 3-D description that were non-inactive 
against proteins involved in at least one of the 4,540 bio-
logical pathways associated with the biological assay 
considered.

Bioactivity information of compounds tested in each of 
the biological assays considered was retrieved from the 
PubChem BioAssay database [4] and used to construct 
Set A. The construction of Set B requires knowledge of 
the protein targets of the assays considered. Note that, 
although multiple assays may be performed against an 
identical protein sequence, the assay-target association 
information deposited in PubChem may not be identi-
cal, because the target sequence can have multiple dif-
ferent identifiers [e.g., the same protein with different 
GI numbers (NCBI sequence identifier) and potentially 
from different organisms]. PubChem addresses this 
issue by assigning each assay target to a protein identity 
group (PIG), which is determined on the basis of the pro-
tein sequence identity. As a result, the identical protein 
sequence tested in different assays will belong to the same 
PIG (although they can still have different GI numbers). 
The Entrez link “pcassay_protein_target_pig” allows 
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the user to retrieve the GI’s of all the protein sequences 
identical to the target protein of an assay. Informa-
tion on what pathway the protein target of an assay was 
involved in, which was necessary to construct Set C, was 
retrieved through the Entrez link “pcassay_biosystems”. 
This link provides the BioSystems identifiers (BSID) [35] 
for the biological pathways associated with a given assay 
in PubChem. In conjunction with the NCBI’s FLink [58], 
these two Entrez links can be used to bulk download 
information on the protein targets and pathways associ-
ated for multiple assays.

Not all assays in PubChem have protein target infor-
mation because some assays were performed against a 
cell line or organism, rather than a specific protein tar-
get. Similarly, some assays do not have associated path-
way information from the BioSystems database [35]. As 
a result, the number of compounds in Sets B and C are 
47% and 31% of that in Set A (Table 1), respectively.

PubChem 2-D and 3-D similarity metrics
The PubChem subgraph fingerprint [9], which encodes 
structural information of a molecule into a binary vector 
of 881 substructures, is used to evaluate the 2-D similar-
ity between two molecules, in conjunction with the Tani-
moto coefficient [10–12],

where A and B are the respective counts of fingerprint set 
bits in the compound pair and AB is the count of bits in 
common.

In addition to the 2-D similarity measure using the 
PubChem fingerprint and Tanimoto equation, PubChem 
uses two 3-D similarity metrics: shape-Tanimoto (ST) 
[19, 21, 22, 25–28] and color-Tanimoto (CT) [19, 21, 22, 
26]. The ST score is a measure of shape similarity, which 
is defined as the following:

where VAA and VBB are the self-overlap volumes of con-
formers A and B and VAB is the common overlap volumes 
between them. The CT score, given as the following, 
quantifies the similarity of 3-D functional group similar-
ity between two conformers [25, 26]:

where the index “f” indicates any of six functional group 
types (i.e., hydrogen-bond donors, hydrogen-bond 
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acceptors, cations, anions, hydrophobes, and rings), rep-
resented by fictitious “feature” or “color” atoms, V f

AA and 
V

f
BB are the self-overlap volumes for feature atom type f, 

and V f
AB is the overlap volume of conformers A and B for 

feature atom type f. These similarity metrics can be com-
bined to create a Combo-Tanimoto (ComboT) [21, 22, 
25, 26], as specified by Eq. (4):

Because the ST and CT scores range from 0 (for no simi-
larity) to 1 (for identical molecules), the ComboT score 
may have a value from 0 to 2 (without normalization to 
unity).

The ST, CT, and ComboT scores between two mol-
ecules can be evaluated in two different molecular super-
positions [24–26]: (1) in the ST- or shape-optimized 
superposition, and (2) in the CT- or feature-optimization 
superposition. In the shape-optimization, the super-
position of two molecules is optimized to have a maxi-
mum ST score. In the feature-optimization, both color 
and shape of the two conformers is considered simulta-
neously to find the best superposition between them. 
For clarification, the optimization type is denoted with 
superscript, “ST-opt” or “CT-opt”. As a result, there are 
six different 3-D similarity score types used in PubChem: 
STST -opt, CTST -opt, ComboTST -opt, STCT -opt, CTCT -opt,  
and ComboTCT -opt. In the present study, the SAR clusters 
were constructed using five different similarity meas-
ures: STST -opt, ComboTST -opt, CTCT -opt, ComboTCT -opt,  
and 2-D Tanimoto. The SAR cluster construction was 
performed only for four of the six 3-D similarity meas-
ures (two measures for each optimization type), because 
knowledge of the ComboT score and either of the ST or 
CT scores is enough to get the other one [according to 
Eq. (4)].

3-D conformer models
The conformer models used for the 3-D similarity 
score computation were downloaded from PubChem. 
The PubChem conformer generation and sampling 
procedures, described in more detail in our previous 
papers [17, 21, 23, 24], ensure that 90% of the con-
former models have at least one “bioactive” conformer 
whose (non-hydrogen atom pair-wise) RMSD from 
the experimentally determined conformation was 
closer than the upper-limit value predicted using an 
empirically derived equation [43]. Although each of 
these conformer models contains up to 500 conform-
ers, it is not practical to consider all conformers for 
3-D similarity computation. Therefore, the present 
study used up to ten diverse conformers per com-
pound [21].

(4)ComboT = ST + CT
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3-D similarity score pre-computation
The clustering algorithm employed in the present study 
requires a distance matrix, each element of which rep-
resents the distance or dissimilarity between two com-
pounds being considered for clustering. This dissimilarity 
was computed by subtracting from unity the similarity 
score between the two compounds. The 2-D similarity 
scores were computed on the fly when the distance matrix 
was assembled. However, because 3-D similarity score 
calculation is much more computationally expensive, the 
four 3-D similarity scores (i.e., STST -opt, ComboTST -opt, 
CTCT -opt, and ComboTCT -opt) between two compounds 
were “pre-computed” if both compounds were tested to 
be non-inactive in at least one common bioassay. All the 
3-D similarity scores were saved in a data warehouse with 
the respective translation/rotation matrices that give the 
conformer superpositions at which the similarity scores 
were evaluated. These stored scores were retrieved from 
the data warehouse when the distance matrix was assem-
bled for 3-D clustering.

Cluster generation
The SAR clusters were constructed using the Taylor–
Butina grouping algorithm [36–39] with each of the five 
different similarity measures: STST -opt, ComboTST -opt, 
CTCT -opt, ComboTCT -opt, and 2-D Tanimoto. This itera-
tive non-hierarchical clustering algorithm begins with 
the identification of the compound that is similar to the 
most compounds, given a similarity exclusion (distance) 
threshold. That compound is chosen as cluster represent-
ative and forms the first cluster with those compounds 
that are within its exclusion region determined by the 
distance threshold. Clustered compounds are excluded 
from further consideration. This process is repeated until 
there are no more compounds that form new compound 
clusters. A more detailed description of the Taylor–
Butina algorithm can be found elsewhere [36–39].

The distance thresholds used for the SAR cluster con-
struction were chosen based on the results of our recent 
studies on the similarity score distributions for randomly 
selected biologically tested compounds (Table 2) [17, 24]. 
The overall average (x̄) and standard deviation (s) of the 
3-D similarity scores between randomly selected com-
pounds were 0.65 ± 0.10, 0.77 ± 0.13, 0.25 ± 0.07, and 
0.77 ±  0.14, for STST -opt, ComboTST -opt, CTCT -opt, and 
ComboTCT -opt, respectively, when up to ten conformers 
were employed for each compound. The overall aver-
age and standard deviation for the 2-D similarity scores 
were 0.42 ± 0.13. The distance threshold for each of the 
five similarity measures was selected to be the respec-
tive [1 − (x̄ + 2 s)] value (after normalization to unity for 
ComboTST-opt and ComboTCT-opt). An underlying assump-
tion for this choice is that any two compounds with a 

similarity score greater than the x̄ +  2  s value are con-
sidered to be structurally similar to each other, which 
may suggest biological similarity. The distance thresh-
old selection involved a conversion of these “similarity” 
thresholds into the “dissimilarity” thresholds by subtract-
ing them from unity.

Because the 3-D similarity comparison between com-
pounds requires conformers of the compounds, the 3-D 
clustering algorithm was also applied to the conform-
ers, resulting in clusters of conformers. Then, the con-
former clusters were collapsed into compound clusters, 
by converting conformer identifiers into corresponding 
compound identifiers (CIDs). That is, the 3-D SAR clus-
ters (of compounds) were “indirectly” generated via 3-D 
clustering of their conformers. On the contrary, the 2-D 
clustering, which does not use conformers, was “directly” 
applied to the compounds. This difference between the 
2-D and 3-D clusterings leads to a substantial difference 
in size and number of the resulting clusters, as shown in 
the “Results” section.

Visualization of clusters
For illustration purposes, the SAR clusters were visual-
ized as compound–compound or conformer–conformer 
networks, using Cytoscape [59]. Compounds are repre-
sented by square nodes, conformers by round nodes. If 
possible, each compound node was labelled with the CID, 
and each conformer node was labelled with the local con-
former ID [21], which was a positive integer. When the 
nodes were too small to be labelled, the labels were omit-
ted, but one can still find information on cluster mem-
bers in Additional files 1, 2, and 3. An edge between two 
conformer nodes indicates that the distance between 
them was closer than the dthresh value used for the SAR 
clustering. An edge between two compound nodes indi-
cates that at least one conformer pair arising from the 
two compounds was closer than the dthresh value.
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