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Abstract 

Background: PubChem is a public repository for biological activities of small molecules. For the efficient use of its 
vast amount of chemical information, PubChem performs 2-dimensional (2-D) and 3-dimensional (3-D) neighbor-
ings, which precompute “neighbor” relationships between molecules in the PubChem Compound database, using 
the PubChem subgraph fingerprints-based 2-D similarity and the Gaussian-shape overlay-based 3-D similarity, 
respectively. These neighborings allow PubChem to provide the user with immediate access to the list of 2-D and 3-D 
neighbors (also called “Similar Compounds” and “Similar Conformers”, respectively) for each compound in PubChem. 
However, because 3-D neighboring is much more time-consuming than 2-D neighboring, how different the results of 
the two neighboring schemes are is an important question, considering limited computational resources.

Results: The present study analyzed the complementarity between the PubChem 2-D and 3-D neighbors. When 
all compounds in PubChem were considered, the overlap between 2-D and 3-D neighbors was only 2% of the total 
neighbors. For the data sets containing compounds with annotated information, the overlap increased as the data 
sets became smaller. However, it did not exceed 31% and substantial fractions of neighbors were still recognized by 
either PubChem 2-D or 3-D similarity, but not by both. The Neighbor Preference Index (NPI) of a molecule for a given 
data set was introduced, which quantified whether a molecule had more 2-D or 3-D neighbors in the data set. The 
NPI histogram for all PubChem compounds had a bimodal shape with two maxima at NPI = ±1 and a minimum 
at NPI = 0. However, the NPI histograms for the subsets containing compounds with annotated information had a 
greater fraction of compounds with a strong preference for one neighboring method to the other (at NPI = ±1) as 
well as compounds with a neutral preference (at NPI = 0).

Conclusion: The results of our study indicate that, for the majority of the compounds in PubChem, their structural 
similarity to other compounds can be recognized predominantly by either 2-D or 3-D neighborings, but not by both, 
showing a strong complementarity between 2-D and 3-D neighboring results. Therefore, despite its heavy require-
ments for computational resources, 3-D neighboring provides an alternative way in which the user can instantly 
access structurally similar molecules that cannot be detected if only 2-D neighboring is used.
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Background
The rapid growth of information on chemicals and their 
biological activities has created a demand in the scien-
tific community for public repositories that can increase 
the utility of these data, by collecting, integrating, and 
disseminating it to the community free of charge. An 
example of such repositories is PubChem [1–5], devel-
oped and maintained by the National Center for Biotech-
nology Information (NCBI), a part of the U.S. National 
Institutes of Health’s (NIH) National Library of Medicine 
(NLM). PubChem consists of three primary databases: 
Substance, Compound, and BioAssay. As of May 2016, 
416 PubChem data contributors provide a wide range 
of chemical substance descriptions to the PubChem 
Substance database (accession: SID). The set of unique 
chemical structures present in the Substance database 
make up the PubChem Compound database (accession: 
CID). Results from biological experiments performed on 
the substance samples are stored in the PubChem BioAs-
say database (accession: AID). Altogether, PubChem is a 
sizeable data system of more than 219 million substance 
descriptions, 89 million unique chemical structures, one 
million biological assays, and 230 million biological assay 
outcomes (where an outcome is the set of results from a 
substance being tested in an assay).

There is a large variation in the amount of informa-
tion available for each molecule contained in PubChem. 
For example, whereas some molecules have enormous 
quantities of information on the biological activity and 
literature associated, other molecules have very little 
information other than the chemical structure. When 
there is no desired information available for a particular 
molecule, one may infer it from its structural analogues 

that have relevant information. Even when a molecule 
has desired information, comparison with other available 
information on the molecule and its structural analogues 
may provide additional important insight.

To help find and analyze related information using 
chemical structures, PubChem provides services that 
exploit chemical structure similarity between molecules. 
These include Structure Search, Structure Clustering, 
and Structure–Activity Analysis [1, 6]. In addition, the 
PubChem Compound database provides two precom-
puted chemical structure similarity searches of mol-
ecules, dubbed “neighbor” relationships (where only 
results above a given threshold are retained from the 
similarity search). These give users immediate access to a 
set of structurally similar molecules. One of these neigh-
boring relationships, known as “Similar Compounds”, 
uses the notion of 2-D similarity (which considers the 
atoms in a molecule and how they connect to each other) 
and is adept at finding close structural analogues of a 
structure such as those with the same scaffold. Another 
neighboring relationship in PubChem, known as “Simi-
lar Conformers”, uses the notion of 3-D similarity (which 
considers the overall shape and macromolecule-binding 
features of the molecule) [6, 7] and is adept at finding 
related structures with different scaffolds. As described 
in more detail in the “Methods” section, the 2-D neigh-
boring uses the PubChem substructure fingerprint [8] 
and Tanimoto equation [9–11] to evaluate structural 
similarity between two molecules, resulting in a list of 
2-D “Similar Compound” neighbors for each compound 
record. The Gaussian-shape overlay method by Grant 
and Pickup [12–15], which is implemented in the Rapid 
Overlay of Chemical Structures (ROCS) [16, 17], is used 

CID 63014
(Tramadol + HCl)

CID 63015 
(Tramadol)

Parent Compound

Drug Annota�on : O
3D conformers : X

Drug Annota�on : X
3D conformers : O

Fig. 1 An inherent bias towards 2-D neighboring. CID 63014, a mixture of Tramadol (CID 63015) and HCl, has a drug annotation, but does not have 
a computed 3-D conformer description in PubChem. As such, CID 63014 cannot have any 3-D neighbors. On the contrary, its parent compound 
(CID 63015) has a computed 3-D conformer description, and therefore is able to have 3-D neighbors, but does not have a drug annotation. Use of 
CID 63015 (parent compound) in place of CID 63014 (salt mixture) allows 2-D salt forms to collapse into a single parent and 3-D neighboring meth-
odologies to be compared (conceptually) for the same structure
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to generate a list of 3-D “Similar Conformer” neighbors 
for each molecule covered by the PubChem3D project [6, 
7, 18–23]. This project generates 3-D conformer models 
for about 90% of the chemicals in the PubChem Com-
pound database, being only those structures with a sin-
gle component (i.e., no mixtures or salts), comprised of 
organic elements, not too flexible (≤15 rotatable bonds), 
and not too large (≤50 non-hydrogen atoms) [6, 18, 23]. 
These computationally derived conformer models are 
used in various PubChem tools and services that exploit 
3-D similarity, including the 3-D conformer search, 3-D 
neighboring, 3-D clustering, 3-D structure–activity rela-
tionship analysis, and so on.

In general, binary fingerprint-based 2-D similarity 
methods can compare on the order of one million com-
pound pairs per second per CPU core, but many 3-D 
similarity methods (such as ROCS [16, 17], used by 
PubChem) can only compare on the order of 100 ~ 1000 
conformer pairs per second per CPU core. The CPU-
based PubChem 3-D neighboring approach, as described 
in a recent study [20], uses various filtering schemes to 
preclude conformer pairs that cannot be neighbors of 
each other from the most time-consuming, shape super-
position optimization step. As a result, the throughput of 
PubChem 3-D neighboring is enhanced beyond 100,000 
conformer pairs per second per CPU core. It is important 
to note that GPU-based approaches show great promise 
to reduce the cost of 3-D similarity computation [24]. 
GPU implementations (such as FastROCS) provide on 
the order of 1,000,000 conformer pairs per second per 
GPU. The CPU-based filtering approach that acceler-
ates PubChem 3-D neighboring can complement a GPU 
approach, where the CPU handles the filtering steps 
and the GPU perform the superposition optimization. 
However, if the 3-D neighboring considers ten diverse 
conformers per compound, a throughput of 100,000 
conformer pairs per second per CPU core corresponds 
to a throughput on the order of magnitude of 1000 com-
pound pairs per second per CPU core because there can 
be 100 conformer pairs (10 × 10 = 100) for each com-
pound pair. Therefore, even though vastly accelerated, 
PubChem 3-D neighboring is still significantly slower 
than PubChem 2-D neighboring by three orders of 
magnitude.

One may legitimately ask the question, if 3-D neighbor-
ing is so computationally demanding, is there sufficient 
benefit to justify the additional computational effort over 
use of 2-D similarity? For example, how different are 
the results from 2-D and 3-D neighboring approaches? 
Do 2-D and 3-D similarity methods for a given chemi-
cal structure give unique chemical lists or do the two 
approaches largely approximate each other? What does 
3-D similarity yield that 2-D similarity does not and vice 

versa? Are key molecules missed by one approach yet 
found by the other? The present study explores these 
questions by analyzing the overlap of 2-D and 3-D neigh-
bors that are precomputed and stored in (and readily 
downloadable from) PubChem.

Results and discussion
Two series of data sets
As described in the “Methods” section, the present study 
compares PubChem 2-D and 3-D neighbors for ten dif-
ferent data sets (five data sets for each of two series A 
and B). The five sets in Series A are: (1) all chemicals in 
PubChem Compound, (2) just those chemicals with bio-
medical literature annotation (via MeSH [25]), (3) just 
those chemicals with macromolecule-bound experi-
mental 3-D structure annotation (Protein Data Bank 
[26] ligands via the NCBI Molecular Modeling Database 
(MMDB) [27]), (4) just those chemicals with pharmaco-
logical action annotation (via MeSH, indicating a bio-
logical role is known), and (5) just those chemicals with 
drug annotation (via DailyMed [28], covering active 
ingredients in FDA approved drugs). These five sets with 
differing annotation type, designated as “PubChem-
(A)”, “MeSH-(A)”, “Protein3D-(A)”, “PharmAct-(A)”, and 
“Drug-(A)”, respectively, can be obtained using the NCBI 
Entrez interface for the PubChem Compound data-
base (see Table  1). Note that, by definition, the MeSH-
(A), Protein3D-(A), PharmAct-(A), and Drug-(A) sets 
are all subsets of the PubChem-(A) set. Furthermore, 
PharmAct-(A) is a subset of MeSH-(A) and designates 
chemicals with a known biological role or activity. All 

Table 1 Number of  compounds (CIDs) in  the data sets 
employed in the present study

The five data sets in Series A were generated using associated Entrez filters, 
which are used to restrict a search to a particular compound subset in PubChem. 
The five data sets in Series B were generated from their Series A counterparts 
by adding the parent compounds of the chemicals in the Series A data sets and 
then selecting those with a computed 3-D conformer description available
a PubChem Compound Entrez filters allow users to retrieve CIDs 
that have a particular annotation type. For example, CIDs with “Drug” 
annotation can be retrieved via the URL: https://www.ncbi.nlm.nih.gov/
pccompound/?term=pccompound_drugs[filter]

Associated 
filtersa

Series A Series B Ratio (B/A) (%)

PubChem all 36,017,715 31,776,025 88.2

MeSH pccompound_
mesh

82,446 62,217 75.5

Protein3D pccompound_
structure

22,753 17,387 76.4

PharmAct pccompound_
mesh_pharm

11,415 6977 61.1

Drug pccompound_
drugs

1773 950 53.6

https://www.ncbi.nlm.nih.gov/pccompound/?term=pccompound_drugs[filter]
https://www.ncbi.nlm.nih.gov/pccompound/?term=pccompound_drugs[filter]
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PubChem 2-D and 3-D neighbors can be found on the 
PubChem FTP site (ftp://ftp.ncbi.nlm.nih.gov/pubchem/
RDF/compound/).

 A direct comparison of 2-D and 3-D neighbors in 
PubChem may add an inherent bias for 2-D neighbors 
over 3-D neighbors as some chemicals do not have a 
computed 3-D conformer description [6, 18, 23] and 
hence cannot have 3-D neighbors. Examples are chemi-
cals with multiple covalent units, as illustrated in Fig. 1. 
These chemicals are commonly found in the Drug-(A) 
set, because drugs are typically formulated as salt forms 
of the active pharmaceutical ingredient or as mixtures of 
the active (and inactive) ingredients. Note that various 
salt and mixture forms of the same active ingredient are 
likely to be highly similar to each other in terms of 2-D 
similarity, intensifying a 2-D neighboring bias. Therefore, 
for direct comparison purposes, this bias was removed 
by collapsing these multiple salt and mixture forms into 
their active ingredient, which conceptually corresponds 
to the “parent” component of a multi-component chemi-
cal structure (see the “Methods” section for the definition 
of a parent compound).

To remove the 2-D bias, the five sets in Series B [desig-
nated as PubChem-(B), MeSH-(B), Protein3D-(B), Phar-
mAct-(B), and Drug-(B)] were generated by using the 
unique set of parent compound representations in the 
respective sets in Series A and then excluding any com-
pound without a computationally generated PubChem3D 
conformer description. The Series B data sets ensure all 
considered chemicals have both 2-D and 3-D descrip-
tions and also removes any redundancy due to salt/
mixture form variation of the same parent chemical 
structure. Therefore, the Series B data sets would address 
any potential (2-D) bias, allowing the two neighboring 
approaches to be compared in an even way. The Series 
A data sets are also retained and analyzed for compari-
son purposes. Table  1 summarizes the number of com-
pounds in each compound set. It is noteworthy that the 
Series B data sets consistently have fewer CIDs than their 
Series A counterparts, ranging from 11.8% fewer for the 
PubChem-(B) set to 46.4% fewer for the Drug-(B) set, 
further emphasizing the importance of bias removal for 
comparison purposes.

Overlap between 2‑D and 3‑D neighbors in series A
Figure 2 shows the unique count of compound pairs that 
are neighbors of each other (simply referred to as “neigh-
bor pairs” or “neighbors” hereafter) within the confines 
of each data set. For the PubChem-(A) set, there were 
9.2 billion “2-D-only” neighbor pairs, recognized only 
by PubChem 2-D similarity, and 10.5 billion “3-D-only” 
neighbor pairs, recognized only by PubChem 3-D simi-
larity. Interestingly, only 2.2% (0.4 billion pairs) of all 

PubChem-(A) neighbors were “common” neighbors, 
recognized by both 2-D and 3-D similarities. This rather 
small overlap between 2-D and 3-D neighbor sets indi-
cates that the two similarity schemes are virtually orthog-
onal, with the structural similarity they recognize being 
very different.

As shown in Fig. 2, the overlap between 2-D and 3-D 
neighbors increased as the size of the data sets decreased. 
However, even for the Drug-(A) set, which was the small-
est in Series A, the overlap was only about 11% of all 
neighbors. Structural similarity for the remaining 89% 
can be recognized by only one of the two neighboring 
methods. Importantly, for the Drug-(A) set, there were 
much more “2-D-only” neighbor pairs than “3-D-only” 
neighbor pairs [77 vs. 12% of all neighbors in Drug-(A)], 
whereas they were comparable for the PubChem-(A) set 
[46 vs. 52% of all neighbors in PubChem-(A)]. This 2-D 
neighbor predominance in the Drug-(A) set appears to 
be primarily due to the bias for 2-D neighboring, as men-
tioned in the previous section and depicted in Fig. 1. This 
bias is also well illustrated in Fig. 3, which lists the top ten 
compounds in the Drug-(A) set with the most 2-D-only 
neighbors but without any 3-D neighbors. Note that all 
ten compounds are multi-component salt forms of nearly 
the same active ingredient.

Overlap between 2‑D and 3‑D neighbors in Series B
The data sets in Series B remove salts and mixture forms 
that cause an inherent bias in favor of 2-D neighboring. 
In addition, only parent compounds that have compu-
tationally generated 3-D structures were considered. As 
a result, all five data sets in Series B were found to have 
considerably fewer 2-D neighbor pairs than in the Series 
A data sets (see Fig.  2). Similarly to Series A, the frac-
tion of common neighbor pairs in the Series B data sets 
increased as the size of the data set decreased. However, 
for the smallest set, Drug-(B), the overlap between the 
2-D and 3-D neighbor pairs was still only 31% and struc-
tural similarity of the remaining 69% was recognized only 
by one of the two neighboring approaches. The propor-
tions of the 2-D-only and 3-D-only neighbor pairs are 
very close to each other (35 and 34%, respectively) for the 
Drug-(B) set, suggesting that the two approaches used by 
PubChem are complementary.

Figure 4 illustrates the top ten Drug-(B) compounds with 
the most 2-D-only neighbors but without 3-D neighbors 
and those with the most 3-D-only neighbors but without 
2-D neighbors. Interestingly, some of these compounds 
have common structural characteristics. For example, four 
of the ten compounds with the most 2-D-only neighbors 
(CID 2632, CID 6540461, CID 5362065, and CID 5479530) 
are cephalosporins, which is a class of β-lactam antibiotics. 
Indeed, three of the four have a pharmacological action 

ftp://ftp.ncbi.nlm.nih.gov/pubchem/RDF/compound/
ftp://ftp.ncbi.nlm.nih.gov/pubchem/RDF/compound/
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2-D-only
31,842
(68.5%)

3-D-only
10,121
(21.8%)

Common
4,490
(9.7%)

2-D-only
176,136
(75.6%)

3-D-only
46,780
(20.1%)

Common
10,113
(4.3%)

2-D-only
724,568
(49.9%)

3-D-only
642,736
(44.3%)

Common
83,567 
(5.8%)

2-D-only
9.2 B

(45.8%)
3-D-only

10.5 B
(52.0%)

Common
0.4 B (2.2%)

2-D-only
7.1 B 

(39.5%)3-D-only
10.5 B

(58.1%)

Common
0.4 B (2.4%)

2-D-only
411,608
(34.6%)

3-D-only
687,055 
(57.8%)

Common
90,617
(7.6%)

2-D-only
77,712
(54.7%)

3-D-only 
51,516 
(36.2%)

Common
12,902 
(9.1%)

2-D-only
712

(35.2%)

3-D-only
680

(33.6%)

Common
633

(31.3%)

2-D-only
8,947

(35.2%)
3-D-only
11,207
(44.1%)

Common
5,250

(20.7%)

2-D-only
3,874 

(77.2%)

3-D-only
622

(12.4%)

Common
525

(10.5%)

PubChem

MeSH

Protein3D

PharmAct

Drug

Series A Series B

Fig. 2 Comparison of 2-D and 3-D neighbor overlap. Each pie chart indicates the count and percentage of compound neighbor pairs as a function 
of data set and overlap. Series A contains all structures in PubChem, while Series B uses the parent compound of salts and is restricted to just those 
structures with a computed 3-D description (see Table 1)
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annotation, “Anti-Bacterial Agent”. CID 5311033 and 
CID 44246731 have the same connectivity as each other, 
but the latter does not have explicitly defined stereocent-
ers. On the other hand, the top ten compounds with the 
most 3-D-only neighbors in Fig.  4 [for the Drug-(B) set] 
are nearly unchanged from Fig.  3 [for the Drug-(A) set]. 

Therefore, it is reasonable to ask whether each compound 
in PubChem has an inherent preference for one neighbor-
ing method over the other. In other words, can structural 
similarity of a given compound with other molecules be 
recognized by only one PubChem similarity method, and 
not by the other for whatever reason?

CID 18283
(N3-D-only = 5)

CID 3415
(N3-D-only = 4)

CID 35370
(N3-D-only = 3)

CID 5574
(N3-D-only = 10)

CID 3333
(N3-D-only = 3)

CID 3229
(N3-D-only = 6)

CID 9568628
(N3-D-only = 6)

CID 101726
(N3-D-only = 3)

CID 4101
(N3-D-only = 3)

CID 124087
(N3-D-only = 3)

� Compounds in the Drug-(A) set with the most 2-D neighbors and no 3-D neighbors

� Compounds in the Drug-(A) set with the most 3-D neighbors and no 2-D neighbors

� O � N � P � S � F � Cl � Br � H (explicit)

CID 31098
(N2-D-only =25)

CID 657308
(N2-D-only =25)

CID 11553369
(N2-D-only =25)

CID 16738693
(N2-D-only =25)

CID 11069
(N2-D-only =24)

CID 5702073
(N2-D-only =25)

CID 441337
(N2-D-only =25)

CID 61367 
(N2-D-only =24)

CID 13119
(N2-D-only =24)

CID 5768
(N2-D-only =24)

Fig. 3 Examples of compounds in the Drug-(A) set that have a strong preference for one neighboring method over the other. Compounds in the 
Drug-(A) set with the most 2-D neighbors and no 3-D neighbors and compounds with the most 3-D neighbors and no 2-D neighbors. Note that all 
the compounds with 2-D-only neighbors have multiple covalent units
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Distribution of neighbor preference indices (NPIs)
To determine the extent to which chemicals in PubChem 
can be interrelated by one similarity method but not the 
other, the Neighbor Preference Index (NPI) of a com-
pound was introduced. It was designed to measure the 
extent of overlap between PubChem 2-D and 3-D neigh-
boring approaches. If 2-D neighboring results substan-
tially overlap with 3-D neighboring results, there would 

be little point to compute 3-D similarity, which is com-
putationally expensive. As defined in the “Methods” sec-
tion, this NPI quantity may have any value ranging from 
−1 (for compounds with 3-D neighbors only) to +1 (for 
compounds with 2-D neighbors only). A compound that 
has an equal number of 2-D and 3-D neighbors has an 
NPI value of zero, indicating that it has no preference for 
any of the two neighboring methods. The NPI value of a 

CID 9568628
(N3-D-only = 6)

CID 4845
(N3-D-only = 5)

CID 5464255
(N3-D-only = 4)

CID 5574
(N3-D-only = 10)

CID 18283
(N3-D-only = 5)

CID 2801
(N3-D-only = 6)

CID 3229
(N3-D-only = 6)

CID 3333
(N3-D-only = 3)

CID 3415
(N3-D-only = 4)

CID 3827
(N3-D-only = 3)

CID 44246731
(N2-D-only = 14)

CID 16219371
(N2-D-only = 11)

CID 16211936
(N2-D-only = 8)

CID 6917738
(N2-D-only = 7)

CID 6540461
(N2-D-only = 16)

CID 6432649
(N2-D-only = 8)

CID 5479530
(N2-D-only = 12)

CID 5362065
(N2-D-only = 13)

CID 5311033
(N2-D-only = 14)

CID 2632
(N2-D-only = 16)

� Compounds in the Drug-(B) set with the most 2-D neighbors but no 3-D neighbors

� Compounds in the Drug-(B) set with the most 3-D neighbors but no 2-D neighbors

� O � N � P � S � F � Cl � H (explicit)

Fig. 4 Examples of compounds in the Drug-(B) set that have a strong preference for one neighboring method over the other. Compounds in the 
Drug-(B) set with the most 2-D neighbors and no 3-D neighbors and compounds with the most 3-D neighbors and no 2-D neighbors. Note that all 
the compounds with 2-D-only neighbors differ considerably from those in Fig. 3, whereas most of the 3-D-only neighbors are nearly the same
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compound is dependent on the nature of the given chem-
ical set, because a compound can have different sets of 
neighbors for different data sets.

One can imagine three hypothetical scenarios con-
cerning the distribution of the NPI values of all com-
pounds in a given data set, as illustrated in Fig. 5. First, 
if 2-D and 3-D similarity methods are identical and give 
exactly the same sets of neighbors as each other, the NPI 
values of all compounds will be zero, and the histogram 
of the NPI values will have a single column at NPI = 0 
[Panel (a) in Fig. 5]. Second, if the two similarity meth-
ods are not exactly identical, but still somewhat similar 
to each other, the neighbor lists from the two methods 
for a given compound will have a substantial number of 
common neighbors. Therefore, the resulting NPI his-
togram will still have a maximum at NPI = 0, although 
some deviation from zero will be observed [Panel (b) in 
Fig. 5]. Third, when the two methods are somewhat dis-
similar, the overlap between the two neighbor lists will 

be small, forming a broader NPI distribution [Panel (c) 
in Fig. 5].

Figure  6 shows the distribution of the NPIs for com-
pounds in the five Series B data sets. The shape of the NPI 
distribution for the PubChem-(B) set does not look like 
any of the scenarios hypothesized in Fig. 5. This discrep-
ancy arises from an invalid assumption underlying all three 
hypotheses that structural similarity among the majority of 
the compounds in the data set can readily be recognized 
by both neighboring schemes. In reality, as shown in Panel 
(a) of Fig. 6, the structural similarities that PubChem 2-D 
and 3-D neighborings recognize are very different from 
each other. For example, 2-D neighboring does not recog-
nize the similarity of 10% of the PubChem-(B) compounds 
with other compounds that 3-D neighboring recognizes 
[i.e., NPI  ≅  −1, corresponding to the left-most column 
in Fig.  6a]. On the contrary, 3-D neighboring does not 
recognize the similarity of another 10% of PubChem-(B) 
compounds with their 2-D neighbors [i.e., NPI ≅  1, cor-
responding to the right-most column in Fig.  6a]. Com-
pounds whose similarity can be recognized equally well by 
both neighborings correspond to zero on the NPI distri-
bution curve of the PubChem-(B) set. These observations 
further indicate a substantial degree of the complementa-
riness between the two PubChem neighboring methods.

Interestingly, the shape of the NPI histograms for the 
other data sets in Series B [i.e., Mesh-(B), Protein3D-(B), 
PharmAct-(B), and Drug-(B)] are different from that of 
the PubChem-(B) set. The outermost columns at each end 
of the histograms become more prominent, indicating 
that the fraction of compounds with extreme NPIs (i.e., 
those with NPI values of −0.95 to −1.00 and those with 
+0.95 to +1.00) increased in these subsets. In addition, 
the fraction of compounds with an NPI between −0.05 
and 0.05 increases as the size of the data set decreases. 
This indicates that these subsets of the PubChem-(B) 
set do not well represent the chemical space covered by 
the PubChem-(B) set. Note that these four subsets were 
generated by checking whether compounds have a par-
ticular type of annotation (for example, whether a com-
pound has been prominently mentioned in a biomedical 
journal article, whether it has been co-crystalized with a 
protein target, whether it has a known pharmacological 
action, or whether it is a known active drug ingredient). 
In other words, the four subsets correspond to four nar-
rowly focused subspaces of the PubChem-(B) data set 
and, unlike the overall chemical set, may be dominated 
by closely related analogues and structurally similar scaf-
folds in an attempt to identify similar bioactivity.

Data set dependency of neighbor preference indices
 Investigating the data set dependency of NPI values for 
a given compound requires a set of compounds that are 
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Fig. 5 Hypothetical distributions of the neighboring preference indi-
ces (NPIs). The distribution of the NPI values of compounds in a data 
set under three hypothetical scenarios in which the two neighboring 
methods a are exactly identical, b are not exactly identical but are still 
very similar, and c become less and less similar to each other
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contained in all five data sets, but only 108 compounds 
occurred in all the five data sets. This is primarily because 
many drug molecules in the Drug-(B) set were not con-
tained in the Protein-(B) set due to the lack of their 
experimentally determined protein-bound structures. 
While this set is not large enough to represent all chemi-
cal space, NPI values of these compounds still provides 
some insights on the data set dependency of NPI values. 
Figure  7 compares the NPI values of these 108 com-
pounds for the PubChem-(B) set with those for the other 

data sets in Series B. The NPI values for the MeSH-(B) set 
show a linear correlation with those for the PubChem-
(B) set, with an R2 value of 0.85. However, the NPI value 
correlation with the PubChem-(B) set was weaker for the 
other three subsets. Especially, the R2 value for the Drug-
(B) set was as small as 0.44.

The differences in the NPI values of the 108 compounds 
between the PubChem-(B) set and the four annotated 
sets are plotted in Fig. 8. In general, the magnitude of the 
NPI value difference (ΔNPI) from the PubChem-(B) set 
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Fig. 6 Binned distribution of the neighbor preference indices (NPIs) for compounds in the five data tests in Series B. The binned distribution (in 0.1 
increments) of the NPI values for the PubChem-(B) set has a bimodal shape with two maxima at NPI = ±1 and a minimum at NPI = 0. For the other 
four sets, the maxima at NPI = ± 1 became more prominent and an additional maximum appeared at NPI = 0, progressing from a to e
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increases as the data set becomes smaller. The increase 
in 2-D similarity preference (with positive ΔNPI values) 
is more prominent than the increase in 3-D similarity 
preference (with negative ΔNPI values). Figure  9 shows 
the numbers of neighbors of aspirin (CID 2244) and 
indomethacin (CID 3715), respectively, which shows the 
largest NPI changes for the Drug-(B) set in each direc-
tion (corresponding to each end of the Drug-(B) curve in 
Fig. 8).

Aspirin has 1488 2-D-only neighbors and 4532 
3-D-only neighbors in the PubChem-(B) set, resulting 
in an NPI value of −0.49. However, it has an NPI value 
of 1.00 in the Drug-(B) set, with one 2-D-only neigh-
bor (CID 5161; salicylsalicylic acid) and no 3-D-only 

neighbors. On the other hand, indomethacin has an 
NPI value of +0.58 for the PubChem-(B) set, with 899 
2-D-only neighbors and 210 3-D-only neighbors, but it 
has only one 3-D neighbor in the Drug-(B) set, result-
ing in an NPI value of −1.00. Note that the signs of the 
NPI values of the two compounds for the PubChem-(B) 
set are opposite to those for the Drug-(B) set. This indi-
cates that the nature of the chemical spaces spanned by 
the two sets is very different in terms of which neighbor-
ing scheme is better in recognizing structural similarity 
to aspirin and indomethacin.

As shown in Fig.  10, salicylsalicylic acid corresponds 
to substitution of a phenyl (C6H5 group) group for 
the methyl group in aspirin, and the 2-D Tanimoto 
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Fig. 7 Comparison of the NPI values of 108 compounds for the MeSH-(B) (a), Protein3D-(B) (b), PharmAct-(B) (c), and Drug-(B) (d) sets with those for 
the PubChem-(B) set. The correlation of the NPI values with the PubChem-(B) set data is largest for the MeSH-(B) set and smallest for the Drug-(B) set
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between the two compounds was 0.96, which is above 
the PubChem 2-D neighboring threshold of 0.9. How-
ever, their shape-Tanimoto (ST) and color-Tanimoto 
(CT) scores were 0.66 and 0.25, respectively, less than the 
3-D neighboring criteria. On the contrary, the 2-D Tani-
moto between indomethacin and sulindac was as small 

as 0.39, but their ST and CT scores were 0.92 and 0.52, 
respectively, which are greater than 3-D neighboring 
thresholds. The examples in Fig. 10 illustrate how the two 
neighboring schemes can complement each other, in that 
one neighboring method recognizes the structural simi-
larity that the other method cannot recognize.

Effects of stereochemistry upon 2‑D and 3‑D neighborings
The PubChem fingerprints used for 2-D similarity evalua-
tion in PubChem do not take into account stereochemistry 
of molecules (such as cis–trans isomerism and chirality). 
Therefore, different stereo isomers that have the same 
molecular formula and atom connectivity are represented 
with the same fingerprint, regardless of whether the con-
figuration stereo centers are explicitly defined or not. For 
example, both (E) and (Z) forms of 1,2-dichloroethene 
(CID 638186 and CID 643833) have the same fingerprint 
as 1,2-dichloroethene (CID 10900). As a results, 2-D simi-
larity evaluation between these stereo isomers always 
yields a Tanimoto score of “1.0”, classifying them as neigh-
bors of each other. In addition, 2-D neighboring of these 
stereo isomers results in the same set of 2-D neighbors.

On the contrary to the 2-D neighboring, PubChem 
3-D neighboring is not blind to stereochemistry 
because it uses 3-D conformer models that take ste-
reochemistry into account. PubChem generates a dif-
ferent 3-D conformer model for a given stereo isomer. 
The conformer model for a compound with unspecified 
stereo centers is constructed by generating conformers 
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Fig. 8 Comparison of the NPI values of 108 compounds for the 
MeSH-(B), Protein3D-(B), PharmAct-(B), and Drug-(B) sets with those 
for the PubChem-(B) set. A positive ΔNPI value for a given data set 
indicates that a compound has a stronger 2-D neighbor preference in 
that data set than in the PubChem-(B) set. On the contrary, a negative 
ΔNPI value indicates a stronger 3-D neighbor preference

2-D-only 3-D-only Common NPI

PubChem-(B) 1,488 4,532 159 -0.49

MeSH-(B) 22 46 4 -0.33

Protein3D-(B) 1 12 2 -0.73

PharmAct-(B) 3 5 0 -0.25

Drug-(B) 1 0 0 1.00
CID 2244
Aspirin

2-D-only 3-D-only Common NPI

PubChem-(B) 899 210 74 0.58

MeSH-(B) 20 6 4 0.47

Protein3D-(B) 3 2 2 0.14

PharmAct-(B) 1 3 0 -0.50

Drug-(B) 0 1 0 -1.00
CID 3715

Indomethacin

–1.58

+1.49

Fig. 9 The numbers of neighbors and Neighbor Preference Indices (NPIs) of CID 2244 (aspirin) and CID 3715 (indomethacin). Among the 108 com-
pounds that are common to the five Series B data sets, CID 2244 and CID 3715 show the largest difference in the Neighbor Preference Index (NPI) 
between the PubChem-(B) and Drug-(B) sets. Note that the NPI values of the compounds for the PubChem-(B) set have opposite signs to those for 
the Drug-(B) sets
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for each stereo isomer arising from enumeration of 
the undefined stereo centers, and then combining 
them together [22]. As a result, the use of different 

conformers for 3-D neighboring of stereo isomers may 
yield different sets of 3-D neighbors, as discussed in 
our previous paper [7].

CID 2244
(Aspirin)

CID 5161
(Salicylsalicylic acid)

CID 1548887
(Sulindac)

CID 3715
(Indomethacin)

2D = 0.96
ST = 0.66
CT = 0.25

2D = 0.39
ST = 0.92
CT = 0.52

a

b
Fig. 10 Complementarity between 2-D and 3-D neighborings. 2-D and 3-D similarity scores a between CID 2244 (aspirin) and CID 5161 (salicylsali-
cylic acid) and b between CID 3715 (indomethacin) and CID 1548887 (sulindac). For both cases, one neighboring method can recognize structural 
similarity that the other method cannot
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Conclusions
The overlap between PubChem 2-D and 3-D similar-
ity neighboring approaches were analyzed as a function 
of annotation type, using ten data sets: five data sets in 
Series A [i.e., PubChem-(A), MeSH-(A), Protein3D-
(A), PharmAct-(A), and Drug-(A)] and five data sets in 
Series B [i.e., PubChem-(B), MeSH-(B), Protein3D-(B), 
PharmAct-(B), and Drug-(B)]. The five data sets in Series 
A considered all compounds [PubChem-(A)], those 
prominently mentioned in a biomedical journal article 
[MeSH-(A)], those found in a protein–ligand complex 
crystal structure [Protein3D-(A)], those with a known 
pharmacological action [PharmAct-(A)], and those which 
are approved drugs [Drug-(A)]. A direct comparison 
between PubChem 2-D and 3-D neighbors using the 
Series A data sets revealed a bias towards 2-D neighbors 
as 3-D neighboring does not consider salts and mixtures. 
To remove this bias, the Series B data sets were generated 
by considering only parent compounds (in effect discard-
ing salts and mixtures) with a computed 3-D description 
in PubChem. For both PubChem-(A) and PubChem-(B) 
sets, the overlap between 2-D and 3-D neighbors were 
only about 2% of the total neighbors. In other words, 
the PubChem 2-D and 3-D similarity approaches are 
nearly orthogonal. Considering the debate over 2-D and 
3-D similarity methods [29–34], this is a surprising find-
ing. For the subsets containing compounds with specific 
types of annotation, the overlap increased substantially as 
the data sets became smaller. However, it did not exceed 
31% [for the Drug-(B) set] and substantial fractions of 
neighbors were still either 2-D-only or 3-D-only.

To further investigate complementarity between 2-D 
and 3-D neighborings, the NPI of a molecule for a given 
data set was introduced that quantifies whether a mole-
cule has more 2-D or 3-D neighbors. The NPI histograms 
for the PubChem-(B) set shows a bimodal shape with 
two maxima at NPI = ±1 and a minimum at NPI =  0. 
It indicates that, for the majority of the compounds in 
PubChem, their structural similarity to other compounds 
can be recognized only by either of the 2-D or 3-D neigh-
borings, but not by both. Therefore, considering both 2-D 
and 3-D approaches in PubChem appears to be beneficial.

Interestingly, the shape of the NPI value histogram for 
the PubChem-(B) set is not similar to those for its four 
subsets [i.e., MeSH-(B), Protein3D-(B), PharmAct-(B), 
and Drug-(B)]. The NPI value histograms show a more 
polarized trimodal profile with a greater fraction of com-
pounds with a strong preference for one neighboring 
method over the other (at NPI = ±1) as well as com-
pounds with a neutral preference (at NPI =  0) but less 
so in between the extremes. As such, one would be well 
advised to use both 2-D and 3-D similarity when search-
ing for chemicals that are well studied.

The results of our study show the complementarity 
between the 2-D and 3-D neighbors in PubChem. Each 
neighboring approach can identify structural similar-
ity that the other neighboring approach cannot detect. 
Put in other words, they appear to have equal value to 
interrelate chemical structures with similar counts of 
neighbor pairs by each. Depending on use case (such as 
looking for analogues of chemicals in a series or interre-
lating chemical series), scientists may prefer to use one 
approach over the other or both to retrieve information 
on chemicals similar to a compound of interest.

Methods
Data sets
Series A data sets
The present study employed ten different data sets 
(five data sets each for two series: A and B). The num-
ber of compounds per data set is listed in Table  1. The 
PubChem-(A) set represents the entire chemical space 
spanned by compounds stored in PubChem [1] whose 
CID is less than or equal to 60,182,254, reflecting those 
CIDs with both 2-D and 3-D neighboring data available 
at the time of analysis. Note that, while 2-D neighbors are 
updated on a daily basis, 3-D neighbors are updated less 
frequently because 3-D neighboring is more CPU-inten-
sive. As a result, newly added compounds in PubChem 
may be considered in 2-D neighboring sooner than 3-D 
neighboring. Therefore, the use of a CID cut-off allows 
for a more direct comparison of 2-D and 3-D neighbor 
counts for the purpose of this study.

PubChem is integrated with the Entrez system [5], the 
primary search engine of NCBI. The Entrez interface 
provides filters that can restrict a search to a particu-
lar compound subset in PubChem. The Entrez filters 
below were used to generate the four different subsets of 
PubChem-(A):

1. pccompound_mesh for MeSH-(A): this filter includes 
compounds that have a link to the MeSH data-
base [25]. MeSH (Medical Subject Headings) is the 
NLM controlled vocabulary thesaurus, and is used 
to index PubMed citations. The chemicals with a 
MeSH link have been mentioned in the biomedical 
literature on several occasions and are deemed (by 
human curators) to be of sufficient importance to be 
added to MeSH. The MeSH links are generated using 
PubChem chemical name matching approaches.

2. pccompound_structure for Protein3D-(A): this filter 
includes compounds found in the Molecular Mod-
eling Database (MMDB) [27]. The MMDB contains 
experimentally resolved structures of proteins, RNA 
and DNA, derived from the Protein Data Bank (PDB) 
[26], including information about small molecule 
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ligands bound to macromolecule structures. There-
fore, the Protein3D-(A) set contains the compounds 
whose macromolecule-bound 3-D experimental 
structure is available.

3. pccompound_mesh_pharm for PharmAct-(A): this 
filter includes compounds that have a pharmacologi-
cal action link in the MeSH database, indicating that 
the biological role of the chemical is known. Note 
that PharmAct-(A) is a subset of MeSH-(A).

4. pccompound_drugs for Drug-(A): this filter limits 
compounds to those that are known drugs as defined 
by the PubChem integration of the NLM DailyMed 
[28] resource. The information content of DailyMed 
is provided by the U.S. Food and Drug Administra-
tion (FDA) and includes structured product labelling 
(SPL) drug information submitted by drug compa-
nies who manufacture and sell them.

These filters allow users to obtain CIDs that have particular 
annotation types. For example, CIDs with the “drug” anno-
tation can be retrieved via the URL: https://www.ncbi.nlm.
nih.gov/pccompound/?term=pccompound_drugs[filter].

Series B data sets
The present study attempts to compare the ability of 
PubChem 2-D and 3-D neighborings to interrelate 
chemicals that have a particular annotation type in 
common. Two primary issues are apparent in the analy-
sis of the Series A data sets. First, not all compounds in 
the Series A data sets have the necessary computed 3-D 
conformer models required for 3-D neighboring, as the 
PubChem3D project covers only about 90% of the com-
pound records in PubChem [6, 18, 23], excluding by 
design multi-component structures like salts. Second, it 
is not uncommon for annotation to be attributed to a salt 
form as opposed to the primary active component (see 
Fig. 1 for an example).

To address these two issues, Series B data sets were 
generated by including the “parents” of all the com-
pounds in the Series A data sets and then by select-
ing only those resulting structures with an available 
computed 3-D conformer description. To achieve this, 
NCBI’s FLink [35] was used with the PubChem Com-
pound Entrez filters “pccompound_pccompound_par-
ent” and “has_3d_conformer” to retrieve the parent 
compounds and the structures with a computed 3-D 
description, respectively. PubChem defines the “parent” 
of a mixture as the carbon-containing component whose 
heavy atom count is ≥70% of the sum of the heavy atom 
counts of all unique covalent units [1]. The parent com-
pound is neutralized through modification of its protona-
tion state during the PubChem standardization process 
[1]. Because PubChem3D does not compute conformer 

models for compound records with multiple covalent 
units [6, 18, 23], all of the resulting compounds in the 
Series B data sets are single-component compounds with 
computed 3-D conformer descriptions. The sizes of the 
data sets in both Series A and B are compared in Table 1.

PubChem 2‑D and 3‑D neighboring relationships
The PubChem 2-D and 3-D neighboring processes are 
briefly described below. More detailed description is 
given elsewhere [6, 7].

PubChem “Similar Compounds” 2‑D neighboring
The PubChem substructure fingerprints [8] are 881-bit-
long binary (0/1) vectors, each bit of which represents 
the absence (0) or presence (1) of a particular structural 
characteristic found in a chemical structure, such as an 
element count, a type of ring system, atom pairing, atom 
environment (nearest neighbors), and so on. A more 
detailed description of this fingerprint system is available 
in Ref. [8]. The PubChem fingerprints are used to quan-
tify 2-D similarity between two chemical structures in 
PubChem, in conjunction with the Tanimoto coefficient 
[9–11], defined as the following equation:

where NA and NB are the counts of bits set in the finger-
prints representing molecules A and B, respectively, and 
NAB is the count of common bits set in both fingerprints. 
A Tanimoto coefficient ranges from 0 (for no similarity 
between molecules) to 1 (for identical molecules, relative 
to the resolution of the substructure fingerprint).

PubChem 2-D neighboring quantifies molecular simi-
larity using the PubChem substructure fingerprints and 
Tanimoto coefficient as described above. If two chemical 
structures in PubChem have a Tanimoto score of 0.9 or 
greater, they are considered as “Similar Compound” 2-D 
neighbors of each other.

PubChem “Similar Conformers” 3‑D neighboring
PubChem 3-D neighboring is described in detail else-
where [6, 7]. It quantifies molecular similarity using the 
Gaussian-shape overlay method by Grant and Pickup 
[12–15], implemented in ROCS [16, 17]. In this approach, 
molecular shape is described with an atom-centered 
Gaussian function, which allows for a rapid shape super-
position, compared to hard sphere volume approaches. 
Recent studies [36–38] show that this method can be 
comparable with, and often better than, structure-based 
approaches in virtual screening, both in terms of overall 
performance and consistency.

This 3-D similarity method [12–14, 16, 17] considers 
two aspects of molecular similarity: shape similarity and 

(1)Tanimoto =
NAB

NA + NB − NAB

https://www.ncbi.nlm.nih.gov/pccompound/?term=pccompound_drugs[filter]
https://www.ncbi.nlm.nih.gov/pccompound/?term=pccompound_drugs[filter]
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feature similarity. The shape similarity [12, 14, 16, 17, 39] 
between molecules is quantified with the shape-Tani-
moto (ST), which is defined as the following:

where VAA and VBB are the self-overlap volumes of mol-
ecules A and B, respectively, and VAB is the overlap vol-
ume between molecules A and B. The feature similarity 
[17, 39], which is the similarity of 3-D orientation of 
protein-binding “features” between conformers, is evalu-
ated by checking the overlap of “fictitious” feature atoms 
(also called “color” atoms) that represent six types of 
functional groups including hydrogen bond donors and 
acceptors, cations, anions, hydrophobes, and rings. Its 
quantification uses the color-Tanimoto (CT) [17, 39], 
given by the following equation:

where the index “f” indicates any of the six feature atom 
types, V f

AA and V f
BB are the self-overlap volumes of con-

formers A and B for feature atom type f, respectively, and 
V

f
AB is the overlap volume between conformers A and B 

for feature atom type f. To consider the steric shape simi-
larity and chemical feature similarity simultaneously, the 
combo-Tanimoto (ComboT) is introduced, as specified 
by the following equation:

Because both ST and CT scores range from 0 (for no 
similarity) to 1 (for identical molecules), by definition, 
the ComboT score can have a value from 0 to 2 (without 
normalization).

These three metrics can be computed at two differ-
ent conformer superpositions: (1) the shape-optimized 
(or ST-optimized) superposition, where the shape over-
lap between the two conformers is maximized, and (2) 
the feature-optimized (or CT-optimized) superposi-
tion, where both the shape and feature are considered 
simultaneously to find the best superposition between 
the conformers. As a result, PubChem3D quantifies 3-D 
molecular similarity using six different scores: ST, CT, 
and ComboT scores for each of the superposition meth-
ods. However, because PubChem 3-D neighboring uses 
the ST-optimized scores only, all the ST, CT, and Com-
boT scores mentioned in this paper refer to the ST-opti-
mized scores, unless otherwise indicated.

If any of the conformer pairs arising from a pair of two 
compounds has a ST score of ≥0.8 and a CT score of 
≥0.5, those compounds are considered to be neighbors 
of each other. This guarantees that there is at least one 

(2)ST =
VAB

VAA + VBB − VAB

(3)CT =

∑
f V

f
AB

∑
f V

f
AA +

∑
f V

f
BB −

∑
f V

f
AB

(4)ComboT = ST + CT

conformer pair with a ComboT score ≥1.3 for each pair 
of compounds that are neighbors.

Conformer models for 3‑D neighboring
PubChem 3-D neighboring requires a computed 3-D 
conformer model for each compound considered. These 
conformer models were generated using the OMEGA 
software from OpenEye Scientific Software, Inc., as 
described in more detail elsewhere [6, 18, 23]. While 
these conformer models contain up to 500 sampled con-
formers for each compound, many of the PubChem3D 
services support only up to ten conformers per com-
pound. To ensure that the conformers employed repre-
sent the overall diversity of shape and feature of a given 
molecule, PubChem3D computes a diverse conformer 
ordering. This conformer ordering provides guidance 
on what conformers to choose when only a subset of the 
conformers available in a conformer model are used for 
3-D similarity comparison.

Despite the use of various filtering schemes to improve 
its speed [7, 20], 3-D neighboring is not fast enough to 
consider all possible conformers for each compound. 
The initial PubChem3D neighboring started a few years 
ago using a single conformer per compound and it has 
been gradually extended to more diverse conformers per 
compound. Up to ten conformers per compound will be 
considered in the future. The neighboring results used in 
the present study were from five diverse conformers per 
compound, as available in PubChem as of January 2013.

Definition of Neighbor Preference Index
The Neighbor Preference Index (NPI) of a compound 
quantifies which of the two neighboring methods can 
identify more chemical structures similar to that com-
pound in a given data set. It is defined as the following 
equation:

where N2-D-only and N3-D-only are the numbers of 2-D-only 
and 3-D-only neighbors of the compound, and Ntotal 
is the total number of the neighbors of the compound. 
An NPI value can range from −1 (when all neighbors 
are 3-D-only neighbors) to +1 (when all neighbors are 
2-D-only neighbors). An NPI value of zero indicates that 
there is no preference for one method over the other 
(i.e., the number of 2-D neighbors is equal to the num-
ber of 3-D neighbors). Although the number of common 
neighbors (which are 2-D and 3-D neighbors simultane-
ously) does not explicitly appear in the equation above, it 
implicitly contributes to the NPI through Ntotal. That is, 
the NPI value approaches zero as the number of common 
neighbors increases. Note that neighboring of different 

(5)NPI =
N2−D−only − N3−D−only

Ntotal
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data sets results in different sets of neighbors for a given 
compound. Therefore, the NPI value of a compound also 
depends on the nature of the data set to which it belongs 
(i.e., what compounds the data set has).

Note that, because the choice of neighboring thresh-
olds affects the neighbor counts of a given compound and 
hence its NPI value, the use of NPI values for comparing 
the two neighboring methods requires that the neigh-
boring thresholds employed be comparable. Therefore, 
given that the two PubChem neighboring approaches are 
established with thresholds that are unlikely to change, it 
is worthwhile to consider the statistical basis of the two 
PubChem similarity methods.

A recent study [22] shows that the average and stand-
ard deviation of the 2-D and 3-D similarity scores are 
0.42 ±  0.13 and 0.77 ±  0.13, respectively, for randomly 
selected biologically tested compounds in PubChem. The 
3-D similarity statistics are for the ST-optimized ComboT 
score [Eq.  (4)] of a compound–compound pair, which 
is the highest ComboT score among those of all con-
former pairs arising from the compound pair (computed 
using ten diverse conformers per compound). While not 
exactly the same as PubChem 3-D neighboring, these 
3-D statistics should be considered as a lower-bound, 
with PubChem 3-D neighboring further restricted (and 
being more exclusive) by statistically more-significant 
thresholds of ST ≥0.8 and CT ≥0.5 (and a minimum 
ComboT ≥1.3). These statistics suggest that the 2-D 
and 3-D neighboring thresholds are 3.7 and 4.1 standard 
deviations away from the random average values, respec-
tively [i.e., 3.7 = (0.90 − 0.42)/0.13 for 2-D similarity and 
4.1 = (1.3 − 0.77)/0.13 for 3-D similarity]. This translates 
into a probability of two random structures in PubChem 
being 2-D neighbors and 3-D neighbors as 0.0111% (1 in 
9000) and 0.00228% (1 in 43,825), respectively. In addi-
tion, it suggests that the two neighboring thresholds are 
comparable (within a factor of five of each other, i.e., 
4.86 = 0.0111%/0.00228%), with a small bias towards 2-D 
neighbors. Lastly, it also suggests that the thresholds are 
suitably high to limit chance correlations of neighbors.
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