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Abstract 

Iterative screening has emerged as a promising approach to increase the efficiency of screening campaigns com-
pared to traditional high throughput approaches. By learning from a subset of the compound library, inferences on 
what compounds to screen next can be made by predictive models, resulting in more efficient screening. One way to 
evaluate screening is to consider the cost of screening compared to the gain associated with finding an active com-
pound. In this work, we introduce a conformal predictor coupled with a gain-cost function with the aim to maximise 
gain in iterative screening. Using this setup we were able to show that by evaluating the predictions on the training 
data, very accurate predictions on what settings will produce the highest gain on the test data can be made. We 
evaluate the approach on 12 bioactivity datasets from PubChem training the models using 20% of the data. Depend-
ing on the settings of the gain-cost function, the settings generating the maximum gain were accurately identified 
in 8–10 out of the 12 datasets. Broadly, our approach can predict what strategy generates the highest gain based on 
the results of the cost-gain evaluation: to screen the compounds predicted to be active, to screen all the remaining 
data, or not to screen any additional compounds. When the algorithm indicates that the predicted active compounds 
should be screened, our approach also indicates what confidence level to apply in order to maximize gain. Hence, our 
approach facilitates decision-making and allocation of the resources where they deliver the most value by indicating 
in advance the likely outcome of a screening campaign.
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Background
High throughput screening (HTS) has long been a para-
digm in early-stage drug discovery [1]. With the advance-
ments in screening technology and automation, it has 
become feasible to screen libraries in an iterative fashion, 
screening a small part of the library and using the result 
to make inferences about what compounds to screen 
next [2–5]. This allows for a smaller part of the library 
to be screened while still identifying a large portion of 
the active compounds. This is a setup that is well suited 
for machine learning approaches as the first part of the 
library that is screened can be used to train the learning 
algorithms.

To evaluate such a machine learning system, we need 
some way to quantify its performance. Evaluation of vir-
tual screening methods has been the objective of many 
studies, but tend to focus on how well techniques per-
form on average across different datasets, often in the 
form of dedicated benchmark datasets [6, 7]. These 
evaluations are generally based on how well active com-
pounds are enriched in a certain fraction of the data-
set, sometimes with the additional consideration that 
hits should appear as early as possible in the hit list [8]. 
However, in an iterative screening scenario, when data 
from the first screening iteration is available, there are a 
number of practical considerations of a somewhat differ-
ent nature, such as how large a portion of the database 
should be screened in the next iteration, that are not 
answered directly by the enrichment and related met-
rics. Consider for example a very small selection of the 
library yielding a very high enrichment but few identified 
actives compared to a larger selection of the compound 
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library yielding a lower enrichment but more different 
chemotypes.

One way to evaluate what number of compounds to 
screen is to consider the problem in terms of gain and 
cost, similar to many problems in other fields [9–11]. The 
evaluation of a compound is associated with a certain 
cost while the identification of an active compound rep-
resents a gain. It is desirable to find a way to select com-
pounds for evaluation in a way that maximizes the overall 
gain after deducting the cost of screening. This can eas-
ily be expressed in a simple function that can be used 
to evaluate the outcome of any screening set. The main 
challenge with such an approach is the assignment of the 
gain component of the gain-cost function. Whereas cost 
is typically readily assessed, the gain of finding a hit rep-
resents a more abstract value. Many different approaches 
could potentially be factored into the assignment of the 
gain, for example, one could consider how many com-
pounds it would be acceptable to screen to identify one 
hit and assign the gain accordingly, or as used in this 
study, assign the gain to a magnitude that would make a 
full HTS screen approximately breakeven.

A prerequisite for the gain-cost evaluation to be pro-
spectively meaningful as a tool for evaluating differ-
ent predictors, is that the results on the training data 
also extend to new data. Conformal prediction is a frame-
work for generating confidence predictors that produce 
predictions with a fixed error rate [12]. This is achieved 
through evaluating new predictions by comparing them 
to the predictions of known instances in a calibration 
set. For binary classification, labels are then assigned to 
the new instance in a way that can result in four differ-
ent outcomes: the instance belongs to either of the two 
labels, both labels simultaneously or none of the labels. 
Two factors make conformal predictors highly suit-
able for bioactivity prediction: their ability to accurately 
predict minority classes [13–15], since in a screen there 
tends to be many inactive compounds for each active, 
and the ability to control the error rate and thereby limit-
ing the number of false positives. Conformal predictors 
have previously been successfully applied for bioactivity 
modelling [3, 16, 17].

As the efficiency (number of single label predictions) 
generated by the conformal predictor will vary depending 
on the confidence level applied, evaluating different con-
fidence levels will identify if it is better to screen a small 
set of compounds with higher confidence or a larger set 
but with more uncertainty. This approach also does not 
require the user to decide on an exact number of com-
pounds to screen in the next iteration, but instead, this 
will be provided by the predictor based on the selected 
confidence. For the conformal prediction framework to 
guarantee the error rate, the data considered needs to be 

exchangeable [12]. In an iterative screening setup, this 
has implications on how to select the compounds for the 
initial round of screening, and the only way to guarantee 
exchangeability (as long as the sample is large enough) 
would be to draw a random sample of the available data.

We have previously reported a preliminary study on the 
use of a combination of a gain-cost function and confor-
mal predictors in the context of iterative screening [18]. 
In this work, we expand this to more datasets and pro-
vide a more in depth analysis. By training conformal pre-
dictors on an initial training set consisting of 20% of each 
dataset, we show that the parameters that optimise gain 
in the remaining screening set can be identified. Over-
all, this study shows that this conformal gain-cost driven 
method is a promising approach to optimize compound 
selection in screening programs in terms of optimising 
the gain.

Methods
Data
Large screening datasets were selected from PubChem 
[19] to represent a spread in terms of size and ratio 
of active to inactive compounds. 12 selected datasets 
(Table  1) were downloaded from PubChem and pre-
pared using the IMI eTOX project standardizer [20] in 
order to generate consistent compound representations. 
The structures were then further subjected to tautomer 
standardization using the MolVS standardizer [21]. 
Activity was assigned according to the PubChem anno-
tation, and compounds with ambiguous activity were 
discarded.

Feature generation
We have previously applied a set of 97 physicochemical/
structural feature descriptors in previous studies with 
good results [3, 15]. These 97 descriptors (physicochemi-
cal), as well as full-length Morgan fingerprint descrip-
tors (fingerprints), were calculated using RDKit [22]. The 
latter were subsequently hashed onto a binary feature 
vector of length 4096 by modulo calculations on the gen-
erated fingerprint indices using an in-house Perl script.

Machine learning and conformal prediction
Each dataset was split into an initial screening or train-
ing set (20%) and a test set (80%). The number of active 
and inactive compounds in the training and test set after 
processing is shown in Table 2. Internal model validation 
was performed by randomly splitting the training data 
into an internal training (80%) and test (20%) sets which 
were resampled prior to every model building. The train-
ing data for building the models was further randomly 
split into a proper training (70%) and calibration set 
(30%). This random split was also re-performed prior to 
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building every model. The data-split and validation strat-
egy is shown schematically in Fig. 1.

All models were developed using scikit-learn [23], 
using default parameters unless otherwise indicated, and 
inductive conformal predictors were derived utilising the 
nonconformist package [24]. For all models random for-
est ensembles consisting of 500 trees were used as the 
underlying models. We applied the aggregated confor-
mal predictor procedure using 100 iterations [25]. For 
internal validation, each one of these iterations randomly 
leaves out 20% of the compounds and the generated 
model is used to predict the left out compounds. The 
median of the predicted conformal prediction p-values 
for each class (active or inactive) across all iterations is 
then used to derive the predicted labels.

Using the percentage of trees in the random forest 
ensemble predicting each of the classes (class probability) 

as the conformal prediction conformity (similarity) meas-
ure the method assigns classes to new compounds by 
comparing the class probability against the correspond-
ing sorted list for the calibration set, see Fig. 2.

The predicted class probabilities for classes 1 and 2, 
e.g. active and inactive class, of the new compound is 
placed in the sorted list of the calibration set probabili-
ties for classes 1 and 2, respectively, and thus adding one 
compound to the list for each class. For each class, the 
position of the new compound in these sorted lists is 
determined and the fraction with lower probabilities is 
calculated. This fraction is, for each class, compared to 
the corresponding significance level set by the user. For 
a new compound to be part of a class the computed frac-
tion must be larger or equal to the set significance level.

This procedure is illustrated for the four possible out-
comes from a binary classification task in Fig.  2. New 
compound 1 has predicted class probabilities for class 1 
and 2 of 0.75 and 0.25, respectively. Placing these prob-
abilities in the corresponding sorted calibration set list 
of probabilities results in positions 9 and 1, respectively, 
and the corresponding calculated fractions are 0.80 and 
0.0. The set significance level in this example is 0.20. This 
means that new compound 1 can be assigned to class 1 
(0.80 ≥ 0.20) but not to class 2 (0.0 < 0.20). Similarly, new 
compound 2 can only be assigned to class 2. However, 
for new compound 3 and 4 the situation is different. For 
new compound 3 the calculated fractions for both classes 
are above or equal to the set significance level and, con-
sequently, this compound is assigned to both class 1 and 
2 (the “both” class). For new compound 4 the situation 
is the opposite and both calculated fractions are below 
the set significance level. Thus, new compound 4 cannot 
be assigned to any of the two classes by the model (the 
“empty” class). For new compound 4 it should be noted, 

Table 1 The datasets employed in this study

AID Description Active Inactive % Active

411 qHTS Assay for Inhibitors of Firefly Luciferase 1577 70,097 2.2

868 Screen for Chemicals that Inhibit the RAM Network 3545 191,037 1.8

1030 qHTS Assay for Inhibitors of Aldehyde Dehydrogenase 1 (ALDH1A1) 16,117 148,322 7.8

1460 qHTS for Inhibitors of Tau Fibril Formation, Thioflavin T Binding 5825 221,867 2.6

1721 qHTS Assay for Inhibitors of Leishmania Mexicana Pyruvate Kinase (LmPK) 1089 290,104 0.4

2314 Cycloheximide Counterscreen for Small Molecule Inhibitors of Shiga Toxin 37,055 259,401 12.5

2326 qHTS Assay for Inhibitors of Influenza NS1 Protein Function 1073 260,701 0.4

2451 qHTS Assay for Inhibitors of Fructose-1,6-bisphosphate Aldolase from Giardia Lamblia 2061 276,158 0.7

2551 qHTS for inhibitors of ROR gamma transcriptional activity 16,824 256,777 6.1

485290 qHTS Assay for Inhibitors of Tyrosyl-DNA Phosphodiesterase (TDP1) 986 345,663 0.3

485314 qHTS Assay for Inhibitors of DNA Polymerase Beta 4522 315,791 1.4

504444 Nrf2 qHTS screen for inhibitors 7472 285,618 2.5

Table 2 Number of compounds in training and test data 
for all the datasets after data processing

AID Train active Train inactive Test active Test inactive

411 340 13,761 1215 55,187

868 326 19,129 3219 171,705

1030 3240 29,090 12,674 116,642

1460 132 4637 1057 41,197

1721 219 57,905 868 231,624

2314 3730 25,769 33,225 232,103

2326 190 51,988 877 207,835

2451 422 54,560 1594 218,333

2551 1681 25,443 14,951 227,744

485290 192 67,593 761 270,377

485314 857 62,561 3634 250,038

504444 1524 56,628 5882 226,723
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for clarity, that 4 decision trees did not give a class assign-
ment, e.g. the resulting leaf node was unable to provide a 
majority class vote.

For a more in-depth explanation of the implementation 
of conformal prediction, we refer the reader to a recent 
study by Norinder et al. [26].

Gain‑cost function
As previously described [18], we defined a gain-cost 
function to evaluate the results from the screening

We applied three different screening cost levels (arbi-
trary units), high (14), medium (10), and low (6). The dif-
ferent cost levels can be thought of as representations of 
different assay setups, where for example a more complex 
phenotypic assay is more costly per compound screened 
compared to a biochemical assay on isolated protein 

(1)

gain =

|train|∑

i=1

hit gain−

|train|∑

i=1

screen cost

+

|test|∑

i=1

hit gain−

|test|∑

i=1

screen cost.

[27, 28]. We then decided on a gain of 400 per identified 
hit. These values were applied in our previous study on 
gain-cost [18], and represent a gain-cost balance that, on 
average, would result in an approximately breakeven out-
come, in terms of cost-gain, for the four HTS screening 
campaigns considered in that study.

Summary of screening set‑up
The screening workflow proposed in this study utilizes 
an initial screen of 20% of each compound library. The 
results from this initial screening are then used to train 
a conformal predictor and different confidence levels of 
the predictor are then evaluated using the internal valida-
tion procedure and the defined gain-cost function. High 
confidence levels will generate few predicted active com-
pounds with a higher accuracy while a low confidence 
level will generate many predicted actives with lower 
accuracy. This way it is evaluated if it is better to screen 
many compounds expecting a lower hit-rate or few com-
pounds with a higher hit-rate. All the initial screening 
data (20% of each library) was then used to construct a 
predictor that was used to predict the remaining 80% 
of the screening library based on the confidence level 

Fig. 1 Schematic representation of the validation procedure used in this study
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indicated from the internal validation to give the highest 
gain. Compounds receiving a single label prediction as 
active are then considered for testing.

Performance evaluation measures
Since the prediction of a conformal predictor is a set of 
labels rather than always a single label, they are gener-
ally evaluated by their validity and efficiency [12]. Valid-
ity is defined as the fraction of predictions containing the 
correct label. This means in a binary classification that a 
single label prediction is correct if the label is the correct 
one, a dual label is always correct, and an empty predic-
tion is always incorrect. The validity is guaranteed to cor-
respond to the user-defined confidence level as long as 
the data is exchangeable. The efficiency of a conformal 
predictor is defined as the number of single label predic-
tions, a higher fraction of single label predictions means a 
more efficient predictor.

Results and discussion
Table  3 summarizes the validities of the generated con-
formal predictors. Overall the models based on phys-
icochemical descriptors corresponded better to the set 
confidence level which is of importance in conformal 
prediction in relation to what can be expected from 
predictions on new data [12]. We therefore choose to 
base the main discussions around the results from the 

physicochemical-based models while supplementing the 
discussion with results from the fingerprint based mod-
els when merited. Detailed results for both approaches is 
available in the Additional file 1. 

An overview of the performance of the models using 
the physicochemical descriptors is summarised in 
Table 4. It can be seen that the resulting models for the 
different datasets varied greatly in performance. Some 

Fig. 2 Illustration of how conformal prediction classes are assigned

Table 3 Average validity of the physicochemical and fin-
gerprint based models

Confidence level

90% 80% 70% 60%

Physiochemical

Validity train active 0.928 0.833 0.728 0.631

Validity train inactive 0.910 0.813 0.715 0.614

Validity test active 0.922 0.818 0.718 0.615

Validity test inactive 0.907 0.811 0.714 0.615

Fingerprint

Validity train active 0.976 0.896 0.771 0.627

Validity train inactive 0.949 0.888 0.809 0.694

Validity test active 0.972 0.895 0.766 0.610

Validity test inactive 0.943 0.884 0.810 0.714
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datasets were poorly predicted, especially the two data-
sets 2326 and 485290 produced poor models with very 
low efficiency (0.395 and 0.51 respectively), likely due 
to the extreme imbalance in the ratio of active to inac-
tive compounds, 0.37 and 0.28%, respectively (Table 2), in 
the training data. The other datasets showed satisfactory 
outcomes with validities close to the desired 0.8 and effi-
ciencies ranging from 0.6 to 0.9 in the internal validations 
on the training data. The trends observed in the train-
ing data when applying the internal validation procedure 
translated very well to how the models performed when 
applied to the test data with an average absolute differ-
ence in the validity of 0.02 and 0.01 for active and inac-
tive compounds respectively.

The total gain-cost evaluation for both the internal 
validation and the remaining test dataset for three cases 
displaying very different trends are shown in Fig. 3 (plots 
for all the datasets are available in the Additional file 1). 
Although the outcome is different between the datasets, 
it can be seen that the trend observed on the gain-cost 
evaluation on the training data is closely mirrored also in 
the test data.

If the optimal approach identified using the internal 
validation procedure had been used to select the next 
screening set from the remaining compounds, the gain 
would have been maximized in 8 of the 12 datasets at 
screening cost 6, in 9 of the 12 datasets at screening cost 
10, and in 10 of the 12 datasets at screening cost 14 (see 
Additional file 2 for tabularised values).

Three principally different outcomes from the results of 
the cost-gain evaluations were indicated by the internal 
validation procedure: to screen the compounds predicted 
to be active (maximum gain obtained for one of the eval-
uated conformal predictors), to screen all the remaining 
data (maximum gain obtained for the full training data), 
or not to screen any additional compounds (all screening 
outcomes indicate a loss).

Furthermore, for the cases where the maximum gain 
for the test set was not correctly predicted by the internal 
training set validation, e.g. 411, 868, 1460, 2326, 2451 and 
485314 at various cost levels, the average loss percent-
age of the total gain (training and test set) is, with one 
exception, very small and only in the order of 0.5–2.1% 
(Table 5). For dataset 2326 using fingerprints, the internal 

Table 4 Validity and efficiency for active and inactive compounds at the 80% confidence level for the derived conformal 
predictors based on physicochemical descriptors

Train denotes the results from the internal validation and test when the models are applied to the external test set

AID Validity active Efficiency active Validity inactive Efficiency inactive

411 train 0.856 0.809 0.815 0.771

411 test 0.873 0.847 0.811 0.794

868 train 0.828 0.798 0.813 0.835

868 test 0.825 0.844 0.805 0.862

1030 train 0.823 0.654 0.819 0.636

1030 test 0.832 0.677 0.807 0.653

1460 train 0.864 0.864 0.816 0.88

1460 test 0.748 0.944 0.805 0.957

1721 train 0.868 0.918 0.842 0.899

1721 test 0.869 0.933 0.835 0.907

2314 train 0.813 0.81 0.807 0.808

2314 test 0.801 0.833 0.803 0.819

2326 train 1 0.395 0.856 0.144

2326 test 1 0.511 0.849 0.151

2451 train 0.884 0.746 0.836 0.66

2451 test 0.859 0.778 0.828 0.707

2551 train 0.819 0.916 0.809 0.906

2551 test 0.812 0.944 0.803 0.934

485290 train 1 0.51 0.86 0.15

485290 test 1 0.545 0.863 0.137

485314 train 0.846 0.762 0.824 0.726

485314 test 0.856 0.799 0.818 0.743

504444 train 0.833 0.749 0.813 0.755

504444 test 0.818 0.767 0.811 0.771
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Fig. 3 Evaluation of the gain-cost function for three examples showing different trends (using the physicochemical based descriptors models). The 
dashed line represents test data and the solid line evaluation of the remaining data. Trends observed in the training data generally predict the trend 
on the remaining test data very well
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validation significantly underestimates the subsequent 
total gain by as much as 24%. This is one of the more 
poorly modelled datasets, potentially indicating that this 
approach should not be attempted if the internal valida-
tion of the models indicates poor performance.

Despite having a generally lower performance with 
regards to validity and efficiency, the models based on 
fingerprints seem to be able to identify settings for the 
confidence levels that enable somewhat higher gains 
from screening the training set and the predicted test 
subset gain, compared to the corresponding models 
based on physicochemical descriptors for the investi-
gated datasets (Table 6). However, it is difficult to com-
pare the performance in terms of percentage since in 
some cases, 485314 at cost level 14, will generate a loss 
for the physicochemical descriptor-based model in com-
parison to a small gain for the fingerprint based model. 
Excluding this example the fingerprint models perform, 
on average, 14–16% better with large variations (2–51%) 
between datasets and cost levels. On the other hand, 
for dataset 868, where the physicochemical descriptor-
based model outperforms the fingerprint-based model, 
the improvement is 23, 42 and 71% for cost levels 6, 10 
and 14, respectively. Considering the grave underestima-
tion of dataset 2326 (Table 5), the latter models seem to 
be more robust in nature compared to the corresponding 
models based on fingerprints.

Another important aspect of the presented procedure 
in this work is the correct identification of the cases 
where it would be beneficial, from a gain perspective, 
to screen the entire library as opposed to a subset of the 
same library. For datasets 1030, 2314 and 2551 the pre-
dictions from the internal validation indicate that screen-
ing the entire library would result in the highest gain. 
This is subsequently also found in all cases for screening 
the corresponding test set. Also for all cases where the 
training set validation procedure indicates that no gain 
can be obtained for the screening, this translated to the 
corresponding test set.

For some of the investigated cases the internal valida-
tion indicates a gain for screening a subset, but when 
considering the cost for screening the full training set 
(in order to build the predictive models) the result is an 
overall loss. This is strongly correlated to the percent-
age of active compounds in the training set. Thus, the 
investigated datasets with fewest actives, i.e. 1721, 2326 
and 485290, show this behavior for many of the cost lev-
els. For the 19 cases where the cost of screening the full 
training set is more than five times the indicated gain 
for screening a subset of the training set, only in one 
case (dataset 868, fingerprints, cost 14, factor 8) does 
the subsequent subset screening of the test set result in a 
small overall gain. This is an additional factor to consider 
when deciding to screen a particular compound library 
for a target, namely, that if the cost of screening in rela-
tion to the predicted gain is very large, as indicated by 
the internal validation of the small training set, then the 
likelihood of generating an overall gain from subsequent 
screening of a predicted subset is very low. Again, such 
indications add knowledge for deciding upon to perform 
a subsequent screen or not of the remaining library for 
the target in question.

The high translatability of the results from inter-
nal model validation is a key feature of the presented 
approach. Knowing in advance what the likely outcome 
of a screening campaign will be in terms of gain facilitates 
decision making and allow resources to be focused where 
testing delivers the most value. However, the results from 
this kind of evaluations are  only one factor and other 
aspects, e.g. importance of the target in question and/or 
finding new (types of ) active compounds, will also influ-
ence decisions and may also be taken into consideration.

Although we applied the cost-gain function together 
with a conformal predictor, the concept of a cost-gain 
functions as a way to evaluate compound selection for 
screening can be paired with any prediction method. In 
our opinion this has many advantages over traditionally 
used evaluation metrics and we hope that this approach 
will be more widely applied than just within the context 
described herein.

Table 5 Average percent loss in gain where training data 
did not correctly predict maximum gain for the test set

a Datasets where the validation did not indicate that the entire set should be 
screened for maximum gain
b Datasets where the optimum training set validation setting did not 
correspond to the maximum test set gain
c Fails for dataset 2326: 23.9%. Excluding this result: 2.1%

Cost Total number 
of partially 
screened 
 datasetsa

Fingerprint based 
models

Physiochemical 
based models

Number 
of  datasetb

%loss Number 
of  datasetb

%loss

6 9 6 5.7c 4 2.1

10 10 3 1 3 1.8

14 10 3 1.6 2 0.4

Table 6 Number of times the highest gain (training 
and test set) was obtained from fingerprint (FP) and phys-
icochemical (PC) descriptors based models respectively

a Ties occur when the validation indicates that the entire library should be 
screened

Cost Max gain FP Max gain PC Tiesa

6 6 3 3

10 9 1 2

14 9 1 2
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Nevertheless, we think the conformal framework adds 
a number of additional benefits. Firstly, it provides an 
easy way to tune the number of single class predictions. 
Secondly, the setup is in our opinions easier to communi-
cate to non-computational scientists since the concept of 
certainty is easily appreciated. Finally, conformal predic-
tors are an easy way to handle the imbalance in the data-
sets used for training, where there are typically very few 
active compounds compared to inactive.The presented 
cost-gain function in this work represents a very basic 
approach and additional research is required both to 
establish how to best assign the gain component as well 
as expanding the complexity of the considered variables. 
These questions and the expansion to more datasets will 
be the focus of future studies.

Conclusions
We present a workflow for the optimization of screen-
ing gain based on conformal prediction and a gain-cost 
function. This approach represents a new way of evaluat-
ing iterative screening campaigns and optimizing screen-
ing efficiency. This approach was applied to 12 bioactivity 
datasets derived from PubChem using two different fea-
ture spaces, and we show that the method consistently 
indicates the optimal gain or a very close approximation 
to the optimal gain on the test data.

We show that, by using 20% of the screening library as 
an initial screening set, very accurate predictions of the 
gain for the remaining library can be obtained, identify-
ing the optimal gain in between 8 and 10 out of 12 cases 
depending on the cost function used. Also, when the 
algorithm fails to identify the optimal settings the loss 
compared to the maximum is very small, in all but one 
case, falling in the range of 0.5–2.1%.

The described approach provides guidance on what 
selection of compounds to screen from the remaining 
library, or where appropriate, indicates that the entire 
library or that no more compounds should be screened 
in order to maximize gain or, for the last case, minimize 
loss.

Abbreviation
HTS: high throughput screening.
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