
Ahmed et al. J Cheminform (2018) 10:8
https://doi.org/10.1186/s13321-018-0265-z

METHODOLOGY

Efficient iterative virtual screening
with Apache Spark and conformal prediction
Laeeq Ahmed1* , Valentin Georgiev2, Marco Capuccini2,3, Salman Toor3, Wesley Schaal2, Erwin Laure1
and Ola Spjuth2

Abstract

Background: Docking and scoring large libraries of ligands against target proteins forms the basis of structure-based
virtual screening. The problem is trivially parallelizable, and calculations are generally carried out on computer clusters
or on large workstations in a brute force manner, by docking and scoring all available ligands.

Contribution: In this study we propose a strategy that is based on iteratively docking a set of ligands to form a
training set, training a ligand-based model on this set, and predicting the remainder of the ligands to exclude those
predicted as ‘low-scoring’ ligands. Then, another set of ligands are docked, the model is retrained and the process is
repeated until a certain model efficiency level is reached. Thereafter, the remaining ligands are docked or excluded
based on this model. We use SVM and conformal prediction to deliver valid prediction intervals for ranking the pre-
dicted ligands, and Apache Spark to parallelize both the docking and the modeling.

Results: We show on 4 different targets that conformal prediction based virtual screening (CPVS) is able to reduce
the number of docked molecules by 62.61% while retaining an accuracy for the top 30 hits of 94% on average and a
speedup of 3.7. The implementation is available as open source via GitHub (https://github.com/laeeq80/spark-cpvs)
and can be run on high-performance computers as well as on cloud resources.

Keywords: Virtual screening, Docking, Conformal prediction, Cloud computing, Apache Spark

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
An important part of the drug discovery process is lead
identification, where compounds that bind to a selected
target protein are identified. A well-established approach
for this is high-throughput screening (HTS), which
includes screening a large number of chemical com-
pounds against a target using an automated bioassay
[1]. An alternative approach is in silico screening, where
virtual chemical libraries are screened against a target
receptor using computational methods [2–4]. A com-
mon method for this is molecular docking and scoring,
where a docking algorithm is applied to find the best pose
of the ligand in, e.g., the active site of a receptor, and a
scoring function is used to evaluate the docking [5]. Vir-
tual screening is trivially parallelizable on a per-ligand

basis, and there have been many approaches developed
for doing this [6].

Due to the recent availability of large molecule datasets
(e.g., ZINC [7]) and their structure being highly paral-
lelizable, parallel approaches have been used for virtual
screening. In our previous studies [8, 9], we have shown
that these large chemical libraries can be efficiently pro-
cessed in parallel using Apache Spark [10] and scales well
with increasing computation power. However, the dock-
ing step in virtual screening takes a notable amount of
time even in a parallel setting. Also, only a small num-
ber of high-scoring ligands are found in these chemical
libraries during the virtual screening process and much
of time is wasted docking ‘low-scoring’ ligands. The
docking time can be substantially reduced if high-scoring
ligands can be inferred with confidence in advance so the
ligands expected to be low-scoring can be skipped.

Open Access

*Correspondence: laeeq@kth.se
1 Department of Computational Science and Technology, Royal Institute
of Technology (KTH), Lindstedtsvägen 5, 10044 Stockholm, Sweden
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-6877-3702
https://github.com/laeeq80/spark-cpvs
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-018-0265-z&domain=pdf

Page 2 of 8Ahmed et al. J Cheminform (2018) 10:8

Inference and machine learning
With the availability of large datasets in the last two
decades, learning from data and extracting value from
such large quantities of data has become a prominent
field, generally known as machine learning. Supervised
machine learning is the most common technique, where
the aim is to derive a mapping from input x to output y,
given a labeled set of input–output pairs [11]. The data-
set is divided into training and test sets. Each input x in
the training set is a vector of numbers representing some
characteristics of the input, known as features. A model
is trained using the training set and then used against
the test set to get the predictions. The accuracy of the
test set prediction is used to assess the model validity/
performance.

Machine learning has been extensively utilized in a
variety of fields and possesses nice theoretical properties.
However, a common deficiency in conventional machine-
learning algorithms is that they don’t provide valid
information about the reliability or confidence of the pre-
dictions made on the new examples [12]. The most com-
mon approach is to report and assume that a model will
predict with comparable performance on future exam-
ples as it performed on the test examples. However, there
is then an uncertainty that the new observation might be
different from the test set, which has led to discussions
and fuzzy definitions on a model’s ’applicability domain’.
What is desired is instead object-based confidence lev-
els, and Conformal prediction is one such mathematical
framework that gives valid confidence levels on predic-
tions for each example, and answers the question: How
good is your prediction?

Conformal prediction
Conformal prediction is a method devised by Vovk et al.
[13] that utilizes earlier knowledge to decide exact levels
of confidence in new predictions. Conformal prediction
can be used in combination with almost any underly-
ing regression or classification algorithm, e.g., support-
vector machines, gradient boosting, neural networks,
and random forests. In the case of classification mod-
els, conformal prediction produces a set of labels, e.g.,
in binary classification it produces {0}, {1}, {0, 1} and {
} sets. Although the output is a region or multi-classed
rather than a point prediction, the main benefit of the
technique is the model validity with user-provided con-
fidence threshold. For example, in a binary classifier the
true label is on average not excluded more than the con-
fidence threshold, e.g., if the confidence level is 90%, then
in 10% of the cases the true label will be excluded.

One of the basic setups for conformal prediction is
the transductive approach. In this scenario, the model
is retrained for each new observation. However, this is

quite computationally expensive especially for problems
with large datasets and therefore an inductive or batch
setting has become popular, called Inductive Conformal
Prediction (ICP) [14].

The way ICP works in a classification setting is fairly
simple. Initially, a training set and a test set of examples
with labels is required. The training set is divided into a
proper training set and a calibration set. The training set
is used to train a model using any underlying algorithm.
The calibration set is used to measure a nonconformity
score for each observation in the calibration set, which is
a measure of how different the current example is com-
pared to the training set. The model is then used to pre-
dict the examples in the test set, and for each class label
l = 1, . . . , k, a p-value of x for class l is computed. If the
p-value for class label l is greater than ε, it is added to the
prediction set. Using this strategy, it is guaranteed that
on average the true label of x will be present in the pre-
diction set with probability 1− ε [14].

Conformal prediction has been successfully used for
moderate to small datasets in quantitative structure-
activity relationship (QSAR) predictive modeling [15,
16], complication risk prediction following a coronary
drug eluting stent procedure (∼ 2 K examples) [17], and
anomaly detection of trajectories [18]. In a recent study
by Svensson et al. [19], a conformal prediction based iter-
ative approach is proposed for efficient screening. Dock-
ing was performed on an initial small dataset and then
conformal predictors were used to find active molecules
in an iterative fashion.

Apache Spark and MLlib
Apache Spark [10] is a parallel programming and execu-
tion framework for cluster computing that is fast and
easy to use. In terms of speed, it’s much faster than the
well-known Google MapReduce [20] and its open source
implementation, Apache Hadoop. One reason for its agil-
ity is keeping the data in-memory with support for itera-
tive processing. A detailed discussion is provided in our
earlier work [8, 9] on choosing Spark for parallel virtual
screening in comparison to other parallel frameworks,
such as OpenMPI, MPI and Google MapReduce.

Another advantage of Spark is the scalable machine
learning library, MLlib. MLlib includes many machine
learning algorithms such as classification, regression,
clustering and collaborative filtering and useful tools
such as featurization, machine learning pipelines, sta-
tistics and linear algebra utilities. It is an open source
project and has a rapidly growing community of devel-
opers. It has been successfully used for various parallel
machine learning projects, e.g., Capuccini et al. [21] pre-
sents an MLlib-based distributed conformal prediction
implementation for valid confidence estimation for large

Page 3 of 8Ahmed et al. J Cheminform (2018) 10:8

dataset problems and shows the validity and scalability of
the algorithms using two large datasets.

Here we present a novel strategy for distributed struc-
ture-based virtual screening using Spark’s MLlib library,
distributed conformal prediction [21] and support vector
machines (SVM) [22]. The objective is to avoid docking
molecules that can be predicted as ‘low-scoring’ ligands
with a certain confidence. To achieve this we dock a
subset of molecules iteratively and the conformal pre-
dictor is re-trained until the model reaches a certain effi-
ciency level, whereafter all remaining ligands predicted
as ’high-scoring’ are docked. Our results show that with
this strategy we are able to dock much fewer molecules
than in normal virtual screening while retaining a high
sensitivity.

Methods
Data
We used the SureChEMBL molecule library [23] for
our benchmarks, downloaded from ZINC [7] in ready-
to-dock SDF format. The library contains ∼ 2.2 M mol-
ecules and takes ∼ 8 GB of disk space. Molecules were
described using the signature molecular descriptor [24],
which is a 2D graph based on the signature of atoms in
the molecule, where an atom signature is a representa-
tion of the atom’s local environment in terms of neigh-
boring atoms up to a specified distance (height). We used
a parallel spark based implementation of the signature
descriptor [25] and set the consecutive signature heights
1–3, i.e., an atom at a distance of max 3 edges. An earlier
study [26] suggests that signature height 1–3 produces
good results for molecular classification with SVM based
models. OEDocking TK [27] was used as the underlying
docking software and as target proteins for the docking
we chose the HIV-1 protease [28], PTPN22, MMP13 and
CTDSP1 [29].

Analysis workflow
The objective of conformal prediction based virtual
screening (CPVS) is to reduce total time by avoiding the
docking of molecules that can be predicted as ‘low-scor-
ing’ ligands and only dock compounds that are predicted
as ‘high-scoring’ ligands with a certain confidence. The
workflow is shown in Fig. 1.

Initially, signatures were calculated for all molecules in
the whole dataset, and two copies of it were made: Ds and
DsComplete. An initial sample of DsInit number of mol-
ecules was randomly taken from Ds and docked against
a chosen receptor and scores were calculated. To form a
training set, docking scores were converted to class labels
{0} and {1} representing ‘low-scoring’ and ‘high-scoring’
ligands, respectively. This was done using a 10-bin histo-
gram of the docking scores where labels were assigned to

molecules in different bins. A conformal predictor was
trained on the training set and predictions were made on
the whole dataset, DsComplete. The molecules were clas-
sified as ‘low-scoring’ ligands {0}, ‘high-scoring’ ligands
{1} and ‘unknown’, i.e., both lables {0, 1} or empty {}. The
predicted ‘low-scoring’ ligands were removed from Ds in
each iteration and were hence never docked. Model effi-
ciency was computed by finding the ratio of single label
predictions [30], i.e., {0} and {1} against all predictions.
The process was then repeated iteratively with a smaller
data sample DsIncr from Ds. The predictor was re-trained
until it reached an acceptable efficiency, and all remain-
ing ‘high-scoring’ ligands were docked. The scores of
all docked molecules were sorted and accuracy for top
30 molecules was computed against the results from an
experiment where all molecules were docked [9].

Modeling
We used a mondrian inductive conformal predic-
tion (ICP) approach with SVM as underlying modeling
method, a widely-used machine learning algorithm for
predictive modeling [31, 32]. We used linear SVM, which
has previously shown good results for QSAR modeling
[33, 34], and used the implementation in Spark MLlib
with L-BFGS for optimization because it works well
with imbalanced datasets. A maximum of 50 iterations
were used for L-BFGS optimization. The training set was
randomly divided into 10% as calibration set and 90% as
proper training set and the confidence level was set at
80%, which has been shown to work well in earlier stud-
ies with imbalanced datasets [35].

Results
In order to tune our workflow, a number of parameters
need to be selected in order to reduce the overall time for
the virtual screening. This includes minimizing the num-
ber of docked molecules and keeping the size of training
sets used for modeling as small as possible to avoid overly
time-consuming training.

Initial training set and labeling strategy
A critical component in the analysis is the first predictive
model, and the initial training set must be of sufficient
size to produce robust results with a minimum of false
positives. The sizes of initial training set DsInit tested
were 50, 100, 200 and 300 K.

Docking scores were divided into 10-bin histograms,
where some bins were assigned as ‘low-scoring’ or ‘high-
scoring’. Four combinations were evaluated: 1_6, 1_5, 1_4,
2_4, where the first number is the highest bin for ‘low-
scoring’ and the second number is lowest bin for ‘high-
scoring’ ligands. For example, 2_4 declares that bins 1
and 2 contain ‘low-scoring’ ligands while bins 4 through

Page 4 of 8Ahmed et al. J Cheminform (2018) 10:8

10 contain ‘high-scoring’ ligands. The unassigned bin 3 is
excluded from training. Figure 2 shows an example dock-
ing score histogram for a sample of 200 K ligands in log
scale. The data distribution is skewed because we have
fewer molecules with high scores, which is normal for
these types of datasets as only a few ligands have a good
fit with the target protein and the majority will not bind
with high affinity.

The labeling of the initial sample of DsInit as ‘low-
scoring’ ligands needs to contain as few (observed)
high-scoring binders as possible, hence the number of
bins selected as class 0 should be kept low. The labeling
of ‘high-scoring’ ligands should minimize the chance of
not including (observed) high-scoring binders, hence the
number of bins selected as class 1 should be kept high.
This formed the basis for choosing the evaluated bin
combinations (see Table 1).

Table 1 shows the effect of the different combinations
of DsInit size and labeling parameters on accuracy and
efficiency after the first iteration. Each run was repeated
10 times and the average and standard deviation for accu-
racy and efficiency was computed. In general, increased
efficiency and accuracy was reported with increased

size of DsInit, but the labeling strategy based on bins
combination also affected the results. Runs with DsInit
size 50 and 100 K were discarded because of the risk of

Fig. 1 Workflow of CPVS. Signatures were generated for the whole dataset with two copies named Ds and DsComplete. An initial sample of DsInit
number of molecules was randomly taken from Ds and docked against a chosen receptor and scores were calculated. To form a training set, dock-
ing scores were converted to class labels {0} and {1} representing ‘low-scoring’ and ‘high-scoring’ ligands, respectively. This was done using a 10-bin
histogram of the docking scores where labels were assigned to ligands in different bins. An SVM-based conformal predictor model was trained on
the training set and predictions were made on the whole Dataset DsComplete. The molecules were classified as ‘low-scoring’ ligands {0}, ‘high-
scoring’ ligands {1} and ’unknown’. The predicted ‘low-scoring’ ligands were removed from Ds in each iteration and were hence never docked. Model
efficiency was computed by finding the ratio of single label predictions [30], i.e., {0} and {1} against all predictions. The process was then repeated
iteratively with a smaller data sample DsIncr from Ds which was docked and labeled, and the model was re-trained until it reached an acceptable
efficiency. Thereafter all remaining ‘high-scoring’ ligands were docked. The scores of all docked molecules were sorted and accuracy for top 30
molecules was computed against the results from an experiment where all molecules were docked [9]

Fig. 2 Docking score histogram for 200 K ligands shows an example
docking score histogram for a sample of 200 K ligands in log scale.
The data distribution is skewed right because we have fewer mol-
ecules with high scores, which is normal for these types of datasets
as only a few ligands have a good fit with the target protein and the
majority will not bind with high affinity

Page 5 of 8Ahmed et al. J Cheminform (2018) 10:8

fluctuation in the first model due to sampling issues with
smaller datasets, observable by higher variance in the
accuracy. For the remaining runs, the best combination
of high model accuracy and efficiency was sought. Higher
accuracy of the initial model reduces the chances of dis-
carding actual high-scoring binders, and higher efficiency
implies fewer iterations to reach sufficient model effi-
ciency in the iterative model building. We selected run 10
in Table 1, i.e., the parameters with DsInit size 200 K and
bins 1_5, which had a mean accuracy of 96.34% and an
efficiency of 76%.

Incremental model building
Improving the efficiency of the model in each itera-
tion requires sufficient amount of new data added to
the training set. Table 2 shows the effect of DsIncr size
on accuracy and model efficiency. We evaluated values
50, 100 and 200 K for DsIncr and ran the iterative imple-
mentation until the desired efficiency was reached. Each
run was performed 20 times. Accuracy and efficiency of
the final models in all three setting were good and simi-
lar to each other. In terms of time consumption, a DsIncr
size of 100 K required the least total time to complete.
The two core factors that contribute to the total time are
the number of docked molecules and the time used for
model training and predictions. The number of mole-
cules docked for all three settings were rather similar, i.e,
∼ 0.8 million. In all three settings, the model eventually
reached the required 80% efficiency though the smaller
DsIncr needed more iterations. With DsIncr size as 50 K,
an average of 3.90 models needed to be trained whereas

with DsIncr size as 200 K, although we need to train
only 3.15 models, each model training takes more time
because of larger size of data. Based on this argumenta-
tion, DsIncr size was set to 100 K for the final runs.

Efficiency of CPVS
We evaluated the performance of CPVS in terms of
reduction of total time, benchmarked against our previ-
ous study [9] (referred to as PVS) where the same dataset
was processed in the same parallel fashion but without
the machine learning component to filter out ‘low-scor-
ing’ leads.

Experimental environment
A standalone Spark cluster, along with HDFS was
launched on the SNIC Science Cloud (SSC) [36] using
SparkNow [37] for automated image creation and initiat-
ing required services on virtual machines. A total of 12
nodes were launched each with 8 virtual CPUs (vCPUs),

Table 1 Effect of DsInit size and bin combination on accuracy and efficiency for the initial trained model (repeated 10
times)

Trail no. DsInit (K) Bins Accu. (avg) Accu. (SD) Eff. (avg) Eff. (SD)

1 50 1_6 45.33 47.22 65 23

2 50 1_5 65.33 43.95 63 23

3 50 1_4 78.34 41.31 44 17

4 50 2_4 94.34 4.46 79 18

5 100 1_6 89.67 6.37 73 16

6 100 1_5 94.67 5.92 75 18

7 100 1_4 88.34 29.91 31 12

8 100 2_4 89.67 7.45 91 11

9 200 1_6 93.00 3.99 65 15

10 200 1_5 96.34 1.89 76 17

11 200 1_4 97.67 2.25 43 20

12 200 2_4 90.34 9.74 91 6

13 300 1_6 86.67 8.01 44 12

14 300 1_5 95.34 4.50 63 17

15 300 1_4 98.34 1.76 54 22

16 300 2_4 86.00 7.17 94 5

Table 2 Selecting DsIncr size for incremental model build-
ing (repeated 20 times, mean values reported)

Paremeters DsInit size = 200 K and Bins = 1_5 for all runs. Time was calculated
relative to 50 K

DsIncr (K) Iterations Accu. Eff. Docked mols
(millions)

Total time
(relative)

50 3.9 96.5 0.91 0.77 1

100 3.35 96.84 0.91 0.81 0.96

200 3.15 97.17 0.91 0.79 1.12

Page 6 of 8Ahmed et al. J Cheminform (2018) 10:8

16 GB of RAM, 160 GB of disk storage and 40 GB of
block storage. It was a completely virtualized environ-
ment and in that sense similar to commodity computing
based clusters. One node was used as the Spark driver,
which did not take part in processing. The remaining 11
nodes were used as workers with a total of 88 cores.

Benchmarking
As summarized in Fig. 3, both the PVS and CPVS runs
were executed on the same computational infrastruc-
ture and the time for job completion was recorded. PVS,
performing an exhaustive search, was executed once
and took 11.8, 8.30, 8.20 and 9.30 hours to complete
against HIV-1, PTPN22, MMP13 and CTDSP1 receptors
respectively.

CPVS was executed 10 times for each target receptor
and the results are given in Table 3. For all four receptors,
CPVS completed at least three times faster than PVS and
the accuracy was at least 90%. The average accuracy for
all four receptors is ∼ 94%. In general, the variance in
results was low showing that the results were consistent.
The average speedup (PVS total time / CPVS total time)
for four receptors was computed to 3.7.

Discussion
The docking step makes structure-based virtual screen-
ing a compute intensive task that requires high-per-
formance clusters or cloud computing resources to
complete in a timely manner. Our iterative virtual screen-
ing methodology using conformal prediction to filter out
molecules from the actual docking shows effective results
in that on average only 37.39% of the ligands were docked
to reach an accuracy level of ∼ 94% based on the top
30 top binders, and saving about two-thirds of the total
computation time. These results complement the ear-
lier study by Svensson et al. [19] who showed that 57%

of the active compounds could be found by only docking
9.4% of the compounds using the DUD ligand set of 2950
compounds using a conformal prediction approach. In
CPVS we use a more realistic screening dataset of over
2.2 M compounds, and the stepwise iterative docking and
machine learning on such a large dataset was facilitated
by the use of Apache Spark for distributed computations
and would have been complex and inefficient to carry out
without a distributed data framework.

Some common data manipulation operations can be
quite expensive even in a distributed environment as
it could lead to a lot of data shuffling among the nodes.
For labeling purposes, the histogram approach was used
to tackle one such problem. Another straightforward
approach could have been to compute the top and bot-
tom percentiles but this would include initial sorting of
the data based on scores which is an expensive operation
in a distributed environment. Thus a lighter histogram
operation was utilized, which also showed good results.

While the major advantage of the method is to shorten
the virtual screening execution time, it also opens up
opportunities for large-scale studies which may involve
multiple target receptors and multiple large molecule
libraries. The ability to execute the analyses in paral-
lel on HPC and cloud resources makes it only limited
by resources and/or costs. The instantiation of Apache
Spark clusters on-demand has been a complex task ear-
lier, but it is nowadays a straightforward operation on the
major cloud providers, and there are frameworks devel-
oped that greatly simplifies this process on private clouds
(e.g., SparkNow [37]) or in HPC environments (e.g.,
spark-on-slurm [38], sparkhpc [39]).

Processing large datasets is time consuming and costly
in that it requires large compute infrastructures to com-
plete jobs within reasonable time. This limited our oppor-
tunity for parameter sweeps in the study and necessitated
a more tailored approach. We also note that our results
depend on the docking time and hence the docking
implementation (OEDocking TK in our case). However
we do not believe that major changes to parameters will
be required in order to reach an efficient iterative dock-
ing with machine learning for other docking toolkits.

Fig. 3 Benchmarking CPVS against parallel VS. On average, only
37.39% of the ligands were docked to reach an accuracy level of ∼
94%. By decreasing the number of docked molecules, CPVS saves
more than two-thirds of the time and got an average speedup of 3.7
in comparison to Parallel VS [9]

Table 3 Results of the CPVS method for a set of target
receptors

Results were averaged over 10 runs for each receptor

Receptor Iterations Accu. Docked
mols (%)

Time
(hours)

Speed up

HIV-1 3.9 97.33 37.15 4.03 2.93

PTPN22 4.7 98.34 44.77 2.48 3.35

MMP13 3.5 89.00 33.34 2.10 3.90

CTDSP1 3.6 92.67 34.29 2.03 4.58

Page 7 of 8Ahmed et al. J Cheminform (2018) 10:8

Conclusion
In this work we present an efficient methodology for par-
allel virtual screening using conformal prediction to filter
out ‘low-scoring’ ligands and only dock molecules that
are predicted as ’high-scoring’ ligands with a specified
accuracy. We were able to reduce the number of docked
molecules by 62.61% while retaining ∼ 94% accuracy for
the top 30 binders. The CPVS average total time for each
receptor was at least 3 times less than for PVS [9] on the
same dataset in the same computational environment.
This makes CPVS a vital and cost effective alternative for
parallel virtual screening. The source code of the imple-
mentation is publicly available on GitHub (https://github.
com/laeeq80/spark-cpvs).

Authors’ contributions
LA, VG, MC and OS designed the study. LA and VG implemented the method
and carried out experiments. WS and ST contributed with expertise in mod-
eling. EL contributed with expertise in HPC. All authors read and approved the
final manuscript.

Author details
1 Department of Computational Science and Technology, Royal Institute
of Technology (KTH), Lindstedtsvägen 5, 10044 Stockholm, Sweden. 2 Depart-
ment of Pharmaceutical Biosciences, Uppsala University, Box 591, 75124 Upp-
sala, Sweden. 3 Department of Information Technology, Uppsala University,
Box 337, 75105 Uppsala, Sweden.

Acknowledgements
This project was supported by the Swedish e-Science Research Center (SeRC)
and the strategic research programme eSSENCE. HPC computations were
performed on resources provided by SNIC through Uppsala Multidisciplinary
Center for Advanced Computational Science (UPPMAX) [40] under Project
b2015245. Cloud resources were provided by SNIC Science Cloud (SSC) [36]
under Project SNIC 2017/13-6.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The SureChEMBL molecule library [23] used for our benchmarks can be down-
loaded from ZINC [7] in ready-to-dock SDF format.

Consent for publication
Not applicable

Ethics approval and consent to participate
Not applicable

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 12 July 2017 Accepted: 17 February 2018

References
 1. Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening.

Curr Opin Pharmacol 2:580–588
 2. Shoichet BK (2004) Virtual screening of chemical libraries. Nature

432(7019):862
 3. Subramaniam S, Mehrotra M, Gupta D (2008) Virtual high throughput

screening (vHTS)-a perspective. Bioinformation 3(1):14–17

 4. Shen M, Tian S, Pan P, Sun H, Li D, Li Y, Zhou H, Li C, Lee SMY, Hou T (2015)
Discovery of novel rock1 inhibitors via integrated virtual screening strat-
egy and bioassays. Sci Rep 5:16749

 5. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in
virtual screening for drug discovery: methods and applications. Nat Rev
Drug Discov 3(11):935–949

 6. Tanrikulu Y, Krüger B, Proschak E (2013) The holistic integration of virtual
screening in drug discovery. Drug Discov Today Vanc 18(7):358–364

 7. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012)
Zinc: a free tool to discover chemistry for biology. J Chem Inf Model
52(7):1757–1768

 8. Ahmed L, Edlund A, Laure E, Spjuth O (2013) Using iterative MapReduce
for parallel virtual screening. In: Proceedings of IEEE 5th international
conference of cloud computing technology and science (CloudCom), vol
2, pp 27–32

 9. Capuccini M, Ahmed L, Schaal W, Laure E, Spjuth O (2017) Large-scale
virtual screening on public cloud resources with apache spark. J Chem
9(1):15

 10. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I (2010) Spark:
cluster computing with working sets. HotCloud 10:95

 11. Murphy KP (2012) Machine learning: a probabilistic perspective. In: Adap-
tive computation and machine learning. MIT Press. ISBN:0262018020.
ISBN:9780262018029

 12. Balasubramanian V, Ho SS, Vovk V (2014) Conformal prediction for reli-
able machine learning: theory, adaptations and applications. Newnes.
ISBN:9780124017153

 13. Vovk V, Gammerman A, Shafer G (2005) Algorithmic learning in a random
world. Springer, Berlin

 14. Papadopoulos H (2008) Inductive conformal prediction: theory and
application to neural networks. INTECH Open Access Publisher, Rijeka
(18-315330)

 15. Norinder U, Carlsson L, Boyer S, Eklund M (2014) Introducing con-
formal prediction in predictive modeling. A transparent and flexible
alternative to applicability domain determination. J Chem Inf Model
54(6):1596–1603

 16. Eklund M, Norinder U, Boyer S, Carlsson L (2015) The application of
conformal prediction to the drug discovery process. Ann Math Artif Intell
74(1–2):117–132

 17. Balasubramanian VN, Gouripeddi R, Panchanathan S, Vermillion J,
Bhaskaran A, Siegel RM (2009) Support vector machine based conformal
predictors for risk of complications following a coronary drug eluting
stent procedure. In: IEEE Computers in Cardiology, pp 5–8

 18. Smith J, Nouretdinov I, Craddock R, Offer C, Gammerman A (2015)
Conformal anomaly detection of trajectories with a multi-class hierarchy.
In: International symposium on statistical learning and data sciences, pp
281–290

 19. Svensson F, Norinder U, Bender A (2017) Improving screening efficiency
through iterative screening using docking and conformal prediction. J
Chem Inf Model 57(3):439–444

 20. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on
large clusters. Commun ACM 51(1):107–113

 21. Capuccini M, Carlsson L, Norinder U, Spjuth O (2015) Conformal predic-
tion in spark: large-scale machine learning with confidence. In: IEEE/ACM
2nd international symposium on big data computing (BDC), pp 61–67

 22. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn
20(3):273–297

 23. Papadatos G, Davies M, Dedman N, Chambers J, Gaulton A, Siddle J, Koks
R, Irvine SA, Pettersson J, Goncharoff N, Hersey A (2016) SureChEMBL: a
large-scale, chemically annotated patent document database. Nucleic
Acids Res 44(D1):1220–1228

 24. Faulon JL, Visco DP, Pophale RS (2003) The signature molecular descriptor.
1. Using extended valence sequences in QSAR and QSPR studies. J Chem
Inf Comput Sci 43(3):707–720

 25. Capuccini M Spark Cheminformatics Utils. https://github.com/mcapuc-
cini/spark-cheminformatics. Accessed 11 Oct 2016

 26. Alvarsson J, Eklund M, Andersson C, Carlsson L, Spjuth O, Wikberg JE
(2014) Benchmarking study of parameter variation when using signature
fingerprints together with support vector machines. J Chem Inf Model
54(11):3211–3217

 27. OEDocking TK http://www.eyesopen.com/oedocking-tk. Accessed 13
July 2016

https://github.com/laeeq80/spark-cpvs
https://github.com/laeeq80/spark-cpvs
https://github.com/mcapuccini/spark-cheminformatics
https://github.com/mcapuccini/spark-cheminformatics
http://www.eyesopen.com/oedocking-tk

Page 8 of 8Ahmed et al. J Cheminform (2018) 10:8

 28. Bäckbro K, Löwgren S, Österlund K, Atepo J, Unge T, Hultén J, Bonham
NM, Schaal W, Karlén A, Hallberg A (1997) Unexpected binding mode of a
cyclic sulfamide HIV-1 protease inhibitor. J Med Chem 40(6):898–902

 29. Lindh M, Svensson F, Schaal W, Zhang J, Sköld C, Brandt P, Karlén A
(2015) Toward a benchmarking data set able to evaluate ligand-and
structure-based virtual screening using public hts data. J Chem Inf Model
55(2):343–353

 30. Vovk V, Fedorova V, Nouretdinov I, Gammerman A (2016) Criteria of effi-
ciency for conformal prediction. In: Proceedings of the 5th international
symposium on conformal and probabilistic prediction with applications
- volume 9653. COPA 2016. Springer, New York, pp 23–39

 31. Vogt M, Bajorath J (2012) Chemoinformatics: a view of the field and
current trends in method development. Bioorganic Med Chem
20(18):5317–5323

 32. Mitchell JB (2014) Machine learning methods in chemoinformatics. Wiley
Interdiscip Rev Comput Mol Sci 4(5):468–481

 33. Norinder U (2003) Support vector machine models in drug design: appli-
cations to drug transport processes and QSAR using simplex optimisa-
tions and variable selection. Neurocomputing 55(1):337–346

 34. Sun H, Pan P, Tian S, Xu L, Kong X, Li Y, Li D, Hou T (2016) Constructing and
validating high-performance miec-svm models in virtual screening for
kinases: a better way for actives discovery. Sci Rep 6:24817

 35. Norinder U, Boyer S (2017) Binary classification of imbalanced datasets
using conformal prediction. J Mol Gr Model 72:256–265

 36. SNIC Science Cloud. https://cloud.snic.se/. Accessed 28 May 2017
 37. SparkNow. https://github.com/mcapuccini/SparkNow. Accessed 28 May

2017
 38. Spark-on-slurm. https://github.com/mcapuccini/spark-on-slurm.

Accessed 28 May 2017
 39. Sparkhpc. https://sparkhpc.readthedocs.io/en/latest/. Accessed 28 May

2017
 40. Uppmax: Uppsala multidisciplinary center for advanced computational

science. http://www.uppmax.uu.se/. Accessed 15 June 2017

https://cloud.snic.se/
https://github.com/mcapuccini/SparkNow
https://github.com/mcapuccini/spark-on-slurm
https://sparkhpc.readthedocs.io/en/latest/
http://www.uppmax.uu.se/

	Efficient iterative virtual screening with Apache Spark and conformal prediction
	Abstract
	Background:
	Contribution:
	Results:

	Background
	Inference and machine learning
	Conformal prediction
	Apache Spark and MLlib

	Methods
	Data
	Analysis workflow
	Modeling

	Results
	Initial training set and labeling strategy
	Incremental model building
	Efficiency of CPVS
	Experimental environment
	Benchmarking

	Discussion
	Conclusion
	Authors’ contributions
	References

