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Abstract 

Background: Docking and scoring large libraries of ligands against target proteins forms the basis of structure-based 
virtual screening. The problem is trivially parallelizable, and calculations are generally carried out on computer clusters 
or on large workstations in a brute force manner, by docking and scoring all available ligands.

Contribution: In this study we propose a strategy that is based on iteratively docking a set of ligands to form a 
training set, training a ligand-based model on this set, and predicting the remainder of the ligands to exclude those 
predicted as ‘low-scoring’ ligands. Then, another set of ligands are docked, the model is retrained and the process is 
repeated until a certain model efficiency level is reached. Thereafter, the remaining ligands are docked or excluded 
based on this model. We use SVM and conformal prediction to deliver valid prediction intervals for ranking the pre-
dicted ligands, and Apache Spark to parallelize both the docking and the modeling.

Results: We show on 4 different targets that conformal prediction based virtual screening (CPVS) is able to reduce 
the number of docked molecules by 62.61% while retaining an accuracy for the top 30 hits of 94% on average and a 
speedup of 3.7. The implementation is available as open source via GitHub (https://github.com/laeeq80/spark-cpvs) 
and can be run on high-performance computers as well as on cloud resources.
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Background
An important part of the drug discovery process is lead 
identification, where compounds that bind to a selected 
target protein are identified. A well-established approach 
for this is high-throughput screening (HTS), which 
includes screening a large number of chemical com-
pounds against a target using an automated bioassay 
[1]. An alternative approach is in silico screening, where 
virtual chemical libraries are screened against a target 
receptor using computational methods [2–4]. A com-
mon method for this is molecular docking and scoring, 
where a docking algorithm is applied to find the best pose 
of the ligand in, e.g., the active site of a receptor, and a 
scoring function is used to evaluate the docking [5]. Vir-
tual screening is trivially parallelizable on a per-ligand 

basis, and there have been many approaches developed 
for doing this [6].

Due to the recent availability of large molecule datasets 
(e.g., ZINC  [7]) and their structure being highly paral-
lelizable, parallel approaches have been used for virtual 
screening. In our previous studies [8, 9], we have shown 
that these large chemical libraries can be efficiently pro-
cessed in parallel using Apache Spark [10] and scales well 
with increasing computation power. However, the dock-
ing step in virtual screening takes a notable amount of 
time even in a parallel setting. Also, only a small num-
ber of high-scoring ligands are found in these chemical 
libraries during the virtual screening process and much 
of time is wasted docking ‘low-scoring’ ligands. The 
docking time can be substantially reduced if high-scoring 
ligands can be inferred with confidence in advance so the 
ligands expected to be low-scoring can be skipped.
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Inference and machine learning
With the availability of large datasets in the last two 
decades, learning from data and extracting value from 
such large quantities of data has become a prominent 
field, generally known as machine learning. Supervised 
machine learning is the most common technique, where 
the aim is to derive a mapping from input x to output y, 
given a labeled set of input–output pairs [11]. The data-
set is divided into training and test sets. Each input x in 
the training set is a vector of numbers representing some 
characteristics of the input, known as features. A model 
is trained using the training set and then used against 
the test set to get the predictions. The accuracy of the 
test set prediction is used to assess the model validity/
performance.

Machine learning has been extensively utilized in a 
variety of fields and possesses nice theoretical properties. 
However, a common deficiency in conventional machine-
learning algorithms is that they don’t provide valid 
information about the reliability or confidence of the pre-
dictions made on the new examples [12]. The most com-
mon approach is to report and assume that a model will 
predict with comparable performance on future exam-
ples as it performed on the test examples. However, there 
is then an uncertainty that the new observation might be 
different from the test set, which has led to discussions 
and fuzzy definitions on a model’s ’applicability domain’. 
What is desired is instead object-based confidence lev-
els, and Conformal prediction is one such mathematical 
framework that gives valid confidence levels on predic-
tions for each example, and answers the question: How 
good is your prediction?

Conformal prediction
Conformal prediction is a method devised by Vovk et al. 
[13] that utilizes earlier knowledge to decide exact levels 
of confidence in new predictions. Conformal prediction 
can be used in combination with almost any underly-
ing regression or classification algorithm, e.g., support-
vector machines, gradient boosting, neural networks, 
and random forests. In the case of classification mod-
els, conformal prediction produces a set of labels, e.g., 
in binary classification it produces {0}, {1}, {0, 1} and { 
} sets. Although the output is a region or multi-classed 
rather than a point prediction, the main benefit of the 
technique is the model validity with user-provided con-
fidence threshold. For example, in a binary classifier the 
true label is on average not excluded more than the con-
fidence threshold, e.g., if the confidence level is 90%, then 
in 10% of the cases the true label will be excluded.

One of the basic setups for conformal prediction is 
the transductive approach. In this scenario, the model 
is retrained for each new observation. However, this is 

quite computationally expensive especially for problems 
with large datasets and therefore an inductive or batch 
setting has become popular, called Inductive Conformal 
Prediction (ICP) [14].

The way ICP works in a classification setting is fairly 
simple. Initially, a training set and a test set of examples 
with labels is required. The training set is divided into a 
proper training set and a calibration set. The training set 
is used to train a model using any underlying algorithm. 
The calibration set is used to measure a nonconformity 
score for each observation in the calibration set, which is 
a measure of how different the current example is com-
pared to the training set. The model is then used to pre-
dict the examples in the test set, and for each class label 
l = 1, . . . , k, a p-value of x for class l is computed. If the 
p-value for class label l is greater than ε, it is added to the 
prediction set. Using this strategy, it is guaranteed that 
on average the true label of x will be present in the pre-
diction set with probability 1− ε [14].

Conformal prediction has been successfully used for 
moderate to small datasets in quantitative structure-
activity relationship (QSAR) predictive modeling [15, 
16], complication risk prediction following a coronary 
drug eluting stent procedure (∼ 2 K examples) [17], and 
anomaly detection of trajectories [18]. In a recent study 
by Svensson et al. [19], a conformal prediction based iter-
ative approach is proposed for efficient screening. Dock-
ing was performed on an initial small dataset and then 
conformal predictors were used to find active molecules 
in an iterative fashion.

Apache Spark and MLlib
Apache Spark [10] is a parallel programming and execu-
tion framework for cluster computing that is fast and 
easy to use. In terms of speed, it’s much faster than the 
well-known Google MapReduce [20] and its open source 
implementation, Apache Hadoop. One reason for its agil-
ity is keeping the data in-memory with support for itera-
tive processing. A detailed discussion is provided in our 
earlier work [8, 9] on choosing Spark for parallel virtual 
screening in comparison to other parallel frameworks, 
such as OpenMPI, MPI and Google MapReduce.

Another advantage of Spark is the scalable machine 
learning library, MLlib. MLlib includes many machine 
learning algorithms such as classification, regression, 
clustering and collaborative filtering and useful tools 
such as featurization, machine learning pipelines, sta-
tistics and linear algebra utilities. It is an open source 
project and has a rapidly growing community of devel-
opers. It has been successfully used for various parallel 
machine learning projects, e.g., Capuccini et al. [21] pre-
sents an MLlib-based distributed conformal prediction 
implementation for valid confidence estimation for large 
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dataset problems and shows the validity and scalability of 
the algorithms using two large datasets.

Here we present a novel strategy for distributed struc-
ture-based virtual screening using Spark’s MLlib library, 
distributed conformal prediction [21] and support vector 
machines (SVM) [22]. The objective is to avoid docking 
molecules that can be predicted as ‘low-scoring’ ligands 
with a certain confidence. To achieve this we dock a 
subset of molecules iteratively and the conformal pre-
dictor is re-trained until the model reaches a certain effi-
ciency level, whereafter all remaining ligands predicted 
as ’high-scoring’ are docked. Our results show that with 
this strategy we are able to dock much fewer molecules 
than in normal virtual screening while retaining a high 
sensitivity.

Methods
Data
We used the SureChEMBL molecule library [23] for 
our benchmarks, downloaded from ZINC  [7] in ready-
to-dock SDF format. The library contains ∼ 2.2 M mol-
ecules and takes ∼ 8 GB of disk space. Molecules were 
described using the signature molecular descriptor [24], 
which is a 2D graph based on the signature of atoms in 
the molecule, where an atom signature is a representa-
tion of the atom’s local environment in terms of neigh-
boring atoms up to a specified distance (height). We used 
a parallel spark based implementation of the signature 
descriptor [25] and set the consecutive signature heights 
1–3, i.e., an atom at a distance of max 3 edges. An earlier 
study [26] suggests that signature height 1–3 produces 
good results for molecular classification with SVM based 
models. OEDocking TK [27] was used as the underlying 
docking software and as target proteins for the docking 
we chose the HIV-1 protease [28], PTPN22, MMP13 and 
CTDSP1 [29].

Analysis workflow
The objective of conformal prediction based virtual 
screening (CPVS) is to reduce total time by avoiding the 
docking of molecules that can be predicted as ‘low-scor-
ing’ ligands and only dock compounds that are predicted 
as ‘high-scoring’ ligands with a certain confidence. The 
workflow is shown in Fig. 1.

Initially, signatures were calculated for all molecules in 
the whole dataset, and two copies of it were made: Ds and 
DsComplete. An initial sample of DsInit number of mol-
ecules was randomly taken from Ds and docked against 
a chosen receptor and scores were calculated. To form a 
training set, docking scores were converted to class labels 
{0} and {1} representing ‘low-scoring’ and ‘high-scoring’ 
ligands, respectively. This was done using a 10-bin histo-
gram of the docking scores where labels were assigned to 

molecules in different bins. A conformal predictor was 
trained on the training set and predictions were made on 
the whole dataset, DsComplete. The molecules were clas-
sified as ‘low-scoring’ ligands {0}, ‘high-scoring’ ligands 
{1} and ‘unknown’, i.e., both lables {0, 1} or empty {}. The 
predicted ‘low-scoring’ ligands were removed from Ds in 
each iteration and were hence never docked. Model effi-
ciency was computed by finding the ratio of single label 
predictions  [30], i.e., {0} and {1} against all predictions. 
The process was then repeated iteratively with a smaller 
data sample DsIncr from Ds. The predictor was re-trained 
until it reached an acceptable efficiency, and all remain-
ing ‘high-scoring’ ligands were docked. The scores of 
all docked molecules were sorted and accuracy for top 
30 molecules was computed against the results from an 
experiment where all molecules were docked [9].

Modeling
We used a mondrian inductive conformal predic-
tion (ICP) approach with SVM as underlying modeling 
method, a widely-used machine learning algorithm for 
predictive modeling [31, 32]. We used linear SVM, which 
has previously shown good results for QSAR modeling 
[33, 34], and used the implementation in Spark MLlib 
with L-BFGS for optimization because it works well 
with imbalanced datasets. A maximum of 50 iterations 
were used for L-BFGS optimization. The training set was 
randomly divided into 10% as calibration set and 90% as 
proper training set and the confidence level was set at 
80%, which has been shown to work well in earlier stud-
ies with imbalanced datasets [35].

Results
In order to tune our workflow, a number of parameters 
need to be selected in order to reduce the overall time for 
the virtual screening. This includes minimizing the num-
ber of docked molecules and keeping the size of training 
sets used for modeling as small as possible to avoid overly 
time-consuming training.

Initial training set and labeling strategy
A critical component in the analysis is the first predictive 
model, and the initial training set must be of sufficient 
size to produce robust results with a minimum of false 
positives. The sizes of initial training set DsInit tested 
were 50, 100, 200 and 300 K.

Docking scores were divided into 10-bin histograms, 
where some bins were assigned as ‘low-scoring’ or ‘high-
scoring’. Four combinations were evaluated: 1_6, 1_5, 1_4, 
2_4, where the first number is the highest bin for ‘low-
scoring’ and the second number is lowest bin for ‘high-
scoring’ ligands. For example, 2_4 declares that bins 1 
and 2 contain ‘low-scoring’ ligands while bins 4 through 
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10 contain ‘high-scoring’ ligands. The unassigned bin 3 is 
excluded from training. Figure 2 shows an example dock-
ing score histogram for a sample of 200 K ligands in log 
scale. The data distribution is skewed because we have 
fewer molecules with high scores, which is normal for 
these types of datasets as only a few ligands have a good 
fit with the target protein and the majority will not bind 
with high affinity.

The labeling of the initial sample of DsInit as ‘low-
scoring’ ligands needs to contain as few (observed) 
high-scoring binders as possible, hence the number of 
bins selected as class 0 should be kept low. The labeling 
of ‘high-scoring’ ligands should minimize the chance of 
not including (observed) high-scoring binders, hence the 
number of bins selected as class 1 should be kept high. 
This formed the basis for choosing the evaluated bin 
combinations (see Table 1).

Table 1 shows the effect of the different combinations 
of DsInit size and labeling parameters on accuracy and 
efficiency after the first iteration. Each run was repeated 
10 times and the average and standard deviation for accu-
racy and efficiency was computed. In general, increased 
efficiency and accuracy was reported with increased 

size of DsInit, but the labeling strategy based on bins 
combination also affected the results. Runs with DsInit 
size 50 and 100 K were discarded because of the risk of 

Fig. 1 Workflow of CPVS. Signatures were generated for the whole dataset with two copies named Ds and DsComplete. An initial sample of DsInit 
number of molecules was randomly taken from Ds and docked against a chosen receptor and scores were calculated. To form a training set, dock-
ing scores were converted to class labels {0} and {1} representing ‘low-scoring’ and ‘high-scoring’ ligands, respectively. This was done using a 10-bin 
histogram of the docking scores where labels were assigned to ligands in different bins. An SVM-based conformal predictor model was trained on 
the training set and predictions were made on the whole Dataset DsComplete. The molecules were classified as ‘low-scoring’ ligands {0}, ‘high-
scoring’ ligands {1} and ’unknown’. The predicted ‘low-scoring’ ligands were removed from Ds in each iteration and were hence never docked. Model 
efficiency was computed by finding the ratio of single label predictions [30], i.e., {0} and {1} against all predictions. The process was then repeated 
iteratively with a smaller data sample DsIncr from Ds which was docked and labeled, and the model was re-trained until it reached an acceptable 
efficiency. Thereafter all remaining ‘high-scoring’ ligands were docked. The scores of all docked molecules were sorted and accuracy for top 30 
molecules was computed against the results from an experiment where all molecules were docked [9]

Fig. 2 Docking score histogram for 200 K ligands shows an example 
docking score histogram for a sample of 200 K ligands in log scale. 
The data distribution is skewed right because we have fewer mol-
ecules with high scores, which is normal for these types of datasets 
as only a few ligands have a good fit with the target protein and the 
majority will not bind with high affinity
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fluctuation in the first model due to sampling issues with 
smaller datasets, observable by higher variance in the 
accuracy. For the remaining runs, the best combination 
of high model accuracy and efficiency was sought. Higher 
accuracy of the initial model reduces the chances of dis-
carding actual high-scoring binders, and higher efficiency 
implies fewer iterations to reach sufficient model effi-
ciency in the iterative model building. We selected run 10 
in Table 1, i.e., the parameters with DsInit size 200 K and 
bins 1_5, which had a mean accuracy of 96.34% and an 
efficiency of 76%.

Incremental model building
Improving the efficiency of the model in each itera-
tion requires sufficient amount of new data added to 
the training set. Table  2 shows the effect of DsIncr size 
on accuracy and model efficiency. We evaluated values 
50, 100 and 200 K for DsIncr and ran the iterative imple-
mentation until the desired efficiency was reached. Each 
run was performed 20 times. Accuracy and efficiency of 
the final models in all three setting were good and simi-
lar to each other. In terms of time consumption, a DsIncr 
size of 100 K required the least total time to complete. 
The two core factors that contribute to the total time are 
the number of docked molecules and the time used for 
model training and predictions. The number of mole-
cules docked for all three settings were rather similar, i.e, 
∼ 0.8 million. In all three settings, the model eventually 
reached the required 80% efficiency though the smaller 
DsIncr needed more iterations. With DsIncr size as 50 K, 
an average of 3.90 models needed to be trained whereas 

with DsIncr size as 200 K, although we need to train 
only 3.15 models, each model training takes more time 
because of larger size of data. Based on this argumenta-
tion, DsIncr size was set to 100 K for the final runs.

Efficiency of CPVS
We evaluated the performance of CPVS in terms of 
reduction of total time, benchmarked against our previ-
ous study [9] (referred to as PVS) where the same dataset 
was processed in the same parallel fashion but without 
the machine learning component to filter out ‘low-scor-
ing’ leads.

Experimental environment
A standalone Spark cluster, along with HDFS was 
launched on the SNIC Science Cloud (SSC) [36] using 
SparkNow [37] for automated image creation and initiat-
ing required services on virtual machines. A total of 12 
nodes were launched each with 8 virtual CPUs (vCPUs), 

Table 1 Effect of DsInit size and bin combination on accuracy and efficiency for the initial trained model (repeated 10 
times)

Trail no. DsInit (K) Bins Accu. (avg) Accu. (SD) Eff. (avg) Eff. (SD)

1 50 1_6 45.33 47.22 65 23

2 50 1_5 65.33 43.95 63 23

3 50 1_4 78.34 41.31 44 17

4 50 2_4 94.34 4.46 79 18

5 100 1_6 89.67 6.37 73 16

6 100 1_5 94.67 5.92 75 18

7 100 1_4 88.34 29.91 31 12

8 100 2_4 89.67 7.45 91 11

9 200 1_6 93.00 3.99 65 15

10 200 1_5 96.34 1.89 76 17

11 200 1_4 97.67 2.25 43 20

12 200 2_4 90.34 9.74 91 6

13 300 1_6 86.67 8.01 44 12

14 300 1_5 95.34 4.50 63 17

15 300 1_4 98.34 1.76 54 22

16 300 2_4 86.00 7.17 94 5

Table 2 Selecting DsIncr size for incremental model build-
ing (repeated 20 times, mean values reported)

Paremeters DsInit size = 200 K and Bins = 1_5 for all runs. Time was calculated 
relative to 50 K

DsIncr (K) Iterations Accu. Eff. Docked mols 
(millions)

Total time 
(relative)

50 3.9 96.5 0.91 0.77 1

100 3.35 96.84 0.91 0.81 0.96

200 3.15 97.17 0.91 0.79 1.12
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16 GB of RAM, 160 GB of disk storage and 40 GB of 
block storage. It was a completely virtualized environ-
ment and in that sense similar to commodity computing 
based clusters. One node was used as the Spark driver, 
which did not take part in processing. The remaining 11 
nodes were used as workers with a total of 88 cores.

Benchmarking
As summarized in Fig. 3, both the PVS and CPVS runs 
were executed on the same computational infrastruc-
ture and the time for job completion was recorded. PVS, 
performing an exhaustive search, was executed once 
and took 11.8,  8.30,  8.20 and 9.30 hours to complete 
against HIV-1, PTPN22, MMP13 and CTDSP1 receptors 
respectively.

CPVS was executed 10 times for each target receptor 
and the results are given in Table 3. For all four receptors, 
CPVS completed at least three times faster than PVS and 
the accuracy was at least 90%. The average accuracy for 
all four receptors is ∼ 94%. In general, the variance in 
results was low showing that the results were consistent. 
The average speedup (PVS total time / CPVS total time) 
for four receptors was computed to 3.7.

Discussion
The docking step makes structure-based virtual screen-
ing a compute intensive task that requires high-per-
formance clusters or cloud computing resources to 
complete in a timely manner. Our iterative virtual screen-
ing methodology using conformal prediction to filter out 
molecules from the actual docking shows effective results 
in that on average only 37.39% of the ligands were docked 
to reach an accuracy level of ∼ 94% based on the top 
30 top binders, and saving about two-thirds of the total 
computation time. These results complement the ear-
lier study by Svensson  et al.  [19] who showed that 57% 

of the active compounds could be found by only docking 
9.4% of the compounds using the DUD ligand set of 2950 
compounds using a conformal prediction approach. In 
CPVS we use a more realistic screening dataset of over 
2.2 M compounds, and the stepwise iterative docking and 
machine learning on such a large dataset was facilitated 
by the use of Apache Spark for distributed computations 
and would have been complex and inefficient to carry out 
without a distributed data framework.

Some common data manipulation operations can be 
quite expensive even in a distributed environment as 
it could lead to a lot of data shuffling among the nodes. 
For labeling purposes, the histogram approach was used 
to tackle one such problem. Another straightforward 
approach could have been to compute the top and bot-
tom percentiles but this would include initial sorting of 
the data based on scores which is an expensive operation 
in a distributed environment. Thus a lighter histogram 
operation was utilized, which also showed good results.

While the major advantage of the method is to shorten 
the virtual screening execution time, it also opens up 
opportunities for large-scale studies which may involve 
multiple target receptors and multiple large molecule 
libraries. The ability to execute the analyses in paral-
lel on HPC and cloud resources makes it only limited 
by resources and/or costs. The instantiation of Apache 
Spark clusters on-demand has been a complex task ear-
lier, but it is nowadays a straightforward operation on the 
major cloud providers, and there are frameworks devel-
oped that greatly simplifies this process on private clouds 
(e.g., SparkNow [37]) or in HPC environments (e.g., 
spark-on-slurm [38], sparkhpc [39]).

Processing large datasets is time consuming and costly 
in that it requires large compute infrastructures to com-
plete jobs within reasonable time. This limited our oppor-
tunity for parameter sweeps in the study and necessitated 
a more tailored approach. We also note that our results 
depend on the docking time and hence the docking 
implementation (OEDocking TK in our case). However 
we do not believe that major changes to parameters will 
be required in order to reach an efficient iterative dock-
ing with machine learning for other docking toolkits.

Fig. 3 Benchmarking CPVS against parallel VS. On average, only 
37.39% of the ligands were docked to reach an accuracy level of ∼ 
94%. By decreasing the number of docked molecules, CPVS saves 
more than two-thirds of the time and got an average speedup of 3.7 
in comparison to Parallel VS [9]

Table 3 Results of the CPVS method for a set of target 
receptors

Results were averaged over 10 runs for each receptor

Receptor Iterations Accu. Docked 
mols (%)

Time 
(hours)

Speed up

HIV-1 3.9 97.33 37.15 4.03 2.93

PTPN22 4.7 98.34 44.77 2.48 3.35

MMP13 3.5 89.00 33.34 2.10 3.90

CTDSP1 3.6 92.67 34.29 2.03 4.58
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Conclusion
In this work we present an efficient methodology for par-
allel virtual screening using conformal prediction to filter 
out ‘low-scoring’ ligands and only dock molecules that 
are predicted as ’high-scoring’ ligands with a specified 
accuracy. We were able to reduce the number of docked 
molecules by 62.61% while retaining ∼ 94% accuracy for 
the top 30 binders. The CPVS average total time for each 
receptor was at least 3 times less than for PVS [9] on the 
same dataset in the same computational environment. 
This makes CPVS a vital and cost effective alternative for 
parallel virtual screening. The source code of the imple-
mentation is publicly available on GitHub (https://github.
com/laeeq80/spark-cpvs).
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