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Abstract 

In biomedical research, patents contain the significant amount of information, and biomedical text mining has 
received much attention in patents recently. To accelerate the development of biomedical text mining for patents, the 
BioCreative V.5 challenge organized three tracks, i.e., chemical entity mention recognition (CEMP), gene and protein 
related object recognition (GPRO) and technical interoperability and performance of annotation servers, to focus on 
biomedical entity recognition in patents. This paper describes our neural network approach for the CEMP and GPRO 
tracks. In the approach, a bidirectional long short-term memory with a conditional random field layer is employed to 
recognize biomedical entities from patents. To improve the performance, we explored the effect of additional features 
(i.e., part of speech, chunking and named entity recognition features generated by the GENIA tagger) for the neural 
network model. In the official results, our best runs achieve the highest performances (a precision of 88.32%, a recall 
of 92.62%, and an F-score of 90.42% in the CEMP track; a precision of 76.65%, a recall of 81.91%, and an F-score of 
79.19% in the GPRO track) among all participating teams in both tracks.
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Introduction
Biomedical named entity recognition (NER) aims to 
automatically find the biomedical mentions in text, which 
is crucial for the information extraction in biomedical 
domain. In the previous BioCreative challenges [1–3], 
various tasks have been addressed to recognize biomedi-
cal entities (such as gene/protein, chemical and disease) 
from the scientific literature. In addition to the scientific 
literature, patents are another important source since 
they contain a wealth of useful biomedical information. 
Therefore, automatic extraction of information contained 
in patents has received much attention, and automatic 
biomedical entity recognition from medicinal chemistry 
patents has become an important research task [4].

To promote the development of NER systems, the Bio-
Creative V.5, a major challenge event in biomedical natu-
ral language processing, organized three tracks to focus 

on biomedical entity recognition in patents. This chal-
lenge included three individual tracks: two traditional 
BioCreative tracks to detect relevant biomedical enti-
ties (chemical entity mention recognition (CEMP) track 
and gene and protein related object recognition (GPRO) 
track) and a novel track called technical interoperability 
and performance of annotation servers (TIPS). The latter 
focuses on the technical aspects of the evaluation of con-
tinuous text Annotation Servers for NER. For the chal-
lenge, we participated in the CEMP and GPRO tracks, 
and our submissions to the two tracks were created by 
our deep learning system.

The biomedical NER is a fundamental step for further 
biomedical text mining and has received much more 
attention recently. However, biomedical NER is par-
ticularly challenging due to some reasons. For example, 
for gene/protein NER, millions of gene/protein names 
are used, new names are created constantly and rap-
idly, gene/protein names naturally co-occur with other 
types that have similar morphology and context, vari-
ous ways of naming gene and ambiguities caused by 
DNA sequences may vary in nonspecific ways [1]. In 
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the previous works, the state-of-the-art CRF-based bio-
medical NER methods [5–9] depend on effective feature 
engineering, i.e., the design of effective features using 
various natural language processing (NLP) tools and 
knowledge resources, which is still a labor-intensive and 
skill-dependent task. Recently, deep learning has become 
prevalent in the machine learning research community. 
These are neural network-based representation learn-
ing methods that compose simple but non-linear mod-
ules to obtain multiple levels of representation [10]. For 
the NER task in general domain (such as news domain), 
several similar neural network architectures [11–13] have 
been proposed and exhibit promising results. Moreover, 
deep learning methods have begun to be explored in bio-
medical field, including genes and proteins [14], diseases 
[15] and chemicals [16]. Compared with the traditional 
machine learning methods, the key advantage of deep 
learning methods is that these layers of features are not 
designed by human engineers and, therefore, less feature 
engineering is needed.

In this paper, we describe our NER systems based on 
the neural network for the CEMP and GPRO tracks. In 
the approach, first the word embedding is learned from 
a large unlabeled dataset. Thereafter, character feature is 
produced with the character and capitalization embed-
dings. Then the concatenation of the character feature 
and the word embedding is used as a basic input. Finally, 
the input is fed into a bidirectional long short-term mem-
ory with a conditional random field layer (BiLSTM-CRF) 
to recognize chemical and gene/protein entities from 
patents. Furthermore, we explored the effect of addi-
tional features (i.e., part of speech (POS), chunking and 
NER features generated by the GENIA tagger) for the 
neural network model. In the official results, our best 
runs achieve the highest performances (the F-scores of 
90.42% and 79.19% on the CEMP and GPRO corpora, 

respectively) in both tracks. The details of our method 
and results are presented in the following sections.

Methods
Similar to many NER tasks, we modeled the biomedical 
NER as a sequence labeling problem. We used the BIO 
(Begin, Inside, Outside) tagging scheme since it achieves 
better performance than BIOES tagging scheme in our 
experiments. For the challenge, we present the system 
based on the neural network architecture (i.e., BiLSTM-
CRF) to recognize biomedical entities from patents. The 
processing flow of our system is shown in Fig. 1. Firstly, 
some preprocessing steps including text cleaning, sen-
tence splitting and tokenization are performed. Sec-
ondly, a word embedding is learned with large amounts 
of unlabeled data with the word2vec tool. Moreover, 
we induce the character feature and additional features 
(such as POS, chunking and NER features generated by 
the GENIA tagger). Then with the features as input, a 
BiLSTM-CRF model is trained by the annotated training 
set. Finally, some post-processing steps including tagging 
consistency, abbreviation resolution and bracket balance 
are employed. The process is described in details in the 
following sections.

Text preprocessing
First, document titles and abstracts are extracted 
from the dataset. The extracted text is then split into 
the sentences, tokenized using the Stanford CoreNLP 
tool [17]. Note that the tokenization of the Stanford 
CoreNLP tool does not split text into segments at the 
dash (-) character. However, in the biomedical docu-
ments, some chemical and gene/protein entity names 
and other words are always combined into one token 
using dash character. For example, “ephrinB-EphB” is 
annotated as two entities (i.e., “ephrinB” and “EphB”); 

Fig. 1 The processing flowchart of our system
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“CD3-binders” is only annotated with “CD3” as an 
entity. To address the cases, we broke the text into sep-
arated segments at the dash character (e.g., “ephrinB-
EphB” is split into three tokens: “ephrinB”, “-” and 
“EphB”). The experimental results show that the pro-
cessing can improve the performance of our system.

Features
Distributed word embedding and character feature are 
widely used in the field of NLP, especially in the deep 
learning methods. We also used them as a basic fea-
ture of our NER system. Moreover, to investigate the 
effects of traditional features (such as POS, chunk-
ing, and NER features), these features are added into 
the model as additional features. All feature embed-
dings are parameters of the model, and they can be 
optimized when the model is trained. Table 1 shows an 
example of all features from tokens corresponding to 
a sentence. Details of each of features are presented as 
follows.

Word embedding
Word embedding, also known as distributed word rep-
resentation, can capture both the semantic and syntactic 
information of words from a large unlabeled corpus and 
has attracted considerable attention from many research-
ers [18]. Compared with the bag-of-words representa-
tion, word embedding is low-dimensional and dense. In 
recent years, several models, such as word2vec [19] and 
GloVe [20], have been proposed and widely used in the 
field of NLP. To achieve a high-quality word embedding, 
we downloaded a total of 1,918,662 MEDLINE abstracts 
from the PubMed website as the unlabeled data. Then the 
data and all datasets (The training set comprises a total 
of 21,000 abstracts, and the test set comprises a total of 
9000 abstracts.) provided in the BioCreative V.5 CEMP 
and GPRO tracks were used to train the word embedding 
by the word2vec tool using the skip-gram model as pre-
trained word embedding.

Character feature
In addition to the word embedding, character-level fea-
tures in a name contain rich structure information of the 
entity. These features (such as character n-grams, pre-
fixed and suffixes) are commonly employed in the cur-
rent NER methods [21]. Unlike the previous traditional 
methods in which character features are based on hand-
engineering, character embedding can be learned while 
training. Character embedding has been found useful for 
many NLP tasks. They can not only learn interior repre-
sentations of the entity names, but also alleviate the out-
of-vocabulary problem [22]. In our model, a bidirectional 
long short-term memory (BiLSTM) is used to obtain the 
character-level feature. First, a character lookup table 
which contains a character embedding for every charac-
ter is initialized randomly. The sequence of characters in 
a word is transformed to a sequence of embeddings with 
fixed length L, where L is the max length of all words. 
If the word has a length less than L, we pad it with zero 
embeddings. Then the character embedding correspond-
ing to every character in a word is given in both direct 
and reverse orders to a BiLSTM. Further, we used a sepa-
rate lookup table to add a capitalization feature since 
capitalization information is erased during the word 
and character embeddings. The capitalization feature is 
obtained with the following options: allCaps (all char-
acters are uppercase in a word), firstCaps (only the first 
character is uppercase), lower (all characters are lower-
case), others (the other case excluding the above ones). 
At last, the concatenation of the forward and backward 
representations from the BiLSTM and the capitalization 
feature is used as the character-level feature of the word.

Additional features
Due to the complexity of the natural language and the 
specialty of the biomedical domain, some linguistic 
and domain features are often employed in traditional 
machine learning methods for biomedical NER [7, 9]. We 
also explored the effect of linguistic features (such as POS 
and chunking features). The POS information and chunk-
ing information of each word were generated by the 

Table 1 An example of all features

Input Substituted piperidines with selective binding to histamine h3 – receptor .

Word substituted piperidines with selective binding to histamine h3 – receptor .

Character s u b s t i t u d e d p i p e r i d i n e s w i t h s e l e c t i v e b i n d i n g t o h i s t a m i n e h 3 – r e c e p t o r .

Cap firstCaps lower lower lower lower lower lower lower lower lower lower

POS VBN NNS IN JJ NN TO NN NN HYPH NN .

Chunk B-NP I-NP B-PP B-NP I-NP B-PP B-NP I-NP B-NP I-NP O

NER O O O O O O B-protein I-protein I-protein I-protein O
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GENIA tagger (http://www.nacte m.ac.uk/GENIA /tagge 
r/). In addition, named entity tags information (includ-
ing protein, DNA, RNA, cell line and cell type entities) 
generated by the GENIA tagger was also used as a fea-
ture. And the NER feature of each token was encoded in 
the BIO tagging scheme. In our experiments, three dif-
ferent lookup tables were to output POS, chunking, and 
NER embeddings, respectively. And they were initialized 
randomly.

BiLSTM‑CRF model
Our system is a deep learning one based on a bidirec-
tional long short-term memory model with a conditional 
random field layer, whose architecture is illustrated in 
Fig. 2.

Recurrent neural networks (RNNs) are a family of 
neural networks for processing sequential data. Giv-
ing a sequence of vectors X = (x1, x2, . . . , xt , . . . , xn) 
as input, they return another corresponding sequence 
(h1,h2, . . . ,ht , . . . ,hn) , where n is the length of the 
sequence. The current state ht is generated from the 
input xt and the state ht−1 that is passed forward though 
time. However, traditional RNNs have the mathematical 
challenge of learning long-term dependencies. The main 
problem is that gradients propagated over many stages 
tend to vanish. When the sequence is long, learning 
long-term dependencies is difficult for traditional RNNs 
[23]. To alleviate this problem, long short-term memory 
(LSTM) [24] is designed by incorporating a memory 
cell with the gating mechanism and has been shown to 
capture long-range dependencies. Therefore, LSTM 

is applied in our system. LSTM memory cell is imple-
mented as the following:

where σ is the element-wise sigmoid function, and ∗ is 
the element-wise product. {W(.),U(.),V(.)} is the weight 
matrix set. {b(.)} is the bias vector set.

However, the LSTM’s hidden state ht only takes the 
information from the left context of the sequence at 
every time t. To learn left and right context information 
simultaneously, an elegant solution is a bidirectional 
LSTM (BiLSTM) [25]. In the BiLSTM architecture, a for-
ward LSTM computes a representation �ht of the 
sequence from left to right, and another backward LSTM 
computes a representation 

←

ht of the same sequence in 
reverse. These two distinct networks use different param-
eters, and then the representation of a word is obtained 
by concatenating its left and right context representa-

tions, i.e., ht =
[

�ht;
←

ht

]

 . The representation can make use 

of rich context information. Then a tanh layer on top of 
the BiLSTM is used to predict confidence scores for the 
word having each of the possible labels as the output 
scores of the network.

where the weight matrix W(e) and the bias vector b(e) are 
the parameters of the model to be learned in training.

Similar to many NER tasks, we modeled the bio-
medical NER as a sequence labeling problem. In the 
sequence labeling problem, the output labels have 
strong dependencies. In addition to information of the 
word itself and the context, the entity tag of the word 
is also decided by the context tags information of the 
word. For example, in a reasonable entity tag sequence, 
the tag “I” generally appears after the tag “B”, but it 
does not appear after the tag “O”. However, the above-
mentioned output scores of the network only use the et 
to make independent tagging decisions for each output. 
Therefore, instead of modelling tagging decisions inde-
pendently, the CRF layer is added after the tanh layer to 
decode the best tag path in all possible tag paths. To be 
more specific, we consider P to be the matrix of scores 

(1)it = σ

(

W(i)xt +U(i)ht−1 + V(i)ct−1 + b(i)
)

(2)
ct = (1− it) ∗ ct−1 + it ∗ tanh

(

W(c)xt +U(c)ht−1 + b(c)
)

(3)ot = σ

(

W(o)xt +U(o)ht−1 + V(o)ct + b(o)
)

(4)ht = ot ∗ tanh(ct)

(5)et = tanh
(

W(e)ht + b(e)
)

Fig. 2 The architecture of BiLSTM-CRF model

http://www.nactem.ac.uk/GENIA/tagger/
http://www.nactem.ac.uk/GENIA/tagger/
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output by the network. The tth column of the matrix is 
the vector et obtained by the Eq. (5). The element Pi,j of 
the matrix is the score of the jth tag of the ith word in 
the sentence. Moreover, we introduce a tagging transi-
tion matrix T , where Ti,j represents the score of transi-
tion from tag i to tag j in successive words and T0,j as 
the initial score for starting from tag j. This transition 
matrix will be trained as the parameter of model. The 
score of the sentence X along with a sequence of pre-
dictions y = (y1, y2, . . . , yt , . . . , yn) is then given by the 
sum of transition scores and network scores:

Then we use a softmax function to yield the condi-
tional probability of the path y by normalizing the 
above score over all possible tag paths ỹ:

During the training phase, the objective of the model 
is to maximize the log-probability of the correct tag 
sequence:

At inference time, we predict the best tag path that 
obtains the maximum score given by:

This can be computed using dynamic programming, 
and the Viterbi algorithm [26] is chosen for this inference.

Training procedure
The word embedding of our model is initialized with 
pre-trained word embedding and other parameters are 
initialized at random from a uniform distribution. Then 
all parameters are optimized using stochastic gradient 
descent (SGD) [27] to maximize the log-probability of the 
correct tag sequence. In addition, several hyper-parame-
ters need to be determined in our model. We tuned the 
hyper-parameters on the development set by random 
search [28]. The main hyper-parameters of our models 
are shown in Table 2. The number of epochs is chosen by 
early stopping strategy [29] on the development set. Our 
model is implemented using open-source deep learning 
library Theano (http://deepl earni ng.net/softw are/thean 
o/) and trained on a NVIDIA Tesla K40 GPU.

(6)s
(

X, y
)

=

n
∑

i=1

(

Tyi−1,yi + Pi,yi
)

(7)p
(

y|X
)

=
es(X,y)

∑

ỹ e
s(X,ỹ)

(8)log p
(

y|X
)

= s
(

X, y
)

− log
∑

ỹ

es(X,ỹ)

(9)arg max
ỹ

s
(

X, ỹ
)

Post‑processing
For performance optimization, we also employed several 
common post-processing steps including tagging consist-
ency, abbreviation resolution and bracket balance.

If the number of a word sequence tagged by our model 
as a biomedical entity exceeds 50% of the total number 
of the sequence in a document (title and abstract), all 
instances of the word sequence will be tagged as an entity 
mention. For example, if our BiLSTM-CRF model found 
three gene/protein mentions of “nociception recep-
tor” and missed out two other mentions of “nociception 
receptor” in a document, the missed mentions would be 
retrieved.

For abbreviation resolution, all local abbreviation defi-
nitions, such as “protease-activated receptor 1 (PAR1)”, 
will be found. If the abbreviation (i.e., “PAR1”) in the long 
form was tagged by our model, then all instances of the 
abbreviation in the document would be tagged.

While there are some mentions with unbalanced brack-
ets (such as parenthesis, square brackets and curly brack-
ets), we attempted to balance the brackets by adding or 
removing characters to the right or left of the mention. 
For example, if “OGP(10” (the next characters in the text 
are “− 14)”) was tagged as an mention by our model, 
then the mention would be extended to include the 
right parenthesis (i.e., “OGP(10–14)”). If the unbalanced 
bracket is the first or last character of the entity tagged by 
the model (e.g., “(nNOS”), the bracket would be simply 
discarded.

Results and discussion
In this section, first the experimental datasets and set-
tings are introduced, and then the experimental results 
and discussion are presented.

Experimental datasets and settings
The organizers of the BioCreative V.5 challenge pro-
vided the corpora (i.e., the CEMP and GPRO corpora) 

Table 2 The main hyper-parameters of our model

Hyper‑parameter Value Values tested

Word embedding dimension 100 50, 100, 200

Character embedding dimension 25 25, 50

Character-level BiLSTM state size 25 25, 50

Capitalization embedding dimension 5 5, 10

POS embedding dimension 25 25, 50

Chunking embedding dimension 10 10, 20

NER embedding dimension 5 5, 10

Word-level BiLSTM state size 100 50, 100, 200

SGD learning rate 0.001 0.01, 0.005, 0.001

http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/
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including the training and test sets. The training set com-
prises a total of 21,000 manually annotated documents 
(title and abstract), and test set comprises a total of 9000 
unannotated documents. Furthermore, annotations for 
the GPRO track are divided in two groups: type 1, cover-
ing GPRO mentions that can be normalized to a database 
record; and type 2, covering those GPRO mentions that 
in principle cannot be normalized to a unique bio-entity 
database record [30]. Table 3 describes the statistic of the 
CEMP and GPRO corpora. In our experiments, for the 
GPRO task, we only consider entities that can be mapped 
to an identifier (type 1) are evaluated like the GPRO sub-
task in the BioCreative V does [4], and the type 2 entities 
are ignored. We randomly selected the 10% of the train-
ing set as the development set (Dev) to tune the hyper-
parameters and the remaining documents were used to 
train our system. Only the annotations of the training 
sets were made available to the participants in the chal-
lenge. To evaluate the performance of their system on the 
test set (Test), teams could submit up to five runs to the 
BeCalm Web metaserver platform [31]. The micro-aver-
aged recall, precision and F-score statistics were used for 
final prediction scoring, and F-score was selected as main 
evaluation metric. The gold-standard annotation of the 
test dataset has not yet been released by the organizers.

The effect of the different ratios of positive and negative 
documents
In the CEMP corpus, 16,539 documents in the training 
set contain annotated chemical entities and the rest 4461 

documents do not contain them. However, in the GPRO 
corpus, only 5795 documents in the training set con-
tain annotated gene/protein entities and the rest 15,205 
documents do not contain them. In our experiments, 
to explore the effectiveness of the documents without 
annotated biomedical entities, the corresponding corpus 
was divided into the different training sets by the ratio 
of positive documents (the documents with annotated 
biomedical entities) and negative documents (the docu-
ments without annotated biomedical entities). First, the 
negative documents are randomly selected by the ratio. 
Then they and all positive documents are combined into 
a new training set. In the experiments, word embedding 
and character feature are used as the inputs of the BiL-
STM-CRF model. The results of the models trained with 
the different training sets on our development sets are 
shown in Table 4. 

On the CEMP corpus, there is slight difference among 
the F-scores of these models. The reason is that only 
small amounts of documents do not contain chemical 
entities. On the GPRO corpus, the model achieves the 
best performance with an F-score of 75.95% when the 
number of positive and negative documents in the train-
ing set is equal. When the number of positive documents 
exceeds the number of negative documents, the more 
token sequences are predicted as the entities. In this case, 
the model performs worse owing to a significant drop 
in precision. When the number of negative documents 
exceeds the number of positive documents, the model 
also performs worse owing to a significant drop in recall. 
In the following experiments, all CEMP training set is 
used to train the models, while the balanced version of 
GPRO training set is used.

The effect of the model components on the development 
set
In our experiments, the BiLSTM-CRF with the basic 
feature (i.e., word embedding and character feature) is 
used as our baseline. To further analyze the effectiveness 
of our baseline model components, the corresponding 
experiments are conducted by removing one component 

Table 3 CEMP and GPRO corpora overview

Training set Test set Entire corpus

Patent abstracts 21,000 9000 30,000

CEMP mentions 99,632 44,486 144,188

GPRO mentions 17,751 8998 26,749

GPRO type 1 mentions 12,422 5330 17,752

GPRO type 2 mentions 5329 3668 8997

Tokens 1,770,836 767,599 2,538,435

Table 4 The effect of the different ratios of positive and negative documents

On the CEMP corpus, only the ratio (1:0) and all training set were tested since the number of positive documents is more than the number of negative documents

Italic values denote the highest values

Ratio (positive:negative) CEMP Dev GPRO Dev

Precision Recall F‑score Precision Recall F‑score

1:0 87.58 92.20 89.83 60.90 88.27 72.07

1:0.5 – – – 66.06 85.76 74.63

1:1 – – – 67.97 86.06 75.95

1:2 – – – 70.03 77.79 73.71

All training set 87.58 92.50 89.97 68.32 82.44 74.72
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each time. Table 5 reports the evaluation results on our 
development sets.

The similar results were observed on both CEMP and 
GPRO corpora. The results show that each component 
makes different degrees of contribution. Among others, 
the CRF layer makes the most significant contribution. 
After the CRF layer is removed, the F-score decreases 
by 3.31% and 5.81% on the CEMP and GPRO develop-
ment sets, respectively. It demonstrates that BiLSTM has 
the ability of handing sequential data and learning the 
long-range context information, but the performance of 
the model can still be further improved by considering 
the dependencies of output labels (which is implemented 
with the CRF layer). In addition, the character embed-
ding is also important. Removing the character embed-
ding leads to the decrease of F-score by 1.41% and 1.73% 
on the CEMP and GPRO development sets, respectively. 
The reason is that character information can not only 
capture interior representations of the entity names, but 
also alleviate the out-of-vocabulary problem. Moreover, 
the post-processing can slightly improve the performance 
of our model.

The effect of additional features on the development set
We also investigated the effect of three additional fea-
tures (POS, chunking, and NER features mentioned in 
"Additional features" section) on the performances of our 
baseline. In the experiments, the concatenation of basic 
features and additional features as input is fed into the 

model, and Table 6 shows the results of different combi-
nations of these features on our development sets.

When the additional features are added, the mod-
els achieve slightly lower F-scores than the baseline on 
the CEMP corpus. The plausible reason is that the deep 
neural network itself has learned sufficient higher and 
abstract features automatically from the word and char-
acter embeddings with the large training set. However, 
noise may be introduced into the models by the errors 
of the NLP tools, which leads to the decrease in perfor-
mances of the models. On the GPRO corpus, when only 
the POS feature is added, higher F-score (an improve-
ment of 0.23% in F-score over the baseline) is achieved. 
The main reason is that the information of POS can help 
boost the precision of baseline. For example, most enti-
ties are nouns but not verbs. When only the chunk fea-
ture is added, the model achieves a slight improvement 
(an improvement of 0.06% in F-score). The main reason 
is that some entity boundary errors can be revised by the 
chunking information though some chunking informa-
tion generated by the GENIA tagger tool is error. The 
introduction of NER feature alone also improves the per-
formance (an improvement of 0.30% in F-score), which 
demonstrates that the information of prior entities pro-
vided by the GENIA tagger can help boost the perfor-
mance. When all the additional features are added into 
the baseline, the best performance (an improvement of 
0.81% in F-score) is achieved. Compared with the GPRO 
training set, the CEMP training set contains more entity 

Table 5 The effect of our baseline components on our development sets

Italic values denote the highest values

Model CEMP Dev GPRO Dev

Precision Recall F‑score △ Precision Recall F‑score △

Baseline 87.58 92.50 89.97 – 67.97 86.06 75.95 –

− Character embedding 86.27 90.98 88.56 − 1.41 66.67 83.69 74.22 − 1.73

− Capitalization feature 87.99 91.42 89.67 − 0.30 68.07 84.94 75.58 − 0.37

− CRF layer 84.84 88.55 86.66 − 3.31 62.81 79.41 70.14 − 5.81

− Post-processing 87.30 92.28 89.72 − 0.25 68.04 85.61 75.82 − 0.13

Table 6 The effect of additional features on our development sets

Italic values denote the highest values

Model CEMP Dev GPRO Dev

Precision Recall F‑score △ Precision Recall F‑score △

Baseline 87.58 92.50 89.97 – 67.97 86.06 75.95 –

+ POS feature 88.12 91.70 89.87 − 0.10 68.72 85.46 76.18 +0.23

+ Chunking feature 87.21 92.58 89.81 − 0.16 67.21 87.45 76.01 +0.06

+ NER feature 87.57 91.81 89.64 − 0.33 69.32 84.72 76.25 +0.30

+ All features 87.97 91.39 89.65 − 0.32 70.84 83.76 76.76 +0.81
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mentions (99,623 chemical mentions vs 17,751 gene/pro-
tein mentions). The additional features are more helpful 
for a small training set than large one. For the GPRO task, 
the different kinds of additional features contribute com-
plementary information, and the introduction of them 
into our baseline can further improve the performance.

Performance comparison with other participants 
on the test set
To further demonstrate the effectiveness of our approach, 
it is compared with the performance of other CEMP and 
GPRO track participants. The official CEMP and GPRO 
top five evaluation results (the best runs per team only) on 
the test sets are shown in Table 7, where SD denotes the 
standard deviation of the F-score of each team and teams 
were grouped based on statistically significant difference 
between results [30, 32]. The results of team 121 are the 
results of our BiLSTM-CRF models with the basic feature 
and the all features on the CEMP and GPRO test sets, 
respectively (i.e., the best models in Table 6). The results 
show that our system achieves the highest performances 
in all teams in the BioCreative V.5 CEMP and GPRO 
tracks (the F-scores of 90.42% and 79.19%, respectively).

Error analysis
Compared with the results on the CEMP corpus, our 
model performs poorly on the GPRO corpus. Therefore, 
we manually analyzed the errors generated by our best 
model on the GPRO development set. The major errors can 
be divided into three categories: (1) incorrect boundary, 
(2) missing gene/protein mention, (3) not a gene/protein 

mention. An example for each type of error is shown in 
Table 8.

For the incorrect boundary error, most cases occur where 
a gene/protein is nested within a larger gene/protein men-
tion (e.g., our model predicts “AXL” as a mention but the 
correct mention should be “AXL receptor tyrosine kinase” 
in Table  8). The main reason may be that the annotated 
training set contains the tagging inconsistency. For example, 
“5-ht2a” of the string “5-ht2a serotonin receptor” is anno-
tated as an entity in the document with ID: CN101871931A 
while “5-ht2a serotonin receptor” is annotated as the same 
entity in the document with ID: WO2006060762A3. For 
the missing gene/protein mention error, the reason is that 
our model cannot detect the entity without sufficient con-
text information. In the example of Table 8, “C1-INH” is the 
abbreviation of “C1 esterase inhibitor” in the document, but 
it is difficult to detect the entity in the sentence without suf-
ficient information by our model. In addition, we observed 
that many strings having similar expressions and strong 
gene/protein indicators are falsely identified as gene/protein 
mentions. For example, “MLN4924” consists of uppercase 
and number, and its context contains the strong gene/pro-
tein indicator “inhibitor”. Our model incorrectly identified 
the chemical as a gene/protein mention. It can be seen from 
the above analysis, even though automatic learning of high-
level features is advantage of deep learning methods and 
BiLSTM-CRF model can capture long-range dependencies, 
it is difficult for our model to automatically learn domain 
knowledge from the raw text and capture sufficient context 
information from a sentence. Therefore, more contextual 

Table 7 Performance comparison with other participants on the test sets (the best runs per team)

Italic values denote the highest values

Row CEMP Test GPRO Test

Team Precision Recall F‑score SD (%) Team Precision Recall F‑score SD (%)

A 121(ours) 88.32 92.62 90.42 0.25 121(ours) 76.65 81.91 79.19 0.10

B 112 88.97 91.82 90.37 0.27 112 75.23 77.49 76.34 0.08

C 107 90.02 90.62 90.32 0.27 153 72.06 80.68 76.13 0.10

D 153 88.02 90.28 89.14 0.30 133 66.53 82.68 73.73 0.10

E 116 84.39 92.97 88.47 0.23 142 74.79 71.63 73.18 0.15

Table 8 Examples of gene/protein named entity recognition errors

The correct entity mentions are underlined, while the misrecognized entity mentions are italicized

Error type Example

Incorrect boundary And in the treatment of diseases and conditions that are mediated by AXL receptor 
tyrosine kinase

Missing gene/protein mention Combination of C1-INH and lung surfactant for the treatment of respiratory disorders

Not a gene/protein mention Application of tumor inhibitor MLN4924 to preparation of antiviral drug
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information from a document and external knowledge can 
be considered to improve our model.

Conclusion
In this paper, we present our system based on a deep 
learning approach for the chemical and gene/protein NER 
tasks in the BioCreative V.5 CEMP and GPRO tracks. In 
our approach, a BiLSTM-CRF model is employed to rec-
ognize biomedical entities from patents. Moreover, the 
effect of additional features (such as POS, chunking, and 
NER features) for the neural network model is investi-
gated. The experimental results show that the additional 
features are effective to improve the performance of our 
system for the GPRO track. And our system achieves the 
state-of-the-art performances on both CEMP and GPRO 
corpora. It demonstrates the effectiveness of our approach 
for biomedical NER task in patents. However, from our 
error analysis, our system should can be further improved 
by considering more contextual information at document-
level (not only at sentence-level) and external knowledge 
which will be explored in our future work.
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