
Kirschnick et al. J Cheminform (2018) 10:63
https://doi.org/10.1186/s13321-018-0319-2

RESEARCH ARTICLE

SIA: a scalable interoperable annotation
server for biomedical named entities
Johannes Kirschnick†, Philippe Thomas†, Roland Roller and Leonhard Hennig*

Abstract

Recent years showed a strong increase in biomedical sciences and an inherent increase in publication volume. Extrac-
tion of specific information from these sources requires highly sophisticated text mining and information extraction
tools. However, the integration of freely available tools into customized workflows is often cumbersome and difficult.
We describe SIA (Scalable Interoperable Annotation Server), our contribution to the BeCalm-Technical interoperability
and performance of annotation servers (BeCalm-TIPS) task, a scalable, extensible, and robust annotation service. The
system currently covers six named entity types (i.e., chemicals, diseases, genes, miRNA, mutations, and organisms) and
is freely available under Apache 2.0 license at https ://githu b.com/Erech theus /sia.

Keywords: Text mining, Annotation service, Robustness, Scalability, Extensibility

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
A vast amount of information on biomedical processes
is scattered over millions of scientific publications. Man-
ual curation of this information is expensive and cannot
keep up with the ever increasing volume of biomedical
literature [1]. To this end, several sophisticated natural
language processing tools have been proposed to assist
professionals in finding specific information from texts.
Many of these highly specialized tools are provided as
open source projects to the community. However, the
integration of state-of-the-art open source extractors
into customized text-mining workflows is often diffi-
cult and cumbersome [2, 3]. Standardized interchange
formats, such as BioC [4], enable the exchange of text
mining results but the initial set-up of these tools is still
an unsolved issue. Exposing tools via public web ser-
vices implementing common specifications bypasses
this problem and allows a code-agnostic integration of
specific tools by providing an interoperable interface to
third parties. This enables simple integration, compari-
son, and aggregation of different state-of-the-art tools.
In this publication we present SIA, our contribution to
the BeCalm-Technical interoperability and performance

of annotation servers (BeCalm-TIPS) task [5]. SIA is a
robust, scalable, extensible, and generic framework to
combine multiple named entity recognition tools into a
single system.

The publication is organized as follows: First, we briefly
introduce the BeCalm-TIPS task and its requirements.
We then give an overview of the SIA system architecture,
followed by a detailed description of the implementation
and the error handling features. This is followed by a scal-
ability experiment conducted on a large dump of Pub-
Med articles and a discussion of the results. We end with
a summary and a future work section.

BeCalm‑TIPS task overview
The following section provides a short introduction to
the BeCalm-TIPS task, focusing on the payloads annota-
tion servers had to accept and respond with. A detailed
description of the task is available in [5].

The task set out to define a testbed for comparing dif-
ferent annotation tools by making them accessible via
public web endpoints which exchange standardized
JSON messages. It required participants to register their
endpoint and a set of supported named entity types with
a system managed by the task organizers. Over the course
of the task, this endpoint received a number of annota-
tion requests. Each request was not required to be pro-
cessed interactively, just the message reception had to be

Open Access

Journal of Cheminformatics

*Correspondence: leonhard.hennig@dfki.de
†J. Kirschnick and P. Thomas contributed equally to this work
DFKI Language Technology Lab, Alt-Moabit 91c, Berlin, Germany

http://orcid.org/0000-0002-9594-2011
https://github.com/Erechtheus/sia
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-018-0319-2&domain=pdf

Page 2 of 7Kirschnick et al. J Cheminform (2018) 10:63

acknowledged. Once the annotations were generated by
the annotation server, they had to be sent back to a dedi-
cated endpoint—via a separate HTTP request.

Listing 1 shows an excerpt of the JSON payload for an
annotation request. It consists of a list of document iden-
tifiers and their respective source. As no text was trans-
mitted, participants where required to implement their
own text retrieval component to fetch the title, abstract
and potentially full text for each document prior to pro-
cessing. A type field specified the list of named entities to
be identified. A unique communication identifier was
passed along, which had to be included in any outgoing
messages in order to correlate individual requests and
responses.

Once the annotation server acknowledged the recep-
tion of a request it had a specified amount of time to
respond. Listing 2 shows a snippet of such a response.
It contains a list of detected annotations across all
requested documents, identifying the text source section
(abstract A or title T), the start and end positions within
it, a confidence score, and the extracted named entity
type as well as the annotated text itself.

The task merely specified the required input—as well
as output schemata and gave participants full control
over the implementation of their system as well as which
annotation types they wanted to support.

SIA: general architecture
This section describes the architecture of SIA, our con-
tribution to the BeCalm-TIPS task. Figure 1 shows a high
level overview of the general architecture, which was
designed around the following three main goals:

1 Scalability The ability to handle large amounts of
concurrent requests, tolerating bursts of high request
rates over short periods of time.

Listing 1: JSON payload excerpt for an annotation request

1 {"documents":
2 [{"document_id": "BC1403854C", "source":"PUBMED"}, ...],
3 "types": ["DISEASE", "MUTATION", "MIRNA"],
4 "communication_id": 1581}

Listing 2: JSON payload excerpt for an annotation response

1 [{"document_id":"BC1403855C", "section":"A",
2 "init":410, "end":419, "score":1.0,
3 "type":"DISEASE", "annotated_text":"periosteum" }, ...]

2 Robustness Temporary failures (e.g., networking
problems or server failures) should be handled trans-
parently and not lead to dropped requests.

3 Extensibility Enable simple integration of arbitrary
NLP tools to reduce initial burden for providing an
annotation service.

To achieve these goals, SIA is split into three compo-
nents, the front end, back end, and result handling,
respectively. The front end handles the interactive
aspects of the system, while the other components imple-
ment the system’s non-interactive elements.

To connect these components, we opted for a mes-
sage based architecture, which links each component to

a central message bus, over which they exchange mes-
sages. Incoming annotation requests are translated into
messages by the front end, and subsequently processed
by the back end. Once processing is finished the final
result is handled by the result handler. To this end, SIA
defines a configurable message flow for each message,
which incorporates fetching raw texts, running a set of
annotators, aggregating the results and forwarding them
to a result handler. The configuration defines the actual
processing steps, the set of annotator components to
use, which document fetchers to enable and how to deal
with the results. For example, a processing flow could
fetch PubMed articles from a public endpoint, handle
all requests for Mutations with the SETH [6] tagger and
send annotation results back to the requester. The over-
all processing flow is expressed as an ordered sequence of
message transformation and aggregation steps, while the
configuration allows to extend the actual processing flow
with new annotator and document fetcher components.
Interested readers are referred to Enterprise Integra-
tion Patterns [7] for a detailed discussion of the different

Page 3 of 7Kirschnick et al. J Cheminform (2018) 10:63

message handling and transformation strategies that SIA
employs.

To handle messages, persistent queues are defined
as input and output buffers for all components, where
a subsequent component consumes from the previous
component’s output queue. These queues are stored for
the entirety of the system’s lifetime. This architecture fur-
ther provides fault tolerant and scalable processing. Fault
tolerance is enabled through component wise acknowl-
edgment of each successful message processing, which
allows replaying all unacknowledged messages during
system recovery, while scalability is achieved through
component replication and round robin based message
forwarding for increased message throughput.

Messages, the data objects in our architecture, carry
information through the system and are composed of a
Header and Payload part. The Header contains meta
information, such as expiry date, global ids and requested
annotation types, and is used by the system to route mes-
sages to the respective consumers. The Payload con-
tains the actual data to be processed.

Implementation details
SIA is implemented in Java and uses RabbitMQ [8] as its
message bus implementation. In the following each indi-
vidual component of SIA is described in detail.

Front end
The front end encapsulates the annotation processing
for the clients and serves as the entry point to the sys-
tem. Currently it provides a REST endpoint according to

the Becalm-TIPS task specification. Other entry points,
such as interactive parsing can easily be added. Incom-
ing requests are translated into messages and forwarded
to an input queue. This way, the overall processing in
the front end is very lightweight and new requests can
be handled irrespectively of any ongoing annotation
processing. Furthermore, the back end does not need to
be online at the time of a request, but instead could be
started dynamically based on observed load.

To handle multiple concurrent requests with varying
deadlines, we make use of the fact that the input queue
is a priority queue, and prioritize messages with an ear-
lier expiry date. Already running requests will not be
canceled, the priority is just used as a fast path to the
front of the queue. The message expiry date, as provided
by the calling clients, is translated into a message priority
using the currently processed messages and their dead-
lines as well as past elapsed processing time statistics to
estimate the individual message urgency.

The front end also handles validation and authoriza-
tion, which moves this logic into a central place. Further-
more, the front end provides a monitoring entry point
into the system, reporting computation statistics, such as
request rates, recent document types as well as back end
processing counters, for display in dashboards and for
observing the current health of the system.

Back end
The back end is concerned with fetching documents from
the supported corpus providers, calling the requested
annotators for each resulting text fragment, aggregating

split into
document ids

retrieve source
text

route to
requested
annotator

perform
annotation

aggregate
results

Back End

Front EndREST
Gateway

BeCalm
Handler

Retrieve resultNew request

Result Handler

Fig. 1 General architecture of SIA. The front end handles new requests and forwards them to the back end over a message bus. Each message is
transformed through a series of components, which in turn are connected via named queues. The result handler collects the annotation responses
and returns them to the calling client

Page 4 of 7Kirschnick et al. J Cheminform (2018) 10:63

the results and feeding them to a result handler. It is
modeled using a pipeline of message transformations,
which subsequently read from message queues and post
back to new ones. The message flow starts by reading
new requests from the input queue, which is filled by the
front end. The front end does not communicate directly
with the back end, but instead the input queue is used
as a hand over point. Since a single annotation request,
in the case of the Becalm-TIPS task specification, may
contain multiple document ids, incoming messages are
first split into document-level messages. Splitting takes
one message as input and generates as many individual
messages as there are document ids specified. The raw
text for each document is then retrieved by passing the
messages through corpus adapters. The outcome is the
retrieved text, separated into fields for abstract, title and
potentially full text.

Raw texts messages are then delivered to registered
annotators using a scatter-gather approach. Each mes-
sage is duplicated (scattered) to the respective input
queue of a qualified annotator. To find the annotator, the
required annotator type per message is translated into
a queue name, as each annotator has a dedicated input
queue. Upon completion all resulting annotation mes-
sages are combined together (gathered) into a single
message. This design allows to add new annotators by
registering a new input queue and adding it to the anno-
tation type mapping. This mapping is also exposed as a
runtime configuration, which allows to dynamically (de-)
activate annotators.

The next step in the message flow aggregates all annota-
tion results across all documents that belong to the same
request. It is the inverse of the initial split operation, and
aggregates all messages sharing the same unique request
id into a single one. Overlapping annotations (e.g., from
different annotator components) are merged without any
specific post processing. This strategy allows end users
the highest flexibility as annotations are not silently mod-
ified. Finally, the aggregated message is forwarded to the
output queue.

While the processing flow is specified in a sequential
manner, this does not entail single threaded execution.
Each individual transformer, such as a corpus adapter or
an annotator, works independently and can be further
scaled out, if they present a processing bottleneck. Fur-
thermore, multiple requests can be handled in parallel at
different stages of the pipeline. Transacting the message
delivery to each transformer and retrying on failure, pro-
vides the fault tolerance of the system. Overall, the back
end specifies a pipeline of an ordered execution flow and
provides two injection points where users, through con-
figuration, can add new functionality with additional cor-
pus adapters or new annotation handlers.

To increase the throughput of the back end, multiple
instances of SIA can be started on different machines,
where each instance would process requests in a round
robin fashion.

Supported annotators
To illustrate the extensibility of our approach, we inte-
grated named entity recognition (NER) components for
six different entity types into SIA: mutation names are
extracted using SETH [6]. For micro-RNA mentions we
implement a set of regular expressions [9], which follow
the recommendations for micro-RNA nomenclature [10].
Disease names are recognized using a dictionary lookup
[11], generated from UMLS disease terms [12], and by
using the DNorm tagger [13]. Chemical name mentions
are detected with ChemSpot [14], Organisms using Lin-
naues [15] and Gene mentions using Banner [16].

Listing 3 shows the general interface contract SIA is
expecting for each annotator. Each annotator receives
an input text and is simply expected to return a set of
found annotations. Thus integrating any of the aforemen-
tioned annotators, as well as new ones, is as simple as
implementing this interface and registering a new queue
mapping.

Annotation handlers can be hosted inside of SIA,
within the same process, or externally, in a separate pro-
cess. External hosting allows to integrate annotation
tools across programming languages, operating systems
and servers. This is especially useful since most annota-
tors have conflicting dependencies that are either very
hard or impossible to resolve. For example, ChemSpot
and DNorm use different versions of the Banner tag-
ger which make them candidates for external hosting.
Multiple servers can also be used to increase the avail-
able resources for SIA, e.g., when hosting all annotators
on the same machine exceeds the amount of available
memory.

Corpus adapters
SIA contains corpus adapters for PubMed, PMC, and the
BeCalm patent- and abstract servers, which communi-
cate to external network services. These components are
represented as transformers, which process document ids
and return retrieved source texts. They are implemented
following the interface definition shown in Listing 4 . If
an adapter supports bulk fetching of multiple documents,
we feed a configurable number of ids in one invocation.

As retrieving the full text translates into calling a
potentially unreliable remote service over the network,
retry on failure is used in case of recoverable errors. This
is backed up by the observation that the most commonly
observed error was a temporarily unavailable service
endpoint. To spread retries, we use exponential backoff

Page 5 of 7Kirschnick et al. J Cheminform (2018) 10:63

on continuous failures with an exponentially increas-
ing time interval, capped at a maximum (initial wait 1s,
multiplier 2, max wait 60s). If a corpus adapter fails to
produce a result after retries are exhausted, we mark that
document as unavailable and treat it as one without any
text. This allows a trade-off between never advancing the
processing, as a document could be part of a set of docu-
ments to be annotated, and giving up too early in case of
transient errors.

Result handler
The result handler processes the aggregated annota-
tion results from the back end, by consuming from a
dedicated output queue. We implemented a REST com-
ponent according to the TIPS task specification, which
posts these annotations back to a dedicated endpoint.
Additional handlers, such as statistics gatherer or result
archiver, can easily be added.

Listing 3: Interface definition for SIA annotators

pub l i c i n t e r f a c e Annotator {
Set<P r e d i c t i o nR e s u l t> annota te (InputText pay load) ;

}

Listing 4: Interface definition for SIA corpus adapters

pub l i c i n t e r f a c e CorpusAdapter {
I nputText l oad (S t r i n g documentID) ;

}

Failure handling
In the following we describe the failure handling strate-
gies across the different components within SIA.

Invalid requests Client calls with wrong or missing
information are handled in the front end using request
validation. Such invalid requests are communicated back
to the caller with detailed error descriptions.

Backpressure To avoid that a large number of simul-
taneous requests can temporarily overload the process-
ing system, SIA buffers all accepted requests in the input
queue - using priorities to represent deadlines.

Front end fails If the front end stops, new requests are
simply not accepted, irrespective of any ongoing process-
ing in the back end.

Back end unavailable Messages are still accepted and
buffered when there is enough storage space, otherwise
the front end denies any new annotation requests.

Back end fails If the back end stops while there are still
messages being processed, these are not lost but retried
upon restart. This is enabled by acknowledging each
message only upon successful processing per component.

Corpus adapter fails Each adapter retries, using expo-
nential backoff, to fetch a document before it is marked
as unavailable. As the BeCalm-TIPS task does not specify
how to signal unavailable documents, these are just inter-
nally logged. Any subsequent processing treats a missing
document as one with no content.

Annotator fails If an annotator fails on a particular
message, this can potentially harm the entire back end
when annotators are embedded in the system. As anno-
tators are software components not under the control of
the processing pipeline, we catch all recoverable errors
and return zero found annotations in these cases—log-
ging the errors for later analysis.

Result Handling fails The BeCalm-TIPS task descrip-
tion expects the result of an annotation request to be
delivered to a known endpoint. If this fails, the delivery is
retried in a similar manner to the corpus adapter failure
handling.

Message expired Clients can define a deadline for
results. This is mapped to a time-to-live attribute of
each message. This results in automatically dropping any
expired messages from the message bus.

Performance test
To test the scalability as well as extensibility of SIA we
performed an offline evaluation, focusing on throughput.
To this end we extended the front end to accept full text
documents and added an identity corpus adapter which
simply returns the document text from the request mes-
sage itself. Furthermore, we added a result handler, which
writes all results into a local file. By adding these com-
ponents, we turned SIA into an offline annotation tool,
that can be fed from a local collection of text documents
without relying on external document providers.

For the test, we used a dump of 207.551 PubMed arti-
cles1 and enabled all internal annotators (SETH, mirNer,

1 Using files 922 to 928 from [17].

Page 6 of 7Kirschnick et al. J Cheminform (2018) 10:63

Linnaues, Banner, DiseaseNer) in a single SIA instance,
as well as ChemSpot using the external integration on
the same machine. The experiment was run on a Server
with 2 Intel Xeon E5-2630 processor (8 threads, 16 cores
each) and 256 GB RAM running Ubuntu 12.04. To simu-
late the scaling behavior, we varied the degree of parallel-
ism used by SIA from 1 to 5 respectively and measured
the overall time to annotate all documents. The paral-
lelism controls the number of messages consumed from
the input queue simultanously. Table 1 shows the result-
ing runtimes. When increasing the parallelism we see a
decrease of processing times with a speedup of up to 3×
compared to single threaded execution. Increasing the
parallelism further did not yield lower processing times,
as the processing is mainly CPU bound, with a ceiling hit
with 5 parallel threads. This highlights that SIA is fully
capable of exploiting all available CPU resources, achiev-
ing a throughput of more than 70 documents per second.
Using the parallelism within SIA furthermore enables to
effortlessly provide parallel processing for exiting annota-
tors that are otherwise hard to scale.

Discussion
SIA itself is very lightweight and runs anywhere given a
Java environment and a connection to RabbitMQ. Anno-
tators can be directly embedded or configured to run
externally, exchanging messages through the bus. Dur-
ing the BeCalm-TIPS tasks, we deployed SIA into Cloud
Foundry, a platform as a service provider, which enables
deployments of cloud containers [18]. The front- and
back end with embedded result handling were deployed
as two separate application containers connected to a
hosted instance of RabbitMQ. To limit the resource con-
sumption, we only enabled the SETH, mirNER and Dis-
easeNER annotators.

Figure 2 shows the received and processed annotation
requests over the course of a four week period during
the task. It highlights that our system is capable of sus-
taining a high number of daily requests, with more than
14.000 daily requests received at maximum. Furthermore
we observed that the request handling time during these
weeks was dominated by individual corpus downloading
times, which make up about 50% of the overall processing
time. This validates our decision to support bulk down-
loading of documents, as this amortizes the networking
overhead for each document, over a number of docu-
ments. Processing each annotation request in total took
less than two seconds for the configured annotators. We
observed higher annotation times for PubMed articles,
which is partially due to higher server response times
and the need for more sophisticated result parsing. We
also estimated the message bus overhead to about 10% ,
stemming from individual message serialization and
persistence compared to running the annotators stand
alone—an acceptable slowdown which is easily compen-
sated by additional parallelism.

Table 1 Scalability experiment results

Processing times with varying degree of parallelism, analyzing 207.551 PubMed
articles with all internal annotators (SETH, mirNer, Linnaues, Banner, DiseaseNer)
and ChemSpot using a single instance of SIA

Parallelism Processing
time (s)

Throughput
(doc/s)

Improvement

1 8.151 25

2 4.551 46 1.79×

3 3.412 61 2.39×

4 3.032 68 2.69×

5 2.712 77 3.01×

25.02. 02.03. 07.03. 12.03. 17.03. 22.03.

2,000

4,000

6,000

8,000

10,000

12,000

14,000

Requests

a Daily request rates

Patent Server Abstract Server PubMed
0

200

400

600

800

m
s

Request timing
Annotation timing

b Requests processing times for different
endpoints

Fig. 2 Processing statistics over a four week period and request times per corpus, reporting complete processing and annotation timings
separately

Page 7 of 7Kirschnick et al. J Cheminform (2018) 10:63

Summary and future work
We described SIA, our contribution to the BeCalm-TIPS
task, which provides scalability—through component
replication, fault tolerance—through message acknowl-
edgement, and extensibility—through well defined
injection points—with a particular emphasis on failure
handling. The message-based architecture proved to be a
good design blueprint, which can be extended with addi-
tional components. To further provide scalable process-
ing, a suggested improvement is to automate the back
end scaling by coupling it with an input queue length
monitoring. This would allow to scale the back end up
or down in response to changes in observed load. One
interesting further development path is to port SIA to
a distributed streaming environment such as Flink [19]
or Spark [20]. These systems reduce the overhead of the
message bus at the expense of more complex stream pro-
cessing and result aggregation. While many of the exist-
ing components could be reused, some engineering effort
would need to be spent on implementing a fault tolerant
aggregation, integrating the potentially unreliable corpus
adapters.

To encourage further discussion, the source of our
current solution is freely available under an Apache 2.0
license at https ://githu b.com/Erech theus /sia, along with
detailed guides on how to run and deploy the system.

Abbreviations
NER: Named entity recognition; SIA: Scalable interoperable annotation server;
TIPS: Technical interoperability and performance of annotation servers.

Authors’ contributions
JK and PT equally contributed to the implementation of SIA and to writing the
manuscript. LH and RR conducted the scalability experiments, and contrib-
uted to the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Availability and requirements
Project name: SIA: Scalable Interoperable Annotation Server. Project home
page: https ://githu b.com/Erech theus /sia. Operating system(s): Platform inde-
pendent. Programming language: Java. Other requirements: Java 1.8 or higher.
License: Apache License, Version 2.0

Funding
This research was partially supported by the German Federal Ministry of Eco-
nomics and Energy (BMWi) through the projects MACSS (01MD16011F), SD4M
(01MD15007B) and by the German Federal Ministry of Education and Research
(BMBF) through the project BBDC (01IS14013E).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 17 July 2018 Accepted: 5 December 2018

References
 1. Hunter L, Cohen KB (2006) Biomedical language processing: what’s

beyond pubmed? Mol Cell 21(5):589–594. https ://doi.org/10.1016/j.
molce l.2006.02.012

 2. Rheinländer A, Lehmann M, Kunkel A, Meier J, Leser U (2016) Potential
and pitfalls of domain-specific information extraction at web scale. In:
Proceedings of the 2016 international conference on management of
data, pp 759–771. https ://doi.org/10.1145/28829 03.29037 36

 3. Thomas P, Starlinger J, Leser U (2013) Experiences from developing the
domain-specific entity search engine GeneView. In: Proceedings of
Datenbanksysteme Für Business, Technologie und Web, pp 225–239

 4. Comeau DC, Doğan RI, Ciccarese P, Cohen KB, Krallinger M, Leitner F, Lu
Z, Peng Y, Rinaldi F, Torii M et al (2013) Bioc: a minimalist approach to
interoperability for biomedical text processing. Database 18:bat064

 5. Pérez-Pérez M, Pérez-Rodríguez G, Blanco-Míguez A, Fdez-Riverola F,
Valencia A, Krallinger M, Lourenco A (2017) Benchmarking biomedical
text mining web servers at BioCreative V.5: the technical interoperability
and performance of annotation servers—TIPS track. In: Proceedings of
the BioCreative V.5 challenge evaluation workshop, pp 12–21

 6. Thomas P, Rocktäschel T, Hakenberg J, Lichtblau Y, Leser U (2016)
SETH detects and normalizes genetic variants in text. Bioinformatics
32(18):2883–2885. https ://doi.org/10.1093/bioin forma tics/btw23 4

 7. Hohpe G, Woolf B (2002) Enterprise integration patterns. In: 9th confer-
ence on pattern language of programs, pp 1–9

 8. RabbitMQ www.rabbi tmq.com
 9. Kleene SC (1956) Representation of events in nerve nets and finite

automata. In Shannon CE, McCarthy J (eds) Automata studies (AM-
34). Princeton University Press, Princeton, pp 3–42. https ://doi.
org/10.1515/97814 00882 618-002

 10. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss
G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T
(2003) A uniform system for microRNA annotation. RNA 9(3):277–279

 11. Aho AV, Corasick MJ (1975) Efficient string matching: an aid to
bibliographic search. Commun. ACM 18(6):333–340. https ://doi.
org/10.1145/36082 5.36085 5

 12. Bodenreider O (2004) The unified medical language system (UMLS):
integrating biomedical terminology. Nucleic Acids Res 32(Database
issue):267–270

 13. Leaman R, Islamaj Doğan R, Lu Z (2013) DNorm: disease name normaliza-
tion with pairwise learning to rank. Bioinformatics 29(22):2909–2917

 14. Rocktäschel T, Weidlich M, Leser U (2012) ChemSpot: a hybrid system for
chemical named entity recognition. Bioinformatics 28(12):1633–1640

 15. Gerner M, Nenadic G, Bergman CM (2010) Linnaeus: a species name
identification system for biomedical literature. BMC Bioinform. 11(1):85.
https ://doi.org/10.1186/1471-2105-11-85

 16. Leaman R, Gonzalez G (2008) Banner: an executable survey of advances
in biomedical named entity recognition. In: Pacific symposium on bio-
computing, World Scientific, pp 652–663

 17. The national center for biotechnology information. ftp://ftp.ncbi.nlm.nih.
gov. Accessed 19 Nov 2018

 18. Kirschnick J, Alcaraz Calero JM, Goldsack P, Farrell A, Guijarro J, Loughran
S, Edwards N, Wilcock L (2012) Towards an architecture for deploying
elastic services in the cloud. Softw Pract Exp 42(4):395–408. https ://doi.
org/10.1002/spe.1090

 19. Alexandrov A, Bergmann R, Ewen S, Freytag J-C, Hueske F, Heise A, Kao
O, Leich M, Leser U, Markl V et al (2014) The stratosphere platform for big
data analytics. VLDB J 23(6):939–964

 20. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I (2010) Spark:
cluster computing with working sets. In: Proceedings of the 2Nd USENIX
conference on hot topics in cloud computing, Berkeley, USA, pp 10–10

https://github.com/Erechtheus/sia
https://github.com/Erechtheus/sia
https://doi.org/10.1016/j.molcel.2006.02.012
https://doi.org/10.1016/j.molcel.2006.02.012
https://doi.org/10.1145/2882903.2903736
https://doi.org/10.1093/bioinformatics/btw234
http://www.rabbitmq.com
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://doi.org/10.1186/1471-2105-11-85
ftp://ftp.ncbi.nlm.nih.gov
ftp://ftp.ncbi.nlm.nih.gov
https://doi.org/10.1002/spe.1090
https://doi.org/10.1002/spe.1090

	SIA: a scalable interoperable annotation server for biomedical named entities
	Abstract
	Introduction
	BeCalm-TIPS task overview
	SIA: general architecture
	Implementation details
	Front end
	Back end
	Supported annotators
	Corpus adapters

	Result handler

	Failure handling
	Performance test
	Discussion
	Summary and future work
	Authors’ contributions
	References

