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Abstract 

Background: Chemical and biomedical named entity recognition (NER) is an essential preprocessing task in natu-
ral language processing. The identification and extraction of named entities from scientific articles is also attracting 
increasing interest in many scientific disciplines. Locating chemical named entities in the literature is an essential step 
in chemical text mining pipelines for identifying chemical mentions, their properties, and relations as discussed in the 
literature. In this work, we describe an approach to the BioCreative V.5 challenge regarding the recognition and classi-
fication of chemical named entities. For this purpose, we transform the task of NER into a sequence labeling problem. 
We present a series of sequence labeling systems that we used, adapted and optimized in our experiments for solving 
this task. To this end, we experiment with hyperparameter optimization. Finally, we present LSTMVoter, a two-stage 
application of recurrent neural networks that integrates the optimized sequence labelers from our study into a single 
ensemble classifier.

Results: We introduce LSTMVoter, a bidirectional long short-term memory (LSTM) tagger that utilizes a conditional 
random field layer in conjunction with attention-based feature modeling. Our approach explores information about 
features that is modeled by means of an attention mechanism. LSTMVoter outperforms each extractor integrated 
by it in a series of experiments. On the BioCreative IV chemical compound and drug name recognition (CHEMDNER) 
corpus, LSTMVoter achieves an F1-score of 90.04%; on the BioCreative V.5 chemical entity mention in patents cor-
pus, it achieves an F1-score of 89.01%.

Availability and implementation: Data and code are available at https ://githu b.com/textt echno logyl ab/LSTMV oter.

Keywords: BioCreative V.5, CEMP, CHEMDNER, BioNLP, Named entity recognition, Deep learning, LSTM, Attention 
mechanism
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Introduction
In order to advance the fields of biological, chemical and 
biomedical research, it is important to stay on the cut-
ting edge of research. However, given the rapid devel-
opment of the disciplines involved, this is difficult, as 
numerous new publications appear daily in biomedical 
journals. In order to avoid repetition and to contribute 
at least at the level of current research, researchers rely 
on published information to inform themselves about the 

latest research developments. There is therefore a grow-
ing interest in improved access to information on biologi-
cal, chemical and biomedical data described in scientific 
articles, patents or health agency reports. In this context, 
improved access to chemical and drug name mentions in 
document repositories is of particular interest: it is these 
entity types that are most often searched for in the Pub-
Med [1] database. To achieve this goal, a fundamental 
preprocessing step is to automatically identify biologi-
cal and chemical mentions in the underlying documents. 
Based on this identification, downstream NLP tasks such 
as the recognition of interactions between drugs and pro-
teins, of side effects of chemical compounds and their 
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associations with toxicological endpoints or the investi-
gation of information on metabolic reactions can be car-
ried out.

For these reasons, NLP initiatives have been launched 
in recent years to address the challenges of identifying 
biological, chemical and biomedical entities. One of these 
initiatives is the BioCreative series, which focuses on bio-
medical text mining. BioCreative is a “Challenge Evalu-
ation”, in which the participants are given defined text 
mining or information extraction tasks in the biomedi-
cal and chemical field. These tasks include GeneMention 
detection (GM) [2, 3], Gene Normalization (GN) [3–5], 
Protein–Protein Interaction (PPI) [6], Chemical Com-
pound and Drug Name Recognition (CHEMDNER) [7, 8] 
and Chemical Disease Relation Extraction [9, 10] tasks.

The current BioCreative V.5 task consists of two off-
line tasks, namely Chemical Entity Mention in Patents 
(CEMP) and Gene and Protein Related Object Recogni-
tion (GPRO). CEMP requires the detection of chemical 
named entity mentions. The task requires detecting the 
start and end indices corresponding to chemical enti-
ties. The GPRO task requires identifying mentions of 
gene and protein related objects in patent titles and 
abstracts [11]. In this work, we focus on the CEMP task. 
The CEMP task is an abstraction of the common named 
entity recognition (NER) tasks, which can be reduced 
to a sequence labeling problem, where the sentences are 
represented as sequences of tokens. The task is then to 
tag chemical entity mentions in these sequences. The set-
tings of the CEMP task are similar to the chemical entity 
mention recognition (CEM) subtask of CHEMDNER 
challenge in BioCreative IV [7]. Therefore, we addressed 
both tasks and their underlying corpora in our experi-
ments. Note that the current article describes an exten-
sion of previous work [12].

The article is organized as follows: First we describe 
our methodical apparatus and resources. This includes 
the data and corpora used in our experiments. Then, we 
introduce state-of-the-art tools for NER and explain how 
we adapted them to perform the CEMP task. Next, we 
present a novel tool for combining NER tools, that is, the 
so-called LSTMVoter. Finally, we present our results, 
conclude and discuss further work.

Materials and methods
In this section, we first describe the datasets used in our 
experiments. Then, the two-stage application of LSTM-
Voter is introduced.

Datasets
In our experiments, two corpora of the BioCreative Chal-
lenge were used: the CHEMDNER Corpus [13] and the 
CEMP Corpus [14].

The CHEMDNER corpus consists of 10,000 abstracts 
of chemistry-related journals published in 2013. Each 
abstract was human annotated for chemical mentions. 
The mentions were assigned to one of seven differ-
ent subtypes (ABBREVIATION, FAMILY, FORMULA, 
IDENTIFIER, MULTIPLE, SYSTEMATIC, and TRIV-
IAL). The BioCreative organizer divided the corpus into 
training (3500 abstracts), development (3500 abstracts) 
and test (3000 abstracts) sets.

For CEMP task, the organizers of BioCreative V.5 pro-
vided a corpus of 30,000 patent abstracts from patents 
published between 2005 and 2014. These abstracts are 
divided into training (21,000 abstracts) and test (9000 
abstracts) sets. The corpus is manually annotated with 
chemical mentions. For the construction of the CEMP 
corpus the annotation guidelines of CHEMDNER were 
used. Therefore, CEMP contains the same seven chemi-
cal mention subtypes as CHEMDNER. Table 1 shows the 
number of instances for both corpora for each of these 
subtypes.

Both corpora were enriched with additional linguis-
tic features. For this, multiple preprocessing steps were 
applied on each set including sentence splitting, tokeni-
zation, lemmatization and fine-grained morphological 
tagging by means of Stanford CoreNLP [15] and TextIm-
ager [16]. In addition, tokens were split on non-alphanu-
meric characters, as this variant brought a performance 
increase. Since the chemical mention detection task can 
be reduced to a sequence labeling problem, the corpora 
were converted into a sequence structure. To this end, a 
sequence of documents with sequences of sentences each 
containing a sequence of tokens was constructed and 
transformed according to a TSV format. Each word and 
its associated features are in one line separated by tabs. 
Sentences are separated by an empty line. For the labe-
ling of the mentions, the IOB tagging scheme [17] was 
used (I = inside of an entity, O = outside of an entity, B 

Table 1 Number of  instances for  each subtype of  CEMP 
and CHEMDNER corpus

Annotation CEMP CHEMDNER

Abbreviation 1373 9059

Family 36,238 8313

Formula 6818 8585

Identifier 278 1311

Multiple 418 390

Systematic 28,580 13,472

Trivial 25,927 17,802

No class 0 72

Total count 99,632 59,004
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= beginning of an entity). IOB allows the annotation of 
entities that span multiple tokens, where the beginning 
and the end of the entity is marked. This enables models 
to learn transition probability. LSTMVoter needs four 
datasets for the training process. Two pairs of training 
and development sets are required. Each pair is needed 
in one of the two stages of LSTMVoter (see section “Sys-
tem description”). Therefore, we divided the training set 
of CEMP into two series of training, development and 
test sets (each half of the original training set was split 
according to the pattern 60%/20%/20%), where the first 
series is used for stage one, and the second for stage two. 
For the CHEMDNER corpus the available training and 
development sets were joined and split into training and 
development sets according to the schema 80%/20%—as 
before, we distinguish two such series. For evaluating our 
classifiers with respect to CHEMDNER, the test set pro-
vided by the organizers of the challenge was used. For the 
following experiments we used the corpora described as 
so far.

System description
In this section we describe our system. Our approach 
implements a two-stage application of long short-term 
memory (LSTM) using a conglomerate of sequence label-
ers for the detection of chemical mentions.

In the first stage, we trained and optimized five tools 
for NER for tackling this task, namely Stanford Named 
Entity Recognizer [18], MarMoT [19], CRF++ [20], 
MITIE [21] and Glample [22]. For each of them, we opti-
mized the corresponding hyperparameter settings. Gen-
erally speaking, hyperparameter tuning is a challenging 
task in machine learning. The optimal set of hyperparam-
eters depends on the model, the dataset and the domain 
[23]. Our experiments focused on optimizing the hyper-
parameters of each NER system independently, which 
led to a noticeable increase in F-score compared to the 
default settings. For each NER, we performed the Tree-
structured Parzen Estimator (TPE) [24] with 200 itera-
tions. The results of the best performing model for each 
of these NER is listed in Table 2.

The NER tools are more or less independent of each 
other in the sense that one can find a subset of test cases 
that are correctly processed by one of them, but not by 
another. Therefore, combining these NERs is a promis-
ing candidate for increasing performance. We started 
with computing combinations of these NERs by means 
of a simple majority vote [25], where the target label is 
selected, that is assigned by the majority of classifiers. 
Our experiments show that a simple majority vote brings 
no gain in performance compared to the best perform-
ing reference systems being examined in our study (see 
Table  2). Thus, we developed a two-stage model, the 

so-called LSTMVoter, which trains a recurrent neural 
network (RNN) with attention mechanism to learn the 
best combination of the underlying sequence labeling 
tools from stage one.

In the second stage, we combine the sequence labelers 
of stage one with two bidirectional long short-term mem-
ory (LSTM) networks with attention mechanism and a 
conditional random field (CRF) network to form LSTM-
Voter. The architecture of LSTMVoter is illustrated in 
Fig. 1. The core of LSTMVoter is based on [22].

LSTM networks are a type of RNN [26]. RNN allow 
the computation of fixed-size vector representations for 
sequences of arbitrary length. An RNN is, so to speak, a 
function that reads an input sequence x1, . . . , xn of length 
n and produces an output vector hn , which depends on 
the entire input sequence. Though, in theory, an RNN is 
capable of capturing long-distance dependencies in the 
input sequence, in practice, they may fail due to the prob-
lem of vanishing gradients [27, 28]. On the other hand, 
LSTMs include a memory cell, which can maintain infor-
mation in memory for long periods of time [29, 30]. This 
enables finding and exploiting long range dependencies 
in the input sequences to cope with the problem of van-
ishing gradients. Figure  2 illustrates an LSTM memory 
cell, which is implemented as follows:

where xt is the input vector (e.g. word embedding) at 
time t. ht is the hidden state vector, also called output 
vector, that contains information at time t and all time 
steps before t. σ is the logistic sigmoid function [31]. 
Input gate i, forget gate f, output gate o and cell vector c 
are of the same size as the hidden state vector h. Whi , Whf  , 
Whc and Who are the weight matrices for the hidden state 
ht . Wxi , Wxf  , Wxc and Wxo denote the weight matrices of 
different gates for input xt.

For LSTMVoter, we apply an LSTM to sequence 
tagging. Additionally, as proposed by [32], we utilize 
bidirectional LSTM networks. Figure 3 illustrates a bidi-
rectionalLong short-term memory (Bi-LSTM) network, 
where the input sequence (Treatment with haloperidol or 
reserpine ...) and the output sequence (O, O, B-Trivial, O, 
B-Trivial, ...) are fed as a training instance to a Bi-LSTM. 
In Bi-LSTMs, the input sequence is presented forward 
and backward to two separate hidden states to capture 
past and future information. To efficiently make use of 
past features (via forward states) and future features 

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxf xt +Whf ht−1 +Wcf ct−1 + bf )

ct = ft ct−1 + it tanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

ht = ot tanh(ct)
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(via backward states) for a specific time frame, the two 
hidden states are concatenated to form the final output. 
In the final output of a Bi-LSTM, all information of the 
complete sequence is compressed into a fixed-length hid-
den state vector, which may result in information loss. To 
overcome this information loss, an attention mechanism 
is introduced, which partially fixes the problem.

The method of attention mechanism has recently 
gained popularity in image caption generation [33], visual 

question answering [34] and language modeling tasks 
[35–38]. The attention mechanism plugs a context vector 
on top of a layer, which enables to take all cells’ outputs as 
input to compute a probability distribution. This enables 
to capture global information rather then to infer based 
on one output vector.

For LSTMVoter, we utilized Bi-LSTM with attention 
mechanism to model character-level features (see Fig. 1, 
Char-Bi-LSTM). Character-level features in chemical 

Fig. 1 Architecture of LSTMVoter 

Fig. 2 A long short-term memory cell
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named entities contain rich structure information, such 
as prefix, suffix and n-grams. Unlike previous meth-
ods [39–41], character-level features do not have to be 
defined manually, rather they can be learned during 
training. Unlike [22], who encodes the entire character 
sequence into a fixed-size vector for each word, we utilize 
the character-level attention mechanism introduced by 
[36]. This has the advantage, that by using the attention 
mechanism, the model is able to dynamically decide how 
much information and which part of a token to use.

In addition to the character-level features, we imple-
mented word embeddings into our model to capture 
dependencies between words (see Fig.  1, Word-Embed-
dings). For this, we evaluated various methods, namely 
GloVe [42], Dependency-Based embeddings [43, 44] 
trained on the English Wikipedia, and word2vec [45] 
trained on the English Wikipedia and a biomedical sci-
entific literature corpus containing PubMed abstracts 
and full texts. In our experiments, the word2vec model 
trained on biomedical scientific literature gave the best 
results.

To utilize the results of the NERs from stage one, we 
encode the respective results of the NERs into one-
hot vectors concatenated to a feature vector (see Fig.  1, 

Stage-One-Features). An attention mechanism is placed 
on the feature vector. By creating a probability distribution 
through the attention mechanism, LSTMVoter learns how 
to weight each result of the NERs from stage one. With the 
attention vector it is even possible to determine for each 
element of a sequence how important the individual partial 
results from stage one were. This has the advantage that the 
model is no longer a black box, but can be interpreted as to 
how important the individual results from stage one were.

All previous elements of LSTMVoter encode word-
based information. Another Bi-LSTM is used to learn 
relationships between these word-based information (see 
Fig. 1, Bi-LSTM).

To deal with the independent label output problem, we 
utilize the output vector as elements. For this we combine 
the Bi-LSTM layer with a linear-chain CRF (see Fig.  1, 
CRF). Linear-chain CRFs define the conditional probability 
of a state sequence to be:

where Zx is the normalization factor that makes the prob-
ability of all state sequences sum to one; fm(yj−1, yj , x, j) is 

P(y|x) =
1

Zx
exp
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�
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�mfm(yj−1, yj , x, j)





Fig. 3 A bidirectional LSTM network

Table 2 Comparison of annotators trained and tested on CEMP and CHEMDNER corpora measured by precision (P), recall 
(R), f1-score (F1)

Bold was intended to compare LSTMVoter to the best reference tool. Bold now shows the system with the highest F-Score, which is LSTMVoter

System CEMP CHEMDNER

P R F P R F

Stanford NER 0.85 0.80 0.82 0.82 0.83 0.82

MarMoT 0.87 0.86 0.86 0.85 0.85 0.85

CRF++ 0.77 0.73 0.73 0.74 0.71 0.73

MITIE 0.65 0.65 0.65 0.62 0.61 0.62

Glample 0.76 0.79 0.77 0.82 0.84 0.83

Majority vote 0.78 0.79 0.78 0.70 0.76 0.73

LSTMVoter 0.90 0.88 0.89 0.91 0.90 0.90
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a feature function, and �m is a learned weight associated 
with feature fm . Feature functions measure the aspect 
of a state transition, yj−1, yj → yt , and the entire obser-
vation sequence, x, centered at the current time step, j. 
Large positive values for �m indicate a preference for such 
an event, whereas large negative values make the event 
unlikely.

Finally, to optimize the hyperparameters, the Tree 
Structure Parzen estimator was used.

Results
This section presents the results of our experiments for 
the chemical named entity recognition on CEMP and 
CHEMDNER corpus. For evaluation the BioCreative 
Team has specified standard evaluation statistics, namely 
precision (P), recall (R) and F1-score (F) [14]. For each 
sequence labeling tool, the hyperparameters were opti-
mized using Tree Structure Parzen Estimators, which 
led to a noticeable increase of performance. For exam-
ple, in the optimization process of CRF++, the differ-
ence between the worst to the best performer is 65%. The 
results show the need for machine learning algorithms to 
perform hyperparameter optimization.

Table 2 shows the comparison of annotators trained on 
CEMP and CHEMDNER corpus. The results listed are 
those obtained after the hyperparameter optimization 
described in the methods section, which were trained, 
optimized and tested on the corpora described in this 
section. Each sequence labeling system classifies a dif-
ferent subset correctly. The combination of sequence 
labelling systems in a majority vote did not improve per-
formance and is even below the best sequence labelling 
systems. In contrast, LSTMVoter increases the perfor-
mance and performs best in our experiments.

Conclusions
In this work, we compared a set of sequence labeling sys-
tems. We trained and optimized every sequence labeling 
system to detect chemical entity mention by means the 
TPE. We showed that optimizing hyperparameter can be 
crucial. One sequence labeling system in our experiments 
gained an improvement of more than 65 %. We showed 
that a naive majority vote does not bring any improve-
ment. For this reason, we introduced and evaluated 
LSTMVoter, a two-stage tool for combining underly-
ing sequence modeling tools (as given by the NER of our 
comparative study). LSTMVoter achieved an improve-
ment of up to 5 % compared to the best reference systems 
examined in our study. This two-level classifier appears to 
be capable of being further developed and improved by 
feeding it with the output of additional sequence label-
ling systems. In any event, our results and those of the 
other participants of BioCreative V.5 Task show that the 

task of NER of chemical entities has not been sufficiently 
solved yet. For a better recognition, a larger corpus 
should be generated so that today’s popular deep learning 
algorithms can work on this data. A kind of human-in-
the-loop architecture for automatic annotation and intel-
lectual rework would also be helpful at this point in order 
to successively increase and improve the amount of data.
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