
Theisen J Cheminform (2019) 11:11
https://doi.org/10.1186/s13321-019-0331-1

REVIEW

Programming languages in chemistry:
a review of HTML5/JavaScript
Kevin J. Theisen*

Abstract

This is one part of a series of reviews concerning the application of programming languages in chemistry, edited by
Dr. Rajarshi Guha. This article reviews the JavaScript technology as it applies to the chemistry discipline. A discussion
of the history, scope and technical details of the programming language is presented.

Keywords: JavaScript, HTML5, Programming, Chemistry, Cheminformatics, Computational chemistry

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Computer literacy is an essential skill for scientists. Com-
puters can execute the same operations humans can per-
form, but far more consistently and at rates far beyond
human capability, allowing researchers to investigate
numerous hypotheses in short order. Programmers have
even more advantages, as they can directly communi-
cate with the computer to achieve their desired goals, as
opposed to relying on software someone else has created
for another purpose.

Many programming languages have been developed
to facilitate instructions to the computer. Each has its
advantages, which is why they each exist. Each program-
ming language also has its disadvantages, which is why
the rest exist.

When the Internet was introduced, society quickly
changed, not just in allowing computers to communicate
with each other, but by allowing people to communicate
with each other, nearly instantaneously from around the
world. JavaScript (JS) is a programming language born of
the Internet. From a crude and basic programming lan-
guage for creating cheap, gimmicky effects on web pages,
it has developed into a ubiquitous and flexible technol-
ogy where engine performance is regarded as a crown-
ing achievement among browser developers. Today,
every computational device, from desktops to laptops to
mobile phones and Augmented Reality (AR) devices has

essential access to the Internet, and therefore contains a
web browser wherein JavaScript can be run. As a result,
JavaScript is one of the most important programming
languages in existence.

This review investigates the relevance and impact of
JavaScript on the chemistry discipline. We begin by dis-
cussing the history of the programming language; then
we investigate the scope and features of the language
and how it applies to chemistry; last, an outline of the
technical details of the JavaScript programming lan-
guage is presented to allow those interested in chemis-
try and cheminformatics to effectively create JavaScript
applications.

What is JavaScript?
JavaScript is a programming language enabling develop-
ers to interact with the functionality provided by web
browsers. More specifically, JavaScript is a scripting lan-
guage, which means (a) traditionally, JavaScript source
code is interpreted at runtime and not pre-compiled into
byte code and (b) practically, its main purpose is to mod-
ify the behavior of another application typically written
in a different programming language, in which it is inter-
preted and run in real time.

While JavaScript is aptly named as a scripting language,
the first part of the name misleadingly refers to the Java
programming language [1]. JavaScript has no functional
relationship with the Java programming language. The
Java part of JavaScript was used to inspire interest in
the new scripting language, as Java was and still is a very
popular programming language; additionally the original

Open Access

Journal of Cheminformatics

*Correspondence: kevin@ichemlabs.com
iChemLabs, LLC., 7305 Hancock Village Dr #525, Chesterfield, VA 23112,
USA

http://orcid.org/0000-0001-5547-309X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-019-0331-1&domain=pdf

Page 2 of 19Theisen J Cheminform (2019) 11:11

Netscape browser that included JavaScript was written in
Java. JavaScript has since become an essential and argua-
bly more important programming language than the one
inspiring its name. Hence, the programming language
many developers use today to build and interact with web
applications is famously known as JavaScript.

Origin
In the early days of the Internet, the web browser pro-
vided users with static pages to view information. Inno-
vators at Netscape Communications, producers of the
popular Netscape Navigator browser, believed web
sites should provide more dynamic material and a pro-
gramming language would provide a solution. In 1995,
Brendan Eich, an employee of Netscape Communica-
tions, developed what is now known as JavaScript [2].

Initially, JavaScript only provided basic features, but
the power of such a programming language on the
web was quickly realized, and the continued success of
Netscape Navigator was, in no small part, a reflection of
that power. Alternatives to JavaScript were inevitable and
a number of companies started to produce more feature-
rich browser plug-ins that would install their platforms
into browsers to be run in web pages. Adobe Flash [3],
Java applets [4] and Microsoft Silverlight [5] are a few
well known examples. These plug-ins became popu-
lar solutions for developers, but a hindrance for users
as plug-ins required installations, had to be frequently
updated, and were prone to security issues. Plug-ins
eventually fell out of favor with users as HTML5 arrived
and JavaScript evolved. Flash, Java applets and Silverlight
are all now deprecated technologies.

Other companies, instead of replacing JavaScript,
attempted to modify and extend the language in an
attempt to control it (a process known as “embrace,
extend and extinguish”). In 1996, Microsoft produced
JScript [6], which was a reverse engineered version of
JavaScript for their Internet Explorer (IE) browser. IE
would now be accessible to JavaScript developers, but the
implementation was deceitful. Proprietary features spe-
cific to IE were built into JScript. As a result, users were
forced to use IE for many online applications, imped-
ing the open web in a process known as fragmentation.
Fragmentation produces an anti-competitive, positive
feedback loop giving a dominant group (in this case,
the dominant browser, IE) power over the future direc-
tion of the Internet. These attempts ultimately failed
due to healthy competition amongst browser develop-
ers. Microsoft browsers now aim to legitimately support
JavaScript. Creative methods for fragmenting the JavaS-
cript language continue to exist with TypeScript from
Microsoft [7] and Dart from Google [8], which aim to

provide a more familiar programming syntax for devel-
opers and compile into standard JavaScript.

JavaScript has survived many challenges since its incep-
tion, and a lot of credit should be given to the Netscape
team for their foresight. In order to protect the JavaScript
language early on, the Netscape team pushed for an open
standardization of the language, and they were success-
ful. We all benefit from the universal and strong support
for JavaScript in every existing browser today. In spite
of the attempts to replace or commandeer the standard,
JavaScript persisted and has become a signature pro-
gramming language for most developers, and remains an
important tool for the scientific communities including
chemists.

ECMAScript
The European Computer Manufacturers Association,
now known as Ecma International [9], took over the
governance and standardization of JavaScript in 1996
and continues to maintain the specification for the lan-
guage to this day. The JavaScript specification is officially
named ECMAScript, defined by the ECMA-262 standard
published by Ecma International [10]. So paradoxically,
JavaScript led to the development of the ECMAScript
standard that now governs the development of JavaScript.
JavaScript also contains functionality to access technol-
ogy standards not governed by Ecma International, such
as HTML5 <canvas> [11] and Web Graphics Library
(WebGL) [12] for 2D and 3D graphics in webpages.

JavaScript is not the only implementation of ECMAS-
cript. Due to the large number of developers pro-
gramming in JavaScript (and therefore ECMAScript),
ECMAScript has been used as the framework to develop
other, non-browser-based technologies. Node.js [13]
compiles ECMAScript for server systems. ActionScript
[14] was an Adobe implementation of ECMAScript
providing scripting functionality to the now deprecated
Adobe Flash Player platform. Rhino [15] and its replace-
ment Nashorn engine [16], provide Java based ECMAS-
cript scripting environments in Java applications. The
multitude of ECMAScript implementations causes
confusion as many engines based on ECMAScript are
described as providing a JavaScript environment in their
particular platform. This is false and due to name recog-
nition. JavaScript is strictly the web based implementa-
tion of ECMAScript for internet browser engines.

While ECMAScript certainly has a range of utility and
implementation across a variety of platforms, this review
focuses on the JavaScript implementation of ECMAS-
cript as it applies to client side HTML5.

Page 3 of 19Theisen J Cheminform (2019) 11:11

HTML5
The content we view on the Internet is made possible by a
union of several technologies, mainly Hypertext Markup
Language (HTML), Cascading Style Sheets (CSS) and
JavaScript. HTML is an Extensible Markup Language
(XML) protocol defining the Document Object Model
(DOM). XML is a protocol defined by a clear and exten-
sible syntax of elements and properties [17]. The DOM
is an organization of the elements and properties defin-
ing the data for the page. CSS provides a powerful way
to control the rendering properties of elements in the
DOM, as well as selectors for efficiently styling classes
and groups. JavaScript is the programming language that
allows a developer to perform functions and interact with
the DOM.

HTML5 is a moniker describing the most recent itera-
tion of these internet technologies, namely it is the cur-
rent version (version 5) of HTML. HTML4 defined most
of the history of the Internet. HTML4 provided only lim-
ited functionality to website authors; therefore solutions
like Flash and Java applets came into existence. HTML5
defines features previously only available in plug-ins,
directly through native browser functionality while pro-
viding extensibility not possible with previous versions of
HTML.

New web technologies emerged, such as native video
support, localStorage, <canvas>, WebSockets and many
more, allowing developers to fully support any appli-
cation, natively in the browser. Access to these features
needed to be facilitated, and the programming language
to control all this additional functionality is JavaScript,
the native browser language. JavaScript became much
more powerful due to the evolution of HTML.

At the time of writing this review, HTML5 has had
many years to mature. We now see HTML5 applications
across every platform imaginable, fueled by the growth
of mobile devices where internet browsers are first class
citizens. It is this wealth of functionality, access and ease
of distribution that has lead to JavaScript becoming an
essential programming language for scientists and espe-
cially for chemists. Several large, open source, JavaScript
chemistry libraries are actively maintained, including the
ChemDoodle Web Components [18], Kekule.js [19] and
3Dmol.js [20], to support the chemistry community.

Features
JavaScript is not developed with scientists in mind and is
not, in any way, optimized for the sciences. The first high
level programming language, Fortran [21] (“FORmula
TRANslation”), was specifically designed to support
advanced mathematical and scientific equations, and due
to its performance, is still used today in many academic
circles. Python [22] is a scripting language with an easy

to learn syntax and core libraries dedicated to scientific
computing. Yet, JavaScript exhibits a number of unique
qualities greatly benefiting scientists. Development tools
are available on every scientist’s computer through a web
browser, free of charge. Distribution through the Internet
is intrinsically supported. The free availability is essential
to the core goals of science to distribute fact and infor-
mation and to inspire and educate individuals to pursue
knowledge. Regardless, there are a number of caveats to
using JavaScript, and any scientific programmer should
be aware of all of the technical features discussed below.

Performance
The speed of calculations is a top priority when consid-
ering a programming language. The faster an application
is, the more calculations it can compute and the more
users it can serve. JavaScript performs on the slower
end of programming languages. As a scripting language
being run in a web browser, JavaScript cannot be faster
than the platform it runs on, typically a C [23] deriva-
tive. The interpretation of JavaScript at runtime makes
it inherently slower than its platform environment, even
when taking advantage of just-in-time (JIT) compilation.
Simple JavaScript applications can provide a quick and
efficient interface, but will suffer as the complexity of cal-
culations increases. Chemistry algorithms are especially
sensitive, where molecules are represented as graph data
structures. Runtimes for graph theoretical algorithms
will scale exponentially as molecule size increases.

The "Performance results" section describes some tests
to compare JavaScript and Java performance for chem-
informatics tasks. Runtimes are clearly slower for JavaS-
cript, but maybe acceptable if simple data is run in an
efficient browser. However, as the data structures become
more complex, the runtimes for JavaScript increase sig-
nificantly and at a greater rate than Java. The results also
highlight another issue: JavaScript performance varies
widely between browsers, and this must be considered
when creating any JavaScript application, as users will
have their preferred browser. Extrapolating to the most
expensive computational chemistry tasks, a fully ab ini-
tio quantum mechanics calculation would take days on
a super computer, and would surely be wasted as a JavaS-
cript implementation. However, there have been some
implementations of intensive chemistry algorithms in
JavaScript. Ertl et al. demonstrated a fully functional
database with graph isomorphism searching directly
in JavaScript [24], transpiled from OpenChemLib [25]
(transpiled source code is automatically generated from
source code in another programming language). The
JavaScript cheminformatics library, Kekule.js, includes
molecular geometry optimization features transpiled
from OpenBabel [26]. GLmol has an extension allowing

Page 4 of 19Theisen J Cheminform (2019) 11:11

it to create full molecular surfaces for proteins based on
the EDTSurf algorithm [27]. Not one performs at com-
mercially acceptable speeds.

Poor performance is further compounded when trying
to target mobile platforms, as mobile devices typically
have less powerful hardware than traditional comput-
ers. This is a serious burden on the developer, as special
care is needed when crafting JavaScript applications,
and the efficiency of written code must always be scruti-
nized. Web sites and applications that are slow to load or
execute will be immediately ignored by web surfers and
penalized by search engines.

It is clear that native implementations will always have
a significant performance advantage over JavaScript
implementations. Regardless, there are encouraging
trends as technology evolves: we continue to see more
powerful processors on smaller devices, mitigating per-
formance issues. Eventually, the slow JavaScript applica-
tions of today will be the fast applications of tomorrow.
And for now, JavaScript’s poor performance is far out-
weighed by its ubiquity on all platforms.

Distribution
When creating any application, a developer intends to
reach as many users as possible. Developers therefore
choose a programming language suited to the platforms
presentable to the largest number of potential users.
Because each Operating System (OS) is unique (Win-
dows executables cannot be run natively on macOS,
for instance), significant resources are required to port
applications to each platform. If these resources are not
available, the choice becomes which users to exclude.
Fortunately, some programming languages were con-
ceived to obviate that choice by providing a layer over
the native platform of several operating systems, so code
can be “written once and run everywhere” (coined by
Sun Microsystems), thereby maximizing the developer’s
effort. This was the inspiration to create the Java pro-
gramming language; to allow developers to provide appli-
cations across Windows, macOS (formerly Macintosh
and Mac OS X), Linux and others. Java remains a popu-
lar programming language today for producing scientific
applications. Similarly, JavaScript became the program-
ming language of the web; every significant web browser
in existence, across traditional, mobile and emerging
platforms, has built-in support for JavaScript. Many pop-
ular platforms, such as iOS, do not support Java, but do
support JavaScript. In this way, JavaScript has surpassed
Java as a universal programming language; no other pro-
gramming language rivals JavaScript in its accessibility.

On mobile systems in particular, there is significant dis-
agreement among developers about native implementa-
tions versus web based systems. Phones are technological

Swiss army knives. Yet many of their features are not
accessible in JavaScript (similar to how native desktop
OS features are not always available in Java). To further
capitalize on JavaScript work, systems like PhoneGap
[28] and Cordova [29] use the native WebView compo-
nents of the mobile operating systems to create native
apps that can take advantage of features not available in
mobile web browsers. WebView based solutions also pro-
vide a means for deployment through popular mobile app
stores. Currently, a different approach for creating mobile
apps using just web technologies called a Progressive
Web Application (PWA) [30] is gaining popularity among
developers. Such JavaScript implementations can help
chemistry software developers avoid significant develop-
ment costs for each platform.

Another reason JavaScript is easy to distribute is no
pre-compilation is required, nor is the creation of an
executable. It is important to understand, while a server
is required to host and distribute web applications, as a
scripting language, JavaScript source code is downloaded
and interpreted at runtime. Therefore, licensing becomes
very important as JavaScript source code is difficult to
protect, and is very easy to view, understand, modify
and copy. Owners of proprietary projects must keep this
in mind. Open source projects may benefit from this as
the code is readily accessible when used, but special care
should be taken to understand one’s own licenses or the
licenses associated with the JavaScript libraries being
integrated. For instance, the commonly used General
Public License (GPL) [31] will automatically become
enforceable for JavaScript code as the mere act of access-
ing a web page running GPL licensed JavaScript code
requires that code to be distributed to client machines.

Finally, due to the issues involved in distributing large
JavaScript projects, several JavaScript source proces-
sors exist, including Google Closure Compiler [32], the
Yahoo! User Interface (YUI) [33] library and UglifyJS [34].
These tools can minify and optimize source code by using
certain patterns to shrink the size of JavaScript source
downloads and optimize the code for more efficient per-
formance (minification is a term specific to web technol-
ogies such as JavaScript, where small download sizes are
optimal, and should not be confused with chemical appli-
cations of minimization, such as energy minimization or
waste minimization). Such post-processing is strongly
recommended when writing usable scientific programs.
Some of these tools also have the ability to obfuscate
JavaScript source, and when run completely, will destroy
any intentionally public Application Programming Inter-
face (API), but may help to protect proprietary code. It
should be clear though, no amount of JavaScript obfusca-
tion will be able to stop a determined hacker from reverse
engineering or finding vulnerabilities in JavaScript work.

Page 5 of 19Theisen J Cheminform (2019) 11:11

Security
Aspects of the JavaScript programming language make
security an important concern. Traditional applications
run on the OS. Users will verify the legitimacy of the
programs they use or rely on virus scans to protect their
computers. JavaScript, however, is run on webpages just
by visiting them. Given the vast number of users visiting
web pages continuously, JavaScript is a prime vector for
hackers to distribute harmful software. To reduce risk,
JavaScript is sandboxed in the web browser and does not
have access to the same features essential to other pro-
gramming languages. There is no access to the file system
or the system clipboard for copy and paste functional-
ity. Browser producers may impose further restrictions,
including ignoring running code attempting to identify
and track users or disabling JavaScript based ads in web
pages. Performance intensive applications may also be
throttled by browsers. For example, there are limits to
the resources available to WebGL canvases, and any long
running algorithms may be halted.

The client side execution of JavaScript leaves it open
to another attack vector. Since JavaScript is interpreted
at runtime, any capable developer can remove, modify
or inject their own behavior into web applications. This
introduces special concerns for products enforcing integ-
rity of data, such as eLearning systems. If grading mech-
anisms for such a system are exposed in JavaScript, a
student can simply modify relevant code when running
that application to achieve a perfect score without doing
the exercises. System vulnerability can be compounded,
as individuals without programming knowledge may
naïvely rely on 3rd party hacks to control the JavaScript
software, exposing them to malicious behavior including
the wide-scale transmission and monitoring of informa-
tion about the application and its users.

If any personal or proprietary data is processed in JavaS-
cript, the data will have to be downloaded and accessible
to the user, compromising any confidentiality. Regard-
less of the best practices a company should uphold, new
laws are now ratified to protect user information. The
European Union (EU) began to enforce the General Data
Protection Regulation (GDPR) in 2018 [35], requiring all
companies to gain consent for the acquisition and han-
dling of user information. Handling of data in JavaScript
is also troublesome for electronic laboratory notebooks,
where 21 CFR Part 11 [36] compliance is required. So
JavaScript applications need to be built in a way to protect
the integrity of systems and the confidentiality of infor-
mation. These considerations are essential, but inherently
difficult, for small scientific startup companies.

There are some common practices a developer should
follow when creating JavaScript applications. Hyper-
text Transfer Protocol encrypted using Transport Layer

Security (HTTPS) [37] utilizes a Secure Sockets Layer
(SSL) technology to encrypt communications between
users and a server, protecting them from hackers and
data snooping. Implementation of HTTPS requires sig-
nificant technical knowledge to implement, and financial
resources for the SSL certificate, but without it, users are
left vulnerable. Any unprotected web application will, at
best, be viewed suspiciously and will ultimately be penal-
ized by search engines. Sensitive data should only be han-
dled in JavaScript when absolutely necessary. Any user
information, for instance, proprietary molecular data,
should be encrypted and sent to a properly administered
server for any storage or processing.

The accessibility of JavaScript applications is worthwhile
to scientists, although security issues are a significant con-
cern. Another powerful quality of JavaScript makes up for
this weakness. As a web technology, JavaScript has built-in,
real-time access to server resources, protecting user infor-
mation and proprietary algorithms on an administered
server. Any technology can then be distributed through a
JavaScript graphical user interface (GUI). As a result, JavaS-
cript possesses a unique ability for making even the most
specific, hard to use, and unsupported scientific code bases
accessible to users around the world. JavaScript truly facili-
tates collaboration and the dissemination of knowledge.

Legacy code
As web applications grew, developers pursued creative
ways to engage with users in JavaScript, the primary
restriction being that content on a page was limited to
what was downloaded. If content was to be changed, for
example based on information in a server database, the
web interface needed to communicate the changes to a
server, then re-download the new content to be viewed,
forcing the user to tolerate a reload of the web page.
Microsoft introduced a new solution to this in 1999 with
the XMLHTTP ActiveX control in Internet Explorer [38].
This new technique facilitated direct access to a server in
JavaScript. As an asynchronous call, connections to the
server would not block the responsiveness of the inter-
face, and the direct communication of information back
to the JavaScript call allowed the developer a powerful
technique to interact with the user. All other browsers
adopted this technique as the standard web technology,
XMLHTTPRequest (XHR). Development patterns mak-
ing use of the XHR object became known as Asynchro-
nous JavaScript and XML (AJAX).

For security reasons, AJAX requests were limited to con-
tacting the host origin, but HTML5 brought XHR2, which
provided a new protocol to allow XMLHTTPRequest to
contact and validate connections to external origins.

A system utilizing AJAX to communicate chemical infor-
mation to the server can take advantage of any chemistry

Page 6 of 19Theisen J Cheminform (2019) 11:11

technology in existence. Even old legacy code can be hosted
on a server and accessed with a JavaScript GUI. Propri-
etary code can be protected, and programs requiring
advanced expertise and resources to compile and run can
be deployed as a service. CPU intensive algorithms, such as
energy minimization or quantum mechanics calculations,
can be hosted on powerful servers, so users have an alter-
native to longer run times on their less powerful computer.
Many chemistry databases are working to provide services
through AJAX. One notable example is the Macromolecu-
lar Transmission Format (MMTF) [39] JavaScript libraries
distributed by the Research Collaboratory for Structural
Bioinformatics (RCSB), aimed to improve Protein Data
Bank (PDB) handling in web applications.

Although XML is stated as part of the AJAX process,
any protocol may be used to communicate with the
server. Most applications use JavaScript Object Notation
(JSON) [40], which is a protocol for defining data struc-
tures in JavaScript. JSON is a native feature in JavaScript
syntax, so JSON in JavaScript source is easily written and
efficiently processed. Several JSON formats were con-
ceived specifically for chemistry. The ChemDoodle JSON
format is designed as a minimalistic and extensible defi-
nition for molecules and their associated chemical and
graphical objects and properties, both in 2D and 3D [41].
Both the open source ChemDoodle Web Components
and OpenBabel provide support for ChemDoodle JSON.
The OpenChemistry project [42] has also defined a
Chemical JSON format [43]. OpenEye proposed a chem-
istry oriented JSON format with a focus on extensibility,
but it has ceased to exist. Use of the browser JSON.string-
ify() and JSON.parse() functions allows the developer to
convert between JavaScript and String objects, to facili-
tate JSON communication with a server through AJAX.

Another popular chemistry protocol for the web is
Chemical Markup Langauge (CML) [44]. CML is an XML
format, just like HTML, so CML can be embedded directly
in the DOM, but it must be manually processed to be han-
dled in JavaScript, unlike JSON formats. CML is a mature
chemistry protocol with support in a number of toolkits,
making it a prime choice for server side handling.

Another method to use legacy code bases in JavaS-
cript is called transpilation, where source from another
programming language is automatically converted into
JavaScript source. The JavaScript vulnerabilities in per-
formance and security remain. JSME [45] was tran-
spiled from a Java applet to JavaScript with the use of
the Google Web Toolkit (GWT) compiler [46]. Kekule.js
developers use Emscripten [47] to port functionality from
the C library, OpenBabel, to JavaScript. JSmol [48] is a
transpilation of the Jmol Java applet into JavaScript mak-
ing use of the SwingJS tool [49]. There are three considera-
tions when using a transpilation tool: (1) the process will

not be perfect, so the resulting code will have to be scru-
tinized, and likely post-edited, to ensure proper behav-
ior; (2) the transpiled code may be injected with a middle
layer introducing overhead in the application, compound-
ing the performance issues in JavaScript possibly leading
to the inconvenience of loading screens; (3) the resulting
transpiled code, constructed by a machine, is difficult for
the average developer to decipher. Transpiled source code
defeats the purpose of open source software in JavaScript,
as the original code base is necessary to make any changes,
and the transpilation process must be run again to pro-
duce a JavaScript result. Proprietary code transpiled into
JavaScript is inherently more prone to reverse engineering
than the original source. Transpilation is best reserved for
GUIs when the authors do not have the technical ability or
opportunity to create a complementary JavaScript project.

Some JavaScript applications are impractical due to per-
formance and security issues. Through servers, JavaScript
developers can protect their systems and users and ben-
efit from existing technology. This is very important for
chemists, as there is a significant amount of computational
innovation across many programming languages since the
inception of computer systems. We want to retain access
to the work of the computational chemists of the past. In
the end, JavaScript applications excel at providing graphical
user interfaces when paired with server side functionality.

Graphics
Several steps were necessary to bring JavaScript to its
current excellence in visualization. JavaScript originally
only manipulated HTML DOM elements and CSS. So
the early chemistry interfaces were limited to input forms
allowing some calculation to be output. Further work
allowed for the presentation of periodic tables. WebEle-
ments [50] and Ptable [51] are two of the earliest exam-
ples. Rendering of molecular structures was not practical
with just the HTML elements available; Adam Gross-
man demonstrated a simplistic molecule viewer with just
HTML elements and CSS [52].

The advent of HTML5 and the introduction of the
<canvas> element enabled JavaScript to create graphics.
With the <canvas> element, a JavaScript developer can
draw 2D graphics in a DOM element. When text render-
ing capability was added to <canvas>, chemists had all
the tools necessary for publication quality 2D graphics
natively on the web. The ChemDoodle Web Components
library [18] was the first JavaScript solution for render-
ing 2D chemical structures using <canvas>. Several tools
attempted to use <canvas> to render orthographic 3D
structures, including CanvasMol [53], ChemDoodle and
TwirlyMol [54]. More complex PDB structures incorpo-
rating ribbon diagrams were successfully rendered by Jol-
ecule [55] using just <canvas> graphics in 2D.

Page 7 of 19Theisen J Cheminform (2019) 11:11

Introducing 3D hardware accelerated graphics as a
JavaScript ability was the next step. WebGL was intro-
duced to provide JavaScript bindings for OpenGL, specifi-
cally OpenGL ES 2, through the <canvas> element. The
ChemDoodle Web Components library was again the first
toolkit to provide 3D graphics of molecules using WebGL
[56]. SpiderGL [57] was also documented. GLmol [58],
and associated forks (a fork is a copy of the original pro-
ject where new developers typically work towards a dif-
ferent goal), are based on the three.js WebGL library [59].

Scalable Vector Graphics (SVG) [60] is a complemen-
tary graphical feature in HTML5. SVG is an XML pro-
tocol defining 2D drawing instructions for graphics, but
lacks capability for defining 3D objects. HTML5 <can-
vas> is based on a bitmap buffer, so the scale and resolu-
tion of the screen or device must be properly taken into
account for clear graphics. SVG rendering is independent
of the resolution or scale of the device. Creating dynamic
applications with SVG is more difficult as any changes
require DOM manipulation.

The most important interface enabled by these graphi-
cal features is a chemical sketcher. Chemistry is unique
because a molecular structure is the core unit to be com-
municated. The browser natively supports other inter-
faces through forms containing text fields and check
boxes and calendars, but lacks a chemical sketcher. The
availability of a JavaScript based chemical sketcher is
therefore essential to chemists. The first example of a
chemical sketcher in JavaScript was jsMolEditor [61].
Currently, advanced, open source, chemical drawing
interfaces exist in pure JavaScript, including the Chem-
Doodle sketcher [62], Ketcher [63] and in Kekule.js.

One serious topic involving interfaces is accessibil-
ity for individuals with disabilities. Chemistry software
developers should concern themselves with making their
work accessible. HTML5 introduced features for control-
ling graphics and sound, and touch screens allow many
creative input solutions through software and hardware
accessories. JavaScript is present on these emerging plat-
forms, with APIs to work with traditional mouse and key-
board events as well as touchscreen events and gestures.
This is beneficial for organizations creating educational
products as the Americans with Disabilities Act (ADA)
requires accessibility considerations in chemistry soft-
ware in the United States [64]. Many governing bodies
enforce accessibility in public software as well, adhering
to the Web Content Accessibility Guidelines (WCAG)
specification [65], which is an International Organization
for Standardization (ISO) standard. Through JavaScript,
the communication of chemistry between individuals
and computers has never been easier.

Chemical applications on the web greatly expanded
with the capability of communicating chemistry in both

2D and 3D in JavaScript. Currently, almost every major
chemistry related software product has integrated a web
based interface using JavaScript. Two notable exam-
ples are SciFinder, and a new solution from the Chemi-
cal Abstracts Service (CAS), SciFinder-n [66], using
JavaScript interfaces to provide further access. SciFinder
presents the venerable CAS content collection, a clear
validation of the importance of JavaScript interfaces in
commercial chemistry products.

Further innovation
Many new JavaScript features continue to be conceived.
A feature called localStorage (and its companion session-
Storage) allows JavaScript applications to store information
through page loads [67]; Web Workers provides a framework
for multi-threaded JavaScript applications [68]; the <audio>
tag allows sounds to be played in JavaScript [69]; WebSock-
ets allows a continuous link between a JavaScript application
and a web server for direct and constant communication
[70]. Continued innovation in JavaScript is a direct result of
developers’ work to provide solutions on the web.

Programming
JavaScript exhibits the common aspects of most program-
ming languages. Semantics and a syntax familiar to pro-
grammers are defined to communicate with the computer.
There are primitives, functions and for loops. JavaScript
also harbors a number of significant differences includ-
ing its scopes and context, the global namespace and the
need for browser standardization. In this section, an out-
line of important topics for programming chemistry in
JavaScript is presented. Many resources exist to introduce
those interested in computer science to programming.
JavaScript is a web technology, and the vast majority of
instructional material for JavaScript can be found freely
on the Internet. We will be focusing on the technicalities
of JavaScript programming. The instruction begins with a
reinforcement of JavaScript basics to prepare readers for
more complex constructs, leading to the implementation
of Object Oriented Programming (OOP) in JavaScript
and how chemistry can be represented.

At the time of this writing, the latest version of
ECMAScript is version 9, also known as ECMAScript
2018 [10]. Technologies evolve rapidly and information
herein may become obsolete as changes are made.

Reinforcing the basics
JavaScript is an easy language to learn, but a very dif-
ficult one to master. Additionally, certain programming
constructs can be coded using many different syntactical
approaches, making the language very inconsistent. Yet,
this lack of rigidity makes the language very malleable, and
the possibilities are only restricted by the creativity of the

Page 8 of 19Theisen J Cheminform (2019) 11:11

developer. Developers attempting to create the complex
applications necessary for chemistry without fully under-
standing the unique aspects of the language will encoun-
ter serious issues. Most importantly, an understanding of
scope, context and closures is necessary to properly direct
the behavior of JavaScript applications. These topics are
covered in more detail in the following sections.

Several source code listings accompany the following
topics. There are several ways to execute JavaScript code.
The first is through a browser’s JavaScript console. The
second is by including JavaScript directly in the DOM
for a loaded web page using <script> tags. The third is
through the import of a JavaScript source file in a web
page, typically with a .js extension.

Integrated Development Environment
An Integrated Development Environment (IDE) is a
powerful tool for developers to quickly address mistakes
and errors when writing code. IDEs are less practical
for JavaScript. While several IDEs exist, core JavaScript
behavior does not come from a standard compiler, but
through each of the individual browsers. So no IDE can
truly provide an accurate development environment. It is
often best to write JavaScript code and then test it in each
browser being targeted, typically all of them.

Fortunately, each browser contains a JavaScript console
for examining errors, running snippets of code, alter-
ing interpreted code and more. For instance, in Chrome,
we can access the JavaScript console by selecting the
View>Developer>JavaScript Console menu item. Fig-
ure shows the JavaScript console in Google Chrome.

We can output to the JavaScript console using the con-
sole.log() function as shown in Listing 1. The JavaScript
interpreter will ignore comments in source code, desig-
nated as any text on a line preceded by a pair of forward
slashes (//).

Note that JavaScript strings should typically be
declared with single quotes. There is no difference
between a JavaScript string created with single quotes
and one created with double quotes. However, JavaScript
works in an HTML environment where any XML strings
will undoubtedly contain double quotes. Using single
quotes allows the quick writing of strings with double
quotes included, without having to escape them or deal
with difficult to find string construction errors.

Browser standardization
One of the significant drawbacks to creating JavaScript
applications is the lack of a standard compiler. ECMAS-
cript defines the JavaScript language; implementation is
left up to each browser. This fragments the web ecosys-
tem and developers would be unaware of any issues in the
browsers they do not use. Fortunately, there are well sup-
ported JavaScript projects aiming to standardize JavaS-
cript behavior across browsers. jQuery [71] and Sencha
[72] are popular examples. These libraries were essential
in the past, as huge discrepancies between JavaScript
implementations existed, but are becoming less impor-
tant as modern browsers work to achieve a more consist-
ent implementation. Reliance on browser standardization
libraries should only be allowed when code maintenance
is improved, such as with the DOM manipulation fea-
tures of jQuery.

As HTML5 continues to evolve, new features continue
to be invented and extensions to old features are intro-
duced. Each of the browsers is developed independently
on its own schedule, so implementation of HTML5 fea-
tures is far from synchronized. Polyfills can be used to
inject behavior before features are natively implemented,
and removed when the features are universally available.
For instance, requestAnimationFrame() is recommended
for WebGL animations, while setTimeout() is the tradi-
tional function for working with timers. A polyfill can
check if requestAnimationFrame() exists, and if not, cre-
ate one using the setTimeout() function.

Variable typing
JavaScript is an untyped programming language (also
referred to as weakly typed), which means the interpreter

1 // This call will print "Hello Chemistry !" in the JavaScript console
2 console.log(’Hello Chemistry!’);

Listing 1 Using the console.log() function

Page 9 of 19Theisen J Cheminform (2019) 11:11

1 // undefined is printed , as the variable is declared using var later
in the scope

2 console.log(element);
3
4 var element = ’Carbon ’;
5 // ’Carbon ’ will be printed
6 console.log(element);
7
8 if(element === ’Carbon ’){
9 // we did not intend to change the element variable from the top

scope , but it is
10 var element = ’Nitrogen ’;
11 // ’Nitrogen ’ will be printed
12 console.log(element);
13 }
14
15 // ’Nitrogen ’ will be printed
16 console.log(element);
17
18 var element = ’Oxygen ’;
19 // ’Oxygen ’ will be printed
20 console.log(element);

Listing 2 Using the var keyword

will not care what type of data is defined to a variable
until evaluating an expression. A variable can be declared
as a number, and then later set to a string. The freedom
an untyped programming language provides is very pow-
erful, but it is necessary for algorithm logic to be aware
of the variable types, and to avoid changing them, as the
interpreter will automatically cast mixed types to the
same type for execution, leading to unexpected results or
errors.

To overcome some issues with variable typing, JavaS-
cript includes a pair of strict equality operators, ===
and !==, in addition to the typical equality operators,
== and !=. The typical operators will match values even
if the variable types are different, for instance the num-
ber 10 will match the string ‘10’, and the number 0 will
match the Boolean false. The strict operators not only
check for value equivalence, but also that the types of
values on both sides of the operator are equivalent. The
strict equality operators are therefore less error prone
and should always be preferred in application logic.

Declaring variables
Originally, a variable could be created in one of two ways
in JavaScript, without a keyword or with the var key-
word. ECMAScript 6 introduced two new ways of declar-
ing variables using the let and const keywords.

The var and let keywords are very similar, and most
well written code would not see any difference in behav-
ior when switching between the declarations. Technically,
var binds a variable’s visibility to the closest enclosing
function or global scope, while let binds a variable’s vis-
ibility to the closest enclosing block or global scope. The

differences between the behavior of the var and let decla-
rations can be seen in Listings 2 and 3. A variable can be
accessed before it is first declared with the var keyword;
this is referred to as variable hoisting, and can cause
errors if not properly understood. Using let will help to
avoid programming errors if the same variable name
is accidentally declared twice in the same scope since
an error will be thrown. Using let also avoids semantics
issues when multiple scopes have access to the same vari-
able. This has important ramifications, especially when
utilizing the for loop variable to generate functions,
which are common when building JavaScript interfaces.

Additionally, using let provides more control in the
global scope, as such declared variables will not be
defined to the window object. The window object is the
standard, top-level, JavaScript object. While older code
will typically use the var keyword as it was the only
option, let should now always be used instead.

The const keyword declares an unchangeable variable,
similar to the final modifier in Java. If a const variable
is assigned to an object, the object’s properties can be
changed, while the variable pointer to the object cannot.
This technique is useful when creating a value that should
remain consistent throughout the lifetime of the applica-
tion, such as core bond order variables in cheminformat-
ics toolkits.

If no keyword is used when declaring a variable, the
visibility of the variable becomes global regardless of the
scope it is in, polluting the global namespace and poten-
tially causing issues. This should never be done.

Page 10 of 19Theisen J Cheminform (2019) 11:11

Lexical scope
JavaScript is meant to be executed for a web page, and
source can be interpreted at any point for a page, before
or after the DOM is closed. So unlike traditional appli-
cation source code that is compiled and run, JavaScript
code is run by loading a web page into the browser.

Due to the need for JavaScript to access all the aspects
of a web page, the main programming construct is basi-
cally a giant resource pool. This pool is specifically called
the global scope and the union of all variables defined in
the global scope is called the global namespace. Lexical
scope in JavaScript is therefore more complex than in
other languages. Everything and anything pertaining to
the webpage can be accessed in JavaScript through the
global scope, exposing implementation and behavior to
other parts of the application, other developers and even
users during runtime. JavaScript resources do not persist
between page loads (an exception is the window.name
variable as well as localStorage and sessionStorage).

When a function is defined, a new scope is produced,
denoted by a pair of enclosing curly braces. This is called
a local scope. All scopes have access to the variables con-
tained within and in parent scopes up to the global scope,
but do not have access to variables in their child scopes.
The combination of a function with its own scope and all
of the variables the function has access is known in JavaS-
cript as a closure. Closures are an important concept in
JavaScript. When only using the let variable declaration,
any statement block curly brace pairs will define a local
scope, not just functions.

In addition to exposing implementation, the global
scope can become a hindrance to programming, as care
is needed to avoid name clashes that would overwrite
previously defined variables. As multiple libraries are
included into a webpage, such conflicts are inevitable. In
chemistry, every library will undoubtedly contain a “Mol-
ecule” class. The increased probability of conflict caused
by creating global variables is called global namespace
pollution. Avoiding pollution is a requirement for any
usable scientific library. Techniques for doing so are dis-
cussed in the "Object Oriented Programming" section.

Undefined values
It is also important to represent values that have not yet
been set, and JavaScript has two keywords for this: unde-
fined and null. This can lead to confusion, as many pro-
grammers are familiar with the null keyword from other
languages. In JavaScript, undefined refers to a variable
that has been declared, but not assigned, while null is
actually an object used by a developer to represent noth-
ing. Therefore, the null keyword would only be useful for
specific logic as it must be assigned, and is never neces-
sary. The undefined keyword should always be used to
check for unassigned variables as shown in Listing 4.

Creating objects
Objects can be created in JavaScript by assigning a vari-
able to curly brace pairs as shown in Listing 5. An array
(which is special object) can be declared similarly, but
with square bracket pairs. Notice we can use JSON
to fully define object parameters. Object properties,

1 // an error is thrown , as the variable has not been declared using let
yet

2 // uncomment the next line to see it
3 // console.log(element);
4
5 let element = ’Carbon ’;
6 // ’Carbon ’ will be printed
7 console.log(element);
8
9 if(element === ’Carbon ’){

10 // we did not intend to change the element variable from the top
scope , and it is not

11 let element = ’Nitrogen ’;
12 // ’Nitrogen ’ will be printed
13 console.log(element);
14 }
15
16 // ’Carbon ’ will be printed
17 console.log(element);
18
19 // an error will be thrown , as the variable was already declared
20 // uncomment the next line to see it
21 // let element = ’Oxygen ’;

Listing 3 Using the let keyword

Page 11 of 19Theisen J Cheminform (2019) 11:11

including functions, can be redefined at any point during
runtime.

Creating functions
Functions also have unique behaviors in JavaScript, as
functions are first class objects and can be assigned prop-
erties. Listing 6 shows how we create a function.

The created function is now an object in its enclosing
scope. The function can be accessed as an object by using
the function name and can be executed by using the func-
tion name followed by an invoking pair of parentheses.

Notice the included semicolons after every declaration,
even for functions as in line 4 of Listing 6. While semico-
lons are not required in JavaScript, including them makes

code easier to read, helps the interpreter and will remove
any ambiguities that may arise.

JavaScript primitives perform in a similar manner
to primitives in other programming languages. JavaS-
cript primitives are passed as values when included as
a parameter in a function, while objects are passed as
pointers, which means manipulation of an object inside
of a function will change the original object used to call
the function. JavaScript functions can return data, as in
other languages, but if no return statement is included
in a function, undefined will be automatically returned
upon completion.

We can alternatively create the function with a more
obvious object syntax as shown in Listing 7. Any data
is assigned to the function to avoid polluting the global

1 let element;
2 // true will be printed
3 console.log(element === undefined);
4 // false will be printed
5 console.log(element === null);
6
7 element = ’Carbon ’;
8 // false will be printed
9 console.log(element === undefined);

10 // false will be printed
11 console.log(element === null);

Listing 4 Behavior of undefined and null

1 let carbon = {};
2 // the should print an empty object
3 console.log(carbon);
4 carbon.symbol = ’C’;
5 carbon.atomicNumber = 6;
6 // this will now print the populated carbon object
7 console.log(carbon);
8 // this will print the carbon object ’s symbol
9 console.log(carbon.symbol);

10
11 // we can use JSON to fully define an object
12 let nitrogen = {
13 symbol : ’N’,
14 atomicNumber : 7
15 };
16 // this will print the populated nitrogen object
17 console.log(nitrogen);

Listing 5 Creating an object

1 let halogens = [’F’, ’Cl’, ’Br’, ’I’];
2 function isHalogen(element){
3 return halogens.indexOf(element)!== -1;
4 };
5 // true
6 console.log(isHalogen(’F’));
7 // false
8 console.log(isHalogen(’C’));

Listing 6 A function declaration

Page 12 of 19Theisen J Cheminform (2019) 11:11

namespace. The method of creating a function shown in
Listing 6 is called a function declaration, while Listing 7
uses a function expression. Only function declarations
are subject to hoisting by the JavaScript interpreter and
will be available at any time in its enclosing scope.

Functions form the basis for class creation in JavaS-
cript, which will lead to the implementation of OOP; this
method of programming is essential for implementing
chemistry algorithms.

Object Oriented Programming
In contrast to procedural programming, OOP enforces
a data structure centric logic for software development.
Such a paradigm produces code that is easier to read,
compartmentalized, reusable and less prone to errors.
This model is particularly beneficial for chemistry appli-
cations, as molecules are represented as graph data struc-
tures. When properly implemented in JavaScript, OOP
APIs benefit from protection of implementation details
and a reduction in global namespace pollution. Many
resources exist for introducing OOP to the interested
developer. The following section discusses the implemen-
tation of OOP in JavaScript.

Classes
Object oriented programs build consistent instantiations
of objects from defined classes. An object is program-
matically instantiated from a class definition by invoking

the class constructor. In JavaScript, a class constructor is
represented as a basic function as shown in Listing 8.

The new keyword is used to instantiate an object from
the class definition as shown on line 12 of Listing 8. Once
instantiated, associated class functions are accessible
from the object. Functions declared inside of the con-
structor are called privileged functions and can access
private variables defined in the constructor scope, but
will be created anew for each instance.

JavaScript classes are not traditional classes, as would
be found in OOP languages like Java and C++, which
provide strict mechanisms for defining and extending
classes. Instead, JavaScript uses the prototype keyword
to describe inheritable properties for objects as shown in
Listing 9. Functions set to the prototype are only created
once for all instances. As a result, prototype functions are
more efficient than privileged functions.

One of the most important aspects of OOP is extend-
ing classes. A child of the Atom class, called Atom3D,
implementing a z-coordinate, is created in Listing 10.
Checking class types in JavaScript is possible with the
instanceof operator in expressions.

The prototype system in JavaScript facilitates extend-
ing parent class functionality. When an instantiated object
calls a function, the interpreter first checks the object’s
parameters in search of the function. If it cannot find the
function, then the prototype’s parameters (through the __
proto__ parameter) are checked, and then the prototype’s

1 let isHalogen = function(element){
2 return isHalogen.halogens.indexOf(element)!== -1;
3 };
4 isHalogen.halogens = [’F’, ’Cl’, ’Br’, ’I’];
5 // true
6 console.log(isHalogen(’F’));
7 // false
8 console.log(isHalogen(’C’));

Listing 7 A function expression

1 // define the Atom class
2 let Atom = function(symbol , x, y){
3 this.symbol = symbol;
4 this.x = x;
5 this.y = y;
6 this.log = function (){
7 console.log(this.symbol+’ ’+this.x+’,’+this.y);
8 };
9 };

10
11 // we instantiate a carbon atom from the Atom class
12 let carbon = new Atom(’C’, 10, 20);
13 // we can now see what the atom logs in the console: "C 10,20"
14 carbon.log();

Listing 8 A basic class using a function expression

Page 13 of 19Theisen J Cheminform (2019) 11:11

prototype, and so forth until the core Object prototype is
reached. Functions defined to the prototype all point to
a single instantiation, so at any time, the behavior can be
changed for all instances of the class at once. Prototype
based classes are therefore very powerful, and allow mal-
leability not possible in traditional OOP languages because
classes would be defined at compile time and unmodifiable.

ECMAScript 6 added traditional class syntax. While
classes written this way will be more familiar to develop-
ers of other OOP languages, the underlying implemen-
tation in JavaScript still relies on the prototype system.

Therefore, the JavaScript class syntax should be avoided,
as it implies behavior not consistent with the way proto-
type classes work.

Context
Another peculiarity of JavaScript behavior is context, due
to the unique scoping system. Context concerns what
the this keyword references. Typically, in JavaScript, the
this keyword allows programmatic access to the object
performing the function, similar to standard OOP lan-
guages. So a created object will have the this keyword

1 // define the Atom class
2 let Atom = function(symbol , x, y){
3 this.symbol = symbol;
4 this.x = x;
5 this.y = y;
6 };
7 Atom.prototype.log = function (){
8 console.log(this.symbol+’ ’+this.x+’,’+this.y);
9 };

10
11 // we instantiate a carbon atom from the Atom class
12 let carbon = new Atom(’C’, 10, 20);
13 // we can now see what the atom logs in the console: "C 10,20"
14 carbon.log();

Listing 9 Defining a class using prototype

1 // define the parent Atom class
2 // ...
3 // define the child Atom3D class
4 let Atom3D = function(symbol , x, y, z){
5 Atom.call(this , symbol , x, y);
6 this.z = z;
7 };
8 Atom3D.prototype = Object.create(Atom.prototype);
9 Atom3D.prototype.constructor = Atom3D;

10 Atom3D.prototype.log = function (){
11 console.log(this.symbol+’ ’+this.x+’,’+this.y+’,’+this.z);
12 };
13
14 // the original Atom class can still be used
15 let carbon2d = new Atom(’C’, 10, 20, 30);
16 // we can now see what the atom logs in the console: "C 10,20 ,30"
17 carbon2d.log();
18 // true is printed
19 console.log(carbon2d instanceof Atom);
20 // false is printed
21 console.log(carbon2d instanceof Atom3D);
22
23 // we instantiate a carbon atom from the Atom3D class
24 let carbon3d = new Atom3D(’C’, 10, 20, 30);
25 // we can now see what the atom logs in the console: "C 10,20 ,30"
26 carbon3d.log();
27 // true is printed
28 console.log(carbon3d instanceof Atom);
29 // true is printed
30 console.log(carbon3d instanceof Atom3D);

Listing 10 Extending a class

Page 14 of 19Theisen J Cheminform (2019) 11:11

referencing itself and in any owned functions. Similarly,
if the new keyword is used to instantiate a class object, all
of the instantiated object’s functions will be able to access
the instance they are bound to through the this keyword.

In the global namespace, this refers to the window
object. In any functions created outside of objects, this
also refers to the window object, unless the source is
being interpreted in strict mode, vide infra, in which case
this is undefined. There is an exception if the function
acts as an event handler set through the addEventLis-
tener() function or through an inline on-event handler,
and in these cases this refers to the DOM object firing the
event.

There are also methods for overriding the reference
of this in JavaScript. ECMAScript 3 added the call()
and apply() functions for defining what the context, and
therefore the this keyword, refers to during the imme-
diate execution of a function. ECMAScript 5 added the
bind() function to explicitly set the context for a given
function regardless of how it is called.

Immediately invoked function expression
The openness of JavaScript resources through the global
scope introduces programming issues for developers.
An interesting JavaScript quirk can be used to provide
a cleaner solution utilizing the grouping operator. The
grouping operator should be familiar to all developers, as
it is represented by a pair of parentheses in expressions to
denote execution order precedence.

Programming language compilers typically implement
the grouping operator by creating an unnamed tempo-
rary variable in the execution of an expression, other-
wise known as an anonymous variable. JavaScript allows

functions in expressions, and when a grouping operator
surrounds a single function expression, the function itself
is encapsulated as an anonymous variable. Therefore,
source can be interpreted and executed without produc-
ing anything directly accessible in the current scope’s
namespace, and hiding any internal variables from the
outer scope, in essence, creating an anonymous closure.
The anonymous function can then be invoked with a sub-
sequent pair of parentheses. Such a construct is called
an immediately invoked function expression (IIFE). An
example is shown in Listing 11.

The final pair of parentheses used for invoking the
function can be included inside or outside of the clos-
ing parenthesis of the grouping operator; its positioning
makes no difference to the behavior.

IIFEs are incredibly useful in JavaScript programs, as
such constructs produce a closure where variable visibil-
ity can be restricted, and the only variables set to outer
scopes are what the developer intends to provide access
to. In Listing 11, developers cannot modify the version
variable at runtime, protecting internal implementa-
tion details relying on the variable, while still providing
read-only access to the version through the lone Chem-
istry variable defined to the global namespace (a credible
scientific library should always include programmatic
read-only access to its version). This technique can be
extrapolated to entire class definitions. Listing 12 shows
the Atom class in an IIFE. Notice how the isAllowedSym-
bol() function is local to the IIFE and cannot be changed
without modifying the source directly before interpreta-
tion. The developer wrote the function to facilitate func-
tionality in the class, but does not want the function to
be visible to others at runtime. Due to the local variables

1 let Chemistry = (function (){
2 // the version number is in the IIFE closure and is effectively

private outside
3 // it cannot be changed at runtime
4 let version = ’1.0.0 ’;
5
6 // a package object is created , this will be returned outside of the

IIFE
7 let library = {};
8
9 // a getter function is defined to provide access to the version

variable
10 library.getVersion = function (){
11 return version;
12 };
13
14 return library;
15 })();
16
17 // print the version to the console
18 console.log(Chemistry.getVersion ());

Listing 11 Implementing a library package using an IIFE

Page 15 of 19Theisen J Cheminform (2019) 11:11

encouraged by IIFEs, JavaScript source code processors
can be even more efficient at minifying source.

Many issues arise from the uniqueness of the JavaScript
programming language. Cheminformatics applications in
JavaScript can suffer if aspects of the code are exposed,
given the complexity of chemistry based data structures
and algorithms. JavaScript developers can address these
issues by expertly working with the behavior of JavaScript
interpreters and using IIFEs. IIFEs form the groundwork
for building large and complex programs in JavaScript by
giving developers control over the visibility of the com-
ponents of an application.

Module pattern
Taking a step further, using IIFEs to create organized
object oriented code is modeled by the module design
pattern [73]. An IIFE facilitates OOP by providing a
means to encapsulate JavaScript code, controlling imple-
mentation visibility while the module pattern organizes
classes and functionality. IIFEs allow the simulation of an
import system by passing variables through the invoking
pair of parentheses. Listing 13 shows the import of the
console global variable. Execution is now more efficient
as the interpreter does not need to search for the console
variable up through the global scope. Source code pro-
cessors can further minify the IIFE source, as the console

1 // define the Atom class
2 let Atom = (function (){
3 // a private variable
4 // this is the SMILES organic subset
5 var allowedElements = [’B’, ’C’, ’N’, ’O’, ’P’, ’S’, ’F’, ’Cl’, ’Br’

, ’I’];
6
7 function isAllowedSymbol(symbol){
8 return allowedElements.indexOf(symbol)!== -1;
9 };

10
11 let clazz = function(symbol , x, y){
12 this.symbol = isAllowedSymbol(symbol)?symbol:’C’;
13 this.x = x;
14 this.y = y;
15 };
16 clazz.prototype.log = function (){
17 console.log(this.symbol+’ ’+this.x+’,’+this.y);
18 };
19
20 return clazz;
21 })();
22
23 // bromine is allowed
24 let bromine = new Atom(’Br’, 10, 20);
25 // we can now see what the atom logs in the console: "Br 10,20"
26 bromine.log();
27
28 // silver is not allowed
29 let silver = new Atom(’Ag’, 10, 20);
30 // we can now see what the atom logs in the console: "C 10,20"
31 silver.log();

Listing 12 Privatizing variables in a class within a module

1 // define the Atom class
2 let Atom = (function(console , undefined){
3 let clazz = function(symbol , x, y){
4 this.symbol = symbol;
5 this.x = x;
6 this.y = y;
7 };
8 clazz.prototype.log = function (){
9 console.log(this.symbol+’ ’+this.x+’,’+this.y);

10 };
11 return clazz;
12 })(console);

Listing 13 Using imports in a module

Page 16 of 19Theisen J Cheminform (2019) 11:11

variable is now a local parameter. The undefined keyword
is provided to the IIFE as the last parameter, even though
it is not present in the invoking pair of parentheses. The
additional parameter is provided because undefined can
be declared as a variable name in JavaScript, and locally
overriding the undefined variable to something that hasn’t
been declared protects code logic from interference.

A library written in a single IIFE would quickly become
unmanageable, and so several IIFEs can be used to link

individual segments of logic, referred to as modules, into
a single library utilizing parameter imports. Listing 14
shows how the module pattern can be used to organ-
ize discrete classes. Classes can then be easily added and
removed.

The module design pattern aids developers in writing
more organized source code, where individual classes
can be independent, allowing for extensible and sus-
tainable libraries. By creating a linked library based on

1 let Chemistry = (function (){
2 // the version number is in the IIFE closure and is effectively

private outside
3 // it cannot be changed at runtime
4 let version = ’1.0.0 ’;
5
6 // a package object is created , this will be returned outside of the

IIFE
7 let library = {};
8 // create a subpackage called structures for storing data structures
9 library.structures = {};

10
11 // a getter function is defined to provide access to the version

variable
12 library.getVersion = function (){
13 return version;
14 };
15
16 return library;
17 })();
18
19 // package the Atom class
20 (function(pack , console , undefined){
21 let clazz = function(symbol , x, y){
22 this.symbol = symbol;
23 this.x = x;
24 this.y = y;
25 };
26 clazz.prototype.log = function (){
27 console.log(this.symbol+’ ’+this.x+’,’+this.y);
28 };
29
30 pack.Atom = clazz;
31 })(Chemistry.structures , console);
32
33 // print the version to the console
34 console.log(Chemistry.getVersion ());
35
36 // use the library to create an Atom instance
37 let carbon = new Chemistry.structures.Atom(’C’, 10, 20);
38 carbon.log();

Listing 14 Creating a linked library with IIFEs

1 (function (){
2 // include this statement at the top of the function exactly as

shown
3 ’use strict ’;
4
5 // function implementation follows
6 })();

Listing 15 Using strict mode in a module

Page 17 of 19Theisen J Cheminform (2019) 11:11

IIFEs, controlled access can be provided through a single
variable placed in the global namespace. This is the best
practice for avoiding global namespace pollution. While
development is facilitated by this pattern, care must be
taken when considering the dependencies linked into
each module and their order in source.

Since modules are discrete segments of code, many
developers separate modules into individual files that can
be organized, reused and included in applications only
when needed. The separation of modules into files results
in the ability to build JavaScript files into custom librar-
ies. To aid in the packaging of large JavaScript libraries,
many tools exist to work with JavaScript module files,
including Browserify [74] and webpack [75]. The mod-
ule pattern is so influential that ECMAScript 6 added
core module file support allowing functionality to be bet-
ter organized with a defined export and import syntax,
thereby standardizing how complex module-based librar-
ies are declared.

Strict mode
Strict mode was introduced in ECMAScript 5 and
allows the interpreter to reduce its flexibility in handling

JavaScript source, so interpretation can be more clearly
performed and less error prone. Developers must abide
by additional restrictions when writing JavaScript code in
strict mode. As a result, optimizations can be employed
by the interpreter that would not be successful when
interpreting random JavaScript source. Strict mode is ini-
tiated for the global scope or a function scope by includ-
ing the ’use strict’; phrase at the top of the scope as shown
in Listing 15.

While strict mode is an important technique for writ-
ing better JavaScript applications, third party libraries
should be integrated carefully in strict mode scopes as
those libraries may not be compatible with strict mode.

Performance results
Table 1 compares runtimes for reading the PDB entry
3CC2 into a data structure in memory from a string.
Total times consist of 10 consecutive runs, after a 10
run warm up period is ignored. Bond deduction was
disabled for both languages. Table 2 compares runtimes
for perceiving the Euler facet ring set for C60 fullerene,
while Table 3 collects runtimes for perceiving the Euler
facet ring set for the unit cell of the LTA zeolite ignor-
ing periodicity. Total times consist of 1000 consecutive
runs, after a 100 run warm up period is ignored. The
graph reduction step of the algorithm was removed in
both languages, as the Java algorithm created a copy of
the data structure, while JavaScript did not, leading to a
biased overhead. The ring search algorithm was allowed
to run to completion without any cutoffs. All tests were
performed on a 2017 iMac running macOS 10.13.6 with
a 4.2 GHz Intel Core i7. JavaScript tests were performed
in Google Chrome Version 68.0.3440.84, Apple Safari
Version 11.1.2 (13605.3.8) and Mozilla Firefox 61.0.1.
The ChemDoodle Java API v2.4.1 [76] and the JavaScript
ChemDoodle Web Components v8.0.0 were used, where
the algorithms in both libraries were written by the same
individual. Each test was run 5 times, with the fastest
time recorded.

Summary
At over two decades old, JavaScript is far from the end of
its life, rather it seems like it is just beginning. The advent
of the Internet not only connected us, but became an
essential component of any device, leading to advanced
browser support and therefore JavaScript support on any
platform existing today. While JavaScript exhibits many
weaknesses, its strengths are paramount, allowing not
just the creation of pedestrian web based solutions, but
in specifically providing a means for communicating the
complexity of chemistry. As an open and standardized
language, JavaScript has continued to thrive and evolve,
while remaining a reliable foundation for developers.

Table 1 Reading the PDB entry 3CC2 into a data structure
in memory from a string

Runtime (ms)

Java 795

JavaScript (Google Chrome) 1415

JavaScript (Mozilla Firefox) 1214

JavaScript (Apple Safari) 1394

Table 2 Runtimes for perceiving the Euler facet ring set
for C60 fullerene

Runtime (ms)

Java 1035

JavaScript (Google Chrome) 1134

JavaScript (Mozilla Firefox) 1379

JavaScript (Apple Safari) 8833

Table 3 Runtimes for perceiving the Euler facet ring set
for the unit cell of the LTA zeolite ignoring periodicity

Runtime (ms)

Java 3484

JavaScript (Google Chrome) 6689

JavaScript (Mozilla Firefox) 11960

JavaScript (Apple Safari) 53458

Page 18 of 19Theisen J Cheminform (2019) 11:11

Scientists continue to find better and more powerful
ways to use web technologies in the pursuit of science
and to make knowledge accessible around the world. We
will undoubtedly see continued technological innovation,
and JavaScript, as the internet browser programming lan-
guage, will likely continue to be the tool of choice for web
developers and essential for the propagation of scientific
information.

Abbreviations
2D: two dimensional; 3D: three dimensional; ADA: Americans with Disabilities
Act; AJAX: Asynchronous JavaScript and XML; API: Application Programming
Interface; AR: Augmented Reality; CAS: Chemical Abstracts Service; CFR: Code
of Federal Regulations; CML: Chemical Markup Langauge; CSS: Cascading Style
Sheets; DOM: Document Object Model; ECMA: European Computer Manufac-
turers Association; EDT: Euclidean Distance Transform; eLearning: Electronic
Learning; ELN: Electronic Laboratory Notebook; EU: European Union; GDPR:
General Data Protection Regulation; GNU: GNU’s Not Unix!; GWT : Google
Web Toolkit; GPL: General Public License; GUI: Graphical User Interface; IDE:
Integrated Development Environment; IE: Internet Explorer; IIFE: Immediately
Invoked Function Expression; ISO: International Organization for Standardiza-
tion; JIT: just-in-time; JS: JavaScript; JSON: JavaScript Object Notation; HTML:
Hypertext Markup Language; HTML5: Version 5 of HTML; HTTPS: Hypertext
Transfer Protocol encrypted using Transport Layer Security; MMTF: Macromo-
lecular Transmission Format; MS: Microsoft; OOP: Object Oriented Program-
ming; OpenGL: Open Graphics Library; OpenGL ES: OpenGL for Embedded
Systems; OS: Operating System; PDB: Protein Data Bank; PWA: Progressive
Web Application; RCSB: Research Collaboratory for Structural Bioinformatics;
SSL: Secure Sockets Layer; SVG: Scalable Vector Graphics; WCAG : Web Content
Accessibility Guidelines; WebGL: Web Graphics Library; XHR: XMLHTTPRequest;
XML: Extensible Markup Language; YUI: Yahoo! User Interface.

Authors’ contributions
KJT is the sole author. The author read and approved the final manuscript.

Acknowledgements
The author wishes to thank Clinton McFeely, Dr. Noel O’Boyle, Professor Heinz
D. Roth, Dr. Joseph W. Walsh and Dr. Wendy A. Warr, for reading the entire
manuscript and making valuable suggestions. This work is dedicated to my
loving parents, Gerard and Karen.

Competing interests
The author declares he has no competing interests.

Availability of data and materials
Not applicable.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This review was not funded by any external funding agency.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 7 September 2018 Accepted: 22 January 2019

References
 1. Java.com: Java + You. https ://www.java.com/. Accessed 29 Jan 2019
 2. Eich B (2005) Javascript at ten years. In: ICFP ’05 Proceedings of the 10th

ACM SIGPLAN international conference on functional programming,
26–28 Sept 2005, Tallinn, Estonia. Butterworth-Heinemann, Stoneham, pp
129

 3. Adobe Flash Player. https ://www.adobe .com/produ cts/flash playe r.html.
Accessed 29 Jan 2019

 4. JEP 289: Deprecate the Applet API. http://openj dk.java.net/jeps/289.
Accessed 29 Jan 2019

 5. Microsoft Silverlight. https ://www.micro soft.com/silve rligh t/. Accessed 29
Jan 2019

 6. Microsoft Embraces ECMA Internet Scripting Standard; Delivers Industry’s
First ECMA-Compliant Scripting Language, JScript 3.0, In Key Microsoft
Products. https ://web.archi ve.org/web/20090 11222 1530/http://www.
micro soft.com/press pass/press /1997/Jun97 /jecma pr.mspx. Accessed 29
Jan 2019

 7. TypeScript—JavaScript that Scales. https ://www.types cript lang.org.
Accessed 29 Jan 2019

 8. Dart Programming Language. https ://www.dartl ang.org. Accessed 29 Jan
2019

 9. Welcome to Ecma International. https ://www.ecma-inter natio nal.org.
Accessed 29 Jan 2019

 10. ECMAScript 2018 Language Specification. https ://www.ecma-inter natio
nal.org/ecma-262/9.0/index .html. Accessed 29 Jan 2019

 11. HTML Canvas 2D Context. https ://www.w3.org/TR/2dcon text/. Accessed
29 Jan 2019

 12. WebGL Specifications. https ://www.khron os.org/regis try/webgl /specs /
lates t/. Accessed 29 Jan 2019

 13. Node.js. https ://nodej s.org/. Accessed 29 Jan 2019
 14. ActionScript Technology Center. https ://www.adobe .com/devne t/actio

nscri pt.html. Accessed 29 Jan 2019
 15. Rhino M |MDN. https ://devel oper.mozil la.org/en-US/docs/Mozil la/Proje

cts/Rhino . Accessed 29 Jan 2019
 16. Oracle Nashorn: a next-generation javascript engine for the JVM. https ://

www.oracl e.com/techn etwor k/artic les/java/jf14-nasho rn-21265 15.html.
Accessed 29 Jan 2019

 17. Extensible Markup Language (XML) 1.0, 5th edn. https ://www.w3.org/TR/
xml/. Accessed 29 Jan 2019

 18. Burger MC (2015) Chemdoodle web components: Html5 toolkit for
chemical graphics, interfaces, and informatics. J Cheminf 7:1–7

 19. Jiang C, Jin X, Dong Y, Chen M (2016) Kekule.js: an open source javascript
chemoinformatics toolkit. J Chem Inf Model 56:1132–1138

 20. Rego N, Koes D (2015) 3Dmol.js: molecular visualization with WebGL.
Bioinformatics 31:1322–1324

 21. Gorn S (1964) FORTRAN vs. basic FORTRAN: a programming language for
informational processing on automatic data processing systems. Com-
mun ACM 7:591–624

 22. Welcome to Python.org. https ://www.pytho n.org. Accessed 29 Jan 2019
 23. Kernighan B, Ritchie DM (1988) The C programming language. Prentice

Hall, Westford
 24. Ertl P, Patiny L, Sander T, Rufener C, Zasso M (2015) Wikipedia chemical

structure explorer: substructure and similarity searching of molecules
from wikipedia. J Cheminf 7:1–7

 25. Actelion/openchemlib: Open source Java-based chemistry library. https
://githu b.com/actel ion/openc hemli b. Accessed 29 Jan 2019

 26. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison
GR (2011) Open Babel: an open chemical toolbox. J Cheminf 3:1–14

 27. Molecular surface calculation and visualization with Javascript and
WebGL. https ://webgl mol.osdn.jp/surfa ce.html. Accessed 29 Jan 2019

 28. PhoneGap. https ://phone gap.com. Accessed 29 Jan 2019
 29. Apache Cordova. https ://cordo va.apach e.org. Accessed 29 Jan 2019
 30. Progressive web apps: escaping tabs without losing our soul. https ://

infre quent ly.org/2015/06/progr essiv e-apps-escap ing-tabs-witho ut-losin
g-our-soul/. Accessed 29 Jan 2019

 31. The GNU General Public License V3.0. https ://www.gnu.org/licen ses/gpl-
3.0.en.html. Accessed 29 Jan 2019

 32. Closure compiler. https ://devel opers .googl e.com/closu re/compi ler/.
Accessed 29 Jan 2019

 33. YUI Library. https ://yuili brary .com. Accessed 29 Jan 2019

https://www.java.com/
https://www.adobe.com/products/flashplayer.html
http://openjdk.java.net/jeps/289
https://www.microsoft.com/silverlight/
https://web.archive.org/web/20090112221530/http://www.microsoft.com/presspass/press/1997/Jun97/jecmapr.mspx
https://web.archive.org/web/20090112221530/http://www.microsoft.com/presspass/press/1997/Jun97/jecmapr.mspx
https://www.typescriptlang.org
https://www.dartlang.org
https://www.ecma-international.org
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.w3.org/TR/2dcontext/
https://www.khronos.org/registry/webgl/specs/latest/
https://www.khronos.org/registry/webgl/specs/latest/
https://nodejs.org/
https://www.adobe.com/devnet/actionscript.html
https://www.adobe.com/devnet/actionscript.html
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
https://www.oracle.com/technetwork/articles/java/jf14-nashorn-2126515.html
https://www.oracle.com/technetwork/articles/java/jf14-nashorn-2126515.html
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml/
https://www.python.org
https://github.com/actelion/openchemlib
https://github.com/actelion/openchemlib
https://webglmol.osdn.jp/surface.html
https://phonegap.com
https://cordova.apache.org
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gnu.org/licenses/gpl-3.0.en.html
https://developers.google.com/closure/compiler/
https://yuilibrary.com

Page 19 of 19Theisen J Cheminform (2019) 11:11

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

 34. UglifyJS—JavaScript parser, compressor, minifier written in JS. http://lispe
rator .net/uglif yjs/. Accessed 29 Jan 2019

 35. EU GDPR information portal. https ://www.eugdp r.org. Accessed 29 Jan
2019

 36. CFR—code of federal regulations title 21. https ://www.acces sdata .fda.
gov/scrip ts/cdrh/cfdoc s/cfcfr /CFRSe arch.cfm?fr=11.1. Accessed 29 Jan
2019

 37. RFC 2818—HTTP Over TLS. https ://tools .ietf.org/html/rfc28 18. Accessed
29 Jan 2019

 38. About Native XMLHTTP (Internet Explorer). https ://msdn.micro soft.com/
en-us/libra ry/ms537 505(v=vs.85).aspx. Accessed 29 Jan 2019

 39. Bradley AR, Rose AS, Pavelka A, Valasatava Y, Duarte JM, Prli A, Rose PW
(2017) Mmtf an efficient file format for the transmission, visualization, and
analysis of macromolecular structures. PLOS Comput Biol 13:1–16

 40. Kernighan B, Ritchie DM (2017) Standard ECMA-404: the JSON data
interchange syntax. Ecma International, Geneva

 41. ChemDoodle JSON Format. https ://web.chemd oodle .com/docs/chemd
oodle -json-forma t/. Accessed 29 Jan 2019

 42. Open Chemistry. https ://www.openc hemis try.org. Accessed 29 Jan 2019
 43. Development of the chemical JSON data representation. https ://githu

b.com/OpenC hemis try/chemi caljs on. Accessed 29 Jan 2019
 44. Murray-Rust P, Rzepa HS (1999) Chemical markup, Xml and the World-

wide Web. 1. Basic principles. J Chem Inf Comput Sci 39:928–942
 45. Bienfait B, Ertl P (2013) JSME: a free molecule editor in Javascript. J Chem-

inf 5:1–6
 46. GWT. http://www.gwtpr oject .org/?csw=1. Accessed 29 Jan 2019
 47. Emscripten: an LLVM-to-JavaScript compiler. https ://githu b.com/kripk en/

emscr ipten . Accessed 29 Jan 2019
 48. Hanson RM, Prilusky J, Renjian Z, Nakane T, Sussman JL (2013) Jsmol and

the next generation web based representation of 3d molecular structure
as applied to proteopedia. Isr J Chem 53:207–216

 49. SwingJS. https ://chema pps.stola f.edu/swing js/site/swing js/examp les/.
Accessed 29 Jan 2019

 50. The periodic table of the elements by WebElements. http://www.webel
ement s.com/. Accessed 29 Jan 2019

 51. Dynamic periodic table. https ://ptabl e.com. Accessed 29 Jan 2019
 52. 3D rotating molecules on the iPhone/iPad. http://jacka dam.githu

b.io/2010/3d-rotat ing-molec ules-on-the-iphon eipad /. Accessed 29 Jan
2019

 53. CanvasMol. https ://alter edqua lia.com/canva smol/. Accessed 29 Jan 2019
 54. TwirlyMol. https ://baoil leach .blogs pot.com/2009/01/twist ymol-is-dead-

long-live-twirl ymol.html. Accessed 29 Jan 2019
 55. Jolecule: the protein viewer in the cloud. https ://jolec ule.appsp ot.com.

Accessed 29 Jan 2019

 56. CWC: protein ribbon models. https ://www.macin chem.org/revie ws/prote
in-ribbo n-model s.php. Accessed 29 Jan 2019

 57. Benedetto MD, Ponchio F, Ganovelli F, Scopigno R (2010) Spidergl: a
Javascript 3D graphics library for next-generation www. In: Web3D ’10
Proceedings of the 15th international conference on Web 3D technology,
24–25 July 2010, Los Angeles, California, pp 165–174

 58. GLmol—molecular viewer on WebGL/Javascript. http://webgl mol.osdn.
jp/index -en.html. Accessed 29 Jan 2019

 59. Three.js—Javascript 3D Library. https ://three js.org. Accessed 29 Jan 2019
 60. Scalable vector graphics (SVG) 2. https ://www.w3.org/TR/SVG/. Accessed

29 Jan 2019
 61. jsMolEditor: JavaScript based molecule structure editor. https ://githu

b.com/chemh ack/jsmol edito r. Accessed 29 Jan 2019
 62. Sketcher Canvas | ChemDoodle Web Components. https ://web.chemd

oodle .com/tutor ial/2d-struc ture-canva ses/sketc her-canva s/. Accessed 29
Jan 2019

 63. Ketcher. http://lifes cienc e.opens ource .epam.com/ketch er/. Accessed 29
Jan 2019

 64. 2010 ADA Standards for Accessible Design. https ://www.ada.gov/regs2
010/2010A DASta ndard s/2010A DAsta ndard s.htm. Accessed 29 Jan 2019

 65. W3C Web content accessibility guidelines (WCAG) 2.0. https ://www.iso.
org/stand ard/58625 .html. Accessed 29 Jan 2019

 66. SciFinder-n | CAS. https ://www.cas.org/produ cts/scifi nder-n. Accessed 29
Jan 2019

 67. Web storage, 2nd edn. https ://www.w3.org/TR/webst orage /. Accessed
29 Jan 2019

 68. Web Workers. https ://www.w3.org/TR/worke rs/. Accessed 29 Jan 2019
 69. Web Audio API. https ://www.w3.org/TR/webau dio/. Accessed 29 Jan

2019
 70. The WebSocket API. https ://www.w3.org/TR/webso ckets /. Accessed 29

Jan 2019
 71. jQuery. https ://jquer y.com. Accessed 29 Jan 2019
 72. Enterprise web apps: design, develop, and test—Sencha. https ://www.

sench a.com. Accessed 29 Jan 2019
 73. A JavaScript module pattern. https ://yuibl og.com/blog/2007/06/12/

modul e-patte rn/. Accessed 29 Jan 2019
 74. Browserify. http://brows erify .org. Accessed 29 Jan 2019
 75. Webpack module bundler. http://webpa ck.githu b.io. Accessed 29 Jan

2019
 76. Todsen WL (2014) Chemdoodle 6.0. J Chem Inf Model 54:2391–2393

http://lisperator.net/uglifyjs/
http://lisperator.net/uglifyjs/
https://www.eugdpr.org
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=11.1
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=11.1
https://tools.ietf.org/html/rfc2818
https://msdn.microsoft.com/en-us/library/ms537505%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/ms537505%28v=vs.85%29.aspx
https://web.chemdoodle.com/docs/chemdoodle-json-format/
https://web.chemdoodle.com/docs/chemdoodle-json-format/
https://www.openchemistry.org
https://github.com/OpenChemistry/chemicaljson
https://github.com/OpenChemistry/chemicaljson
http://www.gwtproject.org/?csw=1
https://github.com/kripken/emscripten
https://github.com/kripken/emscripten
https://chemapps.stolaf.edu/swingjs/site/swingjs/examples/
http://www.webelements.com/
http://www.webelements.com/
https://ptable.com
http://jackadam.github.io/2010/3d-rotating-molecules-on-the-iphoneipad/
http://jackadam.github.io/2010/3d-rotating-molecules-on-the-iphoneipad/
https://alteredqualia.com/canvasmol/
https://baoilleach.blogspot.com/2009/01/twistymol-is-dead-long-live-twirlymol.html
https://baoilleach.blogspot.com/2009/01/twistymol-is-dead-long-live-twirlymol.html
https://jolecule.appspot.com
https://www.macinchem.org/reviews/protein-ribbon-models.php
https://www.macinchem.org/reviews/protein-ribbon-models.php
http://webglmol.osdn.jp/index-en.html
http://webglmol.osdn.jp/index-en.html
https://threejs.org
https://www.w3.org/TR/SVG/
https://github.com/chemhack/jsmoleditor
https://github.com/chemhack/jsmoleditor
https://web.chemdoodle.com/tutorial/2d-structure-canvases/sketcher-canvas/
https://web.chemdoodle.com/tutorial/2d-structure-canvases/sketcher-canvas/
http://lifescience.opensource.epam.com/ketcher/
https://www.ada.gov/regs2010/2010ADAStandards/2010ADAstandards.htm
https://www.ada.gov/regs2010/2010ADAStandards/2010ADAstandards.htm
https://www.iso.org/standard/58625.html
https://www.iso.org/standard/58625.html
https://www.cas.org/products/scifinder-n
https://www.w3.org/TR/webstorage/
https://www.w3.org/TR/workers/
https://www.w3.org/TR/webaudio/
https://www.w3.org/TR/websockets/
https://jquery.com
https://www.sencha.com
https://www.sencha.com
https://yuiblog.com/blog/2007/06/12/module-pattern/
https://yuiblog.com/blog/2007/06/12/module-pattern/
http://browserify.org
http://webpack.github.io

	Programming languages in chemistry: a review of HTML5JavaScript
	Abstract
	Introduction
	What is JavaScript?
	Origin
	ECMAScript
	HTML5

	Features
	Performance
	Distribution
	Security
	Legacy code
	Graphics
	Further innovation

	Programming
	Reinforcing the basics
	Integrated Development Environment
	Browser standardization
	Variable typing
	Declaring variables
	Lexical scope
	Undefined values
	Creating objects
	Creating functions

	Object Oriented Programming
	Classes
	Context
	Immediately invoked function expression
	Module pattern
	Strict mode

	Performance results
	Summary
	Authors’ contributions
	References

