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Abstract 

Background: OCaml is a functional programming language with strong static types, Hindley–Milner type inference 
and garbage collection. In this article, we share our experience in prototyping chemoinformatics and structural bioin-
formatics software in OCaml.

Results: First, we introduce the language, list entry points for chemoinformaticians who would be interested in 
OCaml and give code examples. Then, we list some scientific open source software written in OCaml. We also present 
recent open source libraries useful in chemoinformatics. The parallelization of OCaml programs and their performance 
is also shown. Finally, tools and methods useful when prototyping scientific software in OCaml are given.

Conclusions: In our experience, OCaml is a programming language of choice for method development in chemoin-
formatics and structural bioinformatics.
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Introduction
There are several schools of thought in computer 
programming. Each school is represented by sev-
eral programming languages and some languages are 
multi-paradigm.

In declarative languages (like SQL), a programmer 
writes a kind of mathematical specification of what to 
compute, and the compiler will automatically derive a 
program implementing this specification. Prolog [1], is 
also such a programming language where the specifica-
tion is given as a collection of logic predicates.

On the contrary, in imperative programming, the pro-
grammer writes in extensive details how to compute the 
result he wants. Ada, C, Fortran and Pascal are famous 
representatives of this style of programming.

In Object-Oriented programming, data structures and 
the allowed operations on them are grouped into classes. 
Classes can be hierarchically organized, and behavior 

inherited so that generic code can be reused between 
software components. C++, Java, Eiffel, Ruby and 
Python are famous members of this family of languages. 
Most Object-Oriented languages use the imperative style 
of programming.

In functional programming, a program is a collection 
of functions. State passing is done explicitly via function 
parameters. Functional programming has a mathematical 
taste and dates back to Lisp. Lisp, Scheme, OCaml, F#, 
Haskell, Scala, Racket and Clojure are representatives of 
the functional style of programming. There are several 
advantages to using functional programming [2]. Since 
state passing is explicit, functional programs are easy to 
reason about. They easily fit in the head of the program-
mer. Some functional programming languages are pure 
(e.g. Haskell); they guarantee referential transparency, the 
fact that an expression can be replaced by its correspond-
ing value without changing the program behavior. There 
are some articles about the productivity boost associated 
with functional programming [3, 4].

While there are not many, some functional program-
ming libraries for chemoinformatics do exist. In Haskell, 
the ‘smiles’ library [5] provides full support for the 
OpenSMILES specification [6]. While the ‘radium’ library 
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[7] provides the periodic table plus readers and writ-
ers for SMILES and condensed formulas. In Scala, the 
‘chemf  ’ library [8] provides a purely functional chemin-
formatics toolkit [9].

In this article, we concentrate on Objective Caml 
(OCaml [10]), in the context of scientific software pro-
totyping for chemoinformatics and structural bio-
informatics. OCaml is a general purpose functional 
programming language developed at INRIA, the French 
national research institute for computer science, robot-
ics and applied mathematics. OCaml focuses on expres-
siveness and safety. Some of the language’s strengths 
include its type system, with parametric polymorphism 
(called generics in Java, templates in C++) and type 
inference. Thanks to Hindley–Milner type inference 
[11, 12], the OCaml programmer is freed from explic-
itly providing function parameters and result types. For 
a course on programming languages and types, we refer 
interested readers to Pierce [13]. OCaml supports user-
defined algebraic data types, records, sums/enums and 
pattern matching. Pattern matching is a generalization of 
the switch statement present in other languages. When 
pattern matching, a program is driven by the type of the 
parameter being matched upon. In OCaml, memory is 
managed automatically, by an incremental garbage col-
lector, preventing memory corruption. Interactive use of 
OCaml is possible via a read-eval-print loop called the 
OCaml interpreter. Interacting with the interpreter is 
a standard way to test a function or to check that some 
functionality provided by a library works the way one 
understands it. In addition to its byte-code compiler and 
interpreter, OCaml offers a compiler that produces effi-
cient executables. Tail-recursive functions are automati-
cally translated to efficient loops by the OCaml compiler. 
OCaml also features an object-oriented layer, with mul-
tiple inheritance, parametric and virtual classes. While 
OCaml was initially used to develop symbolic computing 
applications, such as automatic theorem provers, compil-
ers, interpreters and static program analyzers, it is now 
used to develop software in many other areas.

Functions are first-class values in OCaml. A function 
can be passed as an argument to, or returned by, another 
function. OCaml is a multi-paradigm language. For per-
formance reasons, OCaml offers many imperative fea-
tures (exceptions, modifiable variables, records, arrays 
and loop statements). OCaml built-in data types include 
not only integers, floating point numbers, booleans, char-
acters and strings but also more advanced data types 
such as tuples, records, arrays and lists.

Large programs are easy to structure due to modules, 
which share some traits with classes in object-oriented 
programming. Modules can be organized hierarchically 
and parameterized over a number of other modules. Such 

a function, from modules to module is called a functor 
and allows high level generic programming.

OCaml’s evaluation strategy is strict. All parameters 
to a function are evaluated prior to entering the func-
tion’s body. The compilation of OCaml programs is fast. 
For example, the ∼ 3000 OCaml lines (without com-
ments) of the consent software [14] and its four executa-
bles compile from scratch and link in ∼ 3.8 s (resp ∼ 1.1 ) 
using dune (version 1.6.2) and a single core (resp. up to 
all cores) of our desktop computer (16 cores, Intel Xeon 
2.1GHz, 64GB RAM, Linux Ubuntu 18.04.1 LTS).

Strong static types are types which are enforced by the 
compiler. Due to the use of types and garbage collection, 
several run-time errors which plague other programming 
languages are absent from OCaml programs: null pointer 
exception, dereference after free, type cast exception, 
segmentation fault, unhandled switch cases and most 
memory leaks. In functional programming, more com-
plex properties can be encoded and statically enforced by 
structuring code using monads [15], which are pervasive 
in Haskell [16], or by using dependent types (not avail-
able in OCaml, but in Coq [17], Idris [18, 19] and Agda 
[20]). A function that is guaranteed to produce a result in 
a finite time is called total. Functions for which there is 
no such guarantee are called partial. For some functions, 
Idris can check if they are total. However, such advanced 
functional programming concepts are out of the scope of 
this article.

Despite not being very popular, OCaml is not a niche 
language. Most of its academic users work in computer 
science, on compilers and formal methods. But, OCaml 
is also used in bioinformatics [21–23], structural bioin-
formatics [24–27], chemoinformatics [14, 28], systems 
biology [29–32] and ecotoxicology [33].

There are several industrial users of the language [34] 
including Bloomberg, Citrix, Dassault Systèmes, Face-
book [35], Jane Street (a proprietary high frequency trad-
ing firm) and Microsoft.

OCaml has some successes in the industrial world: 
Lexifi’s Modeling Language for Finance [36], the ASTRÉE 
Static Analyzer [37] used by Airbus to certify on-board 
software and Microsoft’s static driver verifier [38]. 
OCaml has several successes in the open-source world 
too: the Unison file synchronizer [39], the MLdonkey 
[40] multi-protocol peer-to-peer client, the Coq [17] 
proof assistant [41] and FFTW’s symbolic optimizer of 
fast Fourier transforms [42].

In the remaining of this article, resources to learn 
OCaml are listed in “Resources to learn OCaml” sec-
tion. Explanations on types and how to read signatures 
of OCaml functions are given in “Understanding OCaml 
type signatures” section. Tools for proficiency in OCaml 
are listed in “An OCaml programming environment” 
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section. Several uses cases of OCaml in Chemoinformat-
ics and Structural Bioinformatics are given in “OCaml 
in chemoinformatics and structural bioinformatics” sec-
tion. The parallelization of scientific programs is dealt 
with in “Accelerating chemoinformatics and structural 
bioinformatics in OCaml” section. Finally, strengths and 
weaknesses of the language and ecosystem are discussed 
(“Scientific software prototyping in OCaml” and “OCaml 
language and ecosystem drawbacks” sections), before 
concluding.

Methods
Resources to learn OCaml
There are several books introducing the language [43–
45], some of them freely available online [46–48]. Other 
books [49, 50] give an excellent introduction to func-
tional programming.

The “Caml Trading” video, a talk given at Carnegie 
Mellon university [51], explains in details why OCaml 
was chosen by a high frequency trading firm [52, 53]. 
Like researchers, this company has the technical require-
ments of correctness, agility and performance.

To give a try at the language within a browser, OCaml-
PRO offers an OCaml interpreter and some basic lessons 
[54]. To learn the language via the official documenta-
tion online [55], here are the essential chapters: Chap-
ter 1 “The core language”, Chapter 2 “The module system”, 
Chapter  4 “Labels and variants”, The Pervasives module 
(a set of functions which is always available to the pro-
grammer), The list module (the most useful data struc-
ture in functional programming). One should be able to 
start programming in OCaml after having read only this 
material.

The standard library documentation is available online 
[56]. While it allows one to have an idea of the standard 
modules and their capabilities, it is not recommended 
for large scale software development. For real world pro-
gramming, an extended standard library is necessary. For 
example OCaml-containers (code [57] and documenta-
tion [58]) or OCaml batteries-included (code [59] and 
documentation [60]) or Janestreet’s core (code [61] and 
documentation [62]).

To give a taste of OCaml, Fig.  1 shows the complete 
definition of a bisector-tree [63]. A bisector tree is a data 
structure to store n-dimensional points provided a dis-
tance function between those points exists. Such a tree 
allows to do fast nearest neighbor searches and orthogo-
nal queries [64]. Vantage point trees [65, 66] and µ-trees 
[67] are closely-related data-structures which could be 
used for the same purpose. Our implementation (opam 
package bst [68]) is parameterized by a distance function 
and bucketized, i.e. leaves of a tree can hold up to k ≥ 1 
(user-chosen parameter) molecules.

Understanding OCaml type signatures
A type signature is a formal specification of the behavior 
of a function. Unfortunately, most of the time, this speci-
fication is incomplete and unless the function’s name is 
explicit enough, reading the documentation is necessary 
to understand the complete specification.

Since being able to read type signatures is essential in 
OCaml, we list in code as well as in plain English some of 
the type signatures of essential functions of the list mod-
ule. The list module uses polymorphic types, i.e. a list can 
contain elements of any type, but a given list can only 
contain elements of the same type. α and β are standard 
names for polymorphic types.

For brevity later on, a few definitions are given 
hereafter.

Definition 1 The syntax

apply : α → β

defines the type of a function named apply from type 
α to type β in which α and β are type parameters. The 
equivalent C++ header file portion would be 

Definition 2 Let’s call accumulate any function 
which takes an α , a β and returns an α.

accumulate : α → β → α

Definition 3 Let’s call side-effect any function 
which takes an α and returns nothing (in OCaml, noth-
ing’s type is called unit).

side-effect : α → unit

Fig. 1 OCaml code defining a bucketized bisector-tree. The code is 
parameterized by a point type (P.t). The implementation works with 
any point type, as long as it defines a distance function
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Definition 4 Let’s call predicate any function which 
takes an α and returns a Boolean.

predicate : α → bool

Definition 5 Let’s call comparison any function 
which takes two alphas and returns an integer.

comparison : α → α → int

Then, it becomes possible to explain some list functions 
and their type signatures.

cons:  α → α list → α list

  The cons (construct) function takes an α , a 
list of alphas and returns a list of alphas. The 
:: syntax operator is also available for the 
cons function. Hence, the OCaml expres-
sion 1 :: [2;3;4] constructs the list 
[1;2;3;4] and α = int.

hd:  α list → α

  hd (head) takes a list of alphas and returns an 
α (the first one in the list).

tl:  α list → α list

  tl (tail) takes a list of alphas and returns a list 
of alphas (all elements of the list except the 
first one). Note that head and tail will raise an 
exception if called on the empty list [].

length:  α list → int

  length takes a list of alphas and returns an 
integer.

map:  (α → β) → α list → β list

  This is the map function in Google’s map-
reduce [69]. map takes an apply, a list of alphas 
and returns a list of betas. Using the function 
with α = β is possible, but having the type sig-
nature using α and β makes the function more 
generic.

fold:  (α → β → α) → α → β list → α

  The reduce in Google’s map-reduce [69] is a 
kind of fold. fold takes an accumulator, an α , 
a list of betas and returns an α.

iter:  (α → unit) → α list → unit

  iter (iterate) takes a side-effect, a list of 
alphas and returns nothing.

exists:  (α → bool) → α list → bool

  exists takes a predicate, a list of alphas and 
returns a Boolean.

filter:  (α → bool) → α list → α list

  filter takes a predicate, a list of alphas and 

returns a list of alphas (the ones satisfying the 
predicate).

partition:  (α → bool) → α list → α list ∗ α list

  partition takes a predicate, a list of alphas 
and returns a pair of list of alphas (elements 
satisfying the predicate on the left, others on 
the right).

sort:  (α → α → int) → α list → α list

  sort takes a comparison, a list of alphas and 
returns a list of alphas (sorted according to the 
order defined by the comparison function).

Programming most parts of the list module from scratch 
is an excellent exercise for any student of the language.

An OCaml programming environment
Here follows a selection of tools for OCaml programming 
in a UNIX-like environment. While different users may 
use different tools, some of them are quite standard in a 
productive and modern development environment. 

OPAM  the OCaml Package Man-
ager [70] allows to automati-
cally install OCaml software, 
libraries (Fig.  2) and their 
dependencies (even system 
ones). OPAM is a source-
based, user-level pack-
age manager. It can install 
a given compiler version 
and packages in a so-called 
“switch”, under the user’s 
home directory. The collec-
tion of open source OPAM 
packages is maintained by 
the community [71].

opam-bundle  can create a stand-alone, 
self-extracting and auto-
matic installer for any 
OCaml software with an 
OPAM package description 
file [72].

utop  utop [73] is an improved 
top-level (interactive inter-
preter). Utop supports line 
editing, history, automatic 
completion, colorful syntax 
highlighting and more. Utop 
can be controlled within 
Emacs or as a standalone 
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terminal application. In the 
Python world, the equivalent 
of utop would be ipython.

Merlin  is an editor helper [74]. It 
provides completion, type 
information and source 
browsing (jump to defini-
tion/list uses) for Vim and 
Emacs. Thanks to Merlin, 
standard editors become 
full integrated development 
environments for OCaml.

Emacs  with modes like tuareg, 
ocaml or merlin, writing 
OCaml programs under 
Emacs is productive. Vim 
also has good support for 
OCaml. Microsoft Visual 
Studio Code [75] and Atom 
[76] also have some support 
for OCaml.

Dune  is the best choice to manage 
the compilation of OCaml 
projects. It is very fast, has 
no system dependencies and 
supports parallel builds on 

all platforms. Build descrip-
tions are terse but still 
human-readable (see Fig. 3).

ocp-browser  is a terminal program 
to browse the interface 
and documentation of all 
installed OCaml libraries 
in an OPAM switch. ocp-
browser alleviates the need 
to search and read HTML 
documentation online while 
programming.

ocp-indent  
& ocamlformat 

 automate and standardize 
the indentation of OCaml 
source code. ocp-indent 
[77] and ocamlformat [78] 
integrate well with Emacs 
and Vim.

  

Results
OCaml in chemoinformatics and structural bioinformatics
We list some open source OCaml software that resulted 
from research in chemoinformatics and structural bioin-
formatics [79].

The bisector-tree data-structure describbed in the 
introduction is not a toy example. It can be used to accel-
erate similarity searches (Fig. 4).

For ligand-based virtual screening in 3D, the AutoCor-
relation of Partial Charges method (ACPC [28]) uses the 
autocorrelation function [81] and linear binning [82] to 
encode all atoms of a molecule into a rotation-translation 
invariant representation. ACPC allows to rank-order a 
database of compounds versus a query molecule and was 
released in open source (opam package acpc [83]). ACPC 
performed remarkably well in retrospective ligand-based 

Fig. 2 OPAM package description file for the bisector tree library. 
Such a file allows OPAM to automatically install/uninstall from source 
this library and all its transitive dependencies

Fig. 3 Complete build description file for the bisector tree library and 
it’s test executable
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virtual screening experiments. At an average speed of 
1649 molecule/s, ACPC reached an average median area 
under the curve of 0.81 on 40 Directory of Useful Decoys 
[84] targets.

Consent [14, 85] (opam package lbvs_consent [86]) 
performs ligand-based virtual screening using consen-
sus queries. When several active molecules are known, 
screening with all of them is recommended (instead of 
using just one). A consensus query can be created by 
screening serially with different ligands before merg-
ing similarity scores, or by combining chemical finger-
prints. Consent was tested on 19 protein targets, 3776 
known active and ∼ 2× 10

6 inactive molecules from 
high throughput screening datasets. Three fingerprints 
were investigated (MACCS, ECFP4 and an unfolded fin-
gerprint). Different consensus policies and consensus 
sizes (number of known actives) were benchmarked. A 
consensus fingerprint is always faster. In some circum-
stances, it can approach the performance of a consensus 
of scores in terms of Area Under the Receiver Operating 
Characteristic (ROC) Curve (AUC) and early retrieval.

EleKit [26, 27] was the first structural bioinformat-
ics software able to measure the similarity of a ligand’s 
electrostatic field with that of a protein binding at a pro-
tein-protein interface (Fig.  5). Ligands showing a high 
similarity in this setting are potential drugs breaking pro-
tein-protein interactions. EleKit was a complex software, 

driving PDB2PQR [87], parsing PQR files, running the 
Adaptive Poisson-Boltzmann Solver (APBS [88]) in par-
allel, parsing ABPS output files, creating and operating 
3D Boolean masks.

Also in structural bioinformatics, Fragger [25, 89, 90] is 
a protein fragment picker for 3D structural queries. From 
a set of PDB files, Fragger can create a protein fragments 
database. All fragment lengths are supported. Using the 
triangular inequality, Fragger can efficiently search with a 
query fragment and a distance threshold. Matching frag-
ments are ranked by distance to the query, which can con-
tain structural gaps. The allowed amino acid sequences 
matching a query can be constrained. Fragger is meant for 
protein design, loop grafting and related activities.

Fig. 4 Using a bisector-tree (BST) to accelerate similarity searches 
on a database of 106 PUBCHEM molecules. Molecular encoding is 
Faulon’s signature molecular descriptor [80] (an unfolded-counted 
fingerprint) with height equal to one bond and parametrized over 
MOL2 atom types. The database is searched for all molecules with 
Tanimoto to query ≥ 0.99 (left; t = 0.01) or Tanimoto ≥ 0.8 (middle; 
t = 0.2). The brute force version is shown on the right. 50 molecules 
from the database were selected randomly to serve as queries. 
Creating the BST (database indexing) took approximately 5 min using 
a single core of our desktop computer

Fig. 5 Overview of EleKit applied to PDB codes 2B4J ( 1A ) and 3LPU 
( 1B ). The “ligand-protein” is shown as a green surface in 1A and 2A . 
The “ligand-small-molecule” is shown as a smaller green surface in 1B 
and 2B . The receptor protein is shown as a gray cartoon in 1A and 1B . 
Electrostatic potential fields are calculated and stored in distinct grids 
( 2A and 2B ). A boolean mask in 3D is created to select the solvent 
region nearby the interface ( 3A and 3B ). Finally, the similarity between 
electrostatic potentials in the masked region ( 4A and 4B ) is calculated 
using the Spearman rank correlation coefficient (figure adapted from 
Voet [26])
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Accelerating chemoinformatics and structural 
bioinformatics in OCaml
OCaml executables are fast. In terms of speed, OCaml 
is placed just after Go in the Debian language shootout 
[91]; the fastest language being C++ then C. However, 
execution speed is not the most important in a research 
setting. Programmer productivity is more important. In 
terms of verbosity, OCaml code is close to Python and 
far from Java (see Fig. 6). From past experience, an AUC 
calculation in OCaml is about 20 times faster than the 
equivalent python script [92]. While performing an AUC 

calculation faster may not seem important, to scientifi-
cally validate a computational method, one might run 
thousands of such calculations.

Since molecules can be processed independently, most 
chemoinformatics tasks are easy to parallelize. The Par-
map OCaml library [94] provides parallel iter, map and 
fold functions for arrays and lists on multi-core comput-
ers. Parallelizing code with Parmap is trivial (Fig. 7). Par-
map preserves semantics while achieving nearly optimal 
speedup [94] (Figs. 8, 9).

For stream computing, when a program cannot hold 
all items in memory (which is required by Parmap), we 
developed the parany library (opam package parany 

Fig. 6 Valid hello world programs to illustrate the idiomatic verbosity 
of Java, C++, OCaml and Python-2.7. Keep in mind that in many 
programming languages, programmers can make their source code 
arbitrarily small, sometimes to the point that a program is no more 
readable

Fig. 7 Git diff after parallelization of EleKit. Parallelizing EleKit using 
Parmap was a two lines change in ∼ 3000 lines of code. All program 
development and debugging was done on sequential code. With an 
electrostatic calculation run-time of approximately 2 min per small 
molecule, parallelization was mandatory for production use of EleKit 
on thousands of molecules

Fig. 8 Performance of ACPC in the electrostatic space, using 
Parmap for parallelization. Open Babel 2.3.9’s MACCS and FP4 C++ 
implementations run-times are shown to give an order of magnitude. 
Run-times were averaged over three runs. Protein target: Human 
immunodeficiency virus type 1 protease (HIVPR) from the Database 
of Useful Decoys Enhanced (DUDE [93]); 26450 ligands and decoys

Fig. 9 Wall-clock time to analyze hundreds of molecules with EleKit 
and Parmap. Up to four cores, the parallelization performance is 
almost indistinguishable from a perfectly parallelizing program 
(theoretical limit)
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[95]). Parany is more generic than parmap. It is struc-
tured around three functions. An unfold function called 
demux, an apply function called work and a fold/reduce 
function called mux.

demux : unit → α

work : α → β

mux : β → unit

Some more complex technologies exist to write even 
higher performance OCaml programs. SPOC [96] is an 

OCaml library allowing general purpose GPU program-
ming, using Cuda or OpenCL kernels. SPOC allows to 
create specific data sets usable by those kernels and auto-
matically manages memory transfers between CPU and 
GPU.

BER MetaOCaml [97] is an OCaml dialect for multi-
stage programming [98]. It allows run-time C code gen-
eration and program execution. BER MetaOCaml can be 
used to compile domain-specific languages and automate 
the specialization of high-performance computational 
kernels.

Fig. 10 Git diff excerpt of an actual code refactoring in the SVM part of a category-QSAR software. Sometimes, the R svmpath package encounters 
numerical problems, like an exactly or computationally singular matrix. To deal with such rare cases, it was decided to drop a model from the bag 
of models. Since a bagging classifier with 21 models was being trained, dropping one or two models was deemed better than letting the whole 
software crash. Hence, an option type was introduced in the function optimal_lambda from file ‘svm_common.ml’, along with proper warning 
messages. Then, the compiler forced updating the rest of the code
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Discussion
Scientific software prototyping in OCaml
In an academic research setting, it is common for a soft-
ware project to be severely under staffed, compared 
to industrial standards, i.e. a single person might be in 
charge of the full software life-cycle (requirements gath-
ering, specification, design, implementation, speed opti-
mization, parameter tuning, test and validation, release 
and packaging, maintenance). In research, requirements 
are ill-defined and changing. Since the purpose of the 
software is to scientifically show that an idea works, 
having a high confidence in the software is important. 
Moreover, during the course of the project, design deci-
sions might change and impact the whole code-base. 
OCaml types and compiler allow to refactor software 
fast and without missing any place that needs changing 
(see Fig. 10 for an example of refactoring that only took 
a few minutes). Thus, during prototyping, the program-
mer is not afraid to do drastic changes to the software 
(agility). In such a setting, and when using OCaml, we 
propose to abandon the practice of unit tests. Because, 
there is not enough manpower to write and maintain 
them. Note however that OCaml has tools for program-
mers who want to write unit [99] or property-based tests 
[100] as comments inside their code. Since the software 
will change a lot during its lifetime, maintaining unit tests 
would be too costly and slow down the pace of research. 
Of course, if we were using a dynamically-typed language 
such as Python or Ruby, such a decision would be risky 
and many problems discovered at run-time. Instead of 
unit tests, we propose to use regression tests and end-to-
end validation, once a prototype is advanced enough. For 

example, a valid output can be verified by hand from a 
known input and added to a set of regression tests.

In the same vain, we propose to abandon OCaml inter-
face files when prototyping. Having to maintain interface 
files slows down refactoring. Interface files of librar-
ies should only be added once a project is going to be 
released.

When programming in OCaml, one strongly relies on 
the compiler to catch errors. It is common to see a com-
plex but compiling OCaml program run without any 
run-time error, even when running for the first time. Pro-
grams written in Haskell have this exact same property.

OCaml language and ecosystem drawbacks
When working in OCaml, if functors and module sig-
natures are heavily used, compiler error messages can 
become hard to understand. Also, the required syntax is 
nontrivial and might need some practice.

For chemoinformatics, a parser for Simplified Molecu-
lar-Input Line-Entry System (SMILES [101]) and a parser 
for SMiles ARbitrary Target Specification (SMARTS 
[102]) are the most obvious missing libraries. Also, nowa-
days it would not be reasonable to do chemoinformatics 
research without using the functionalities of the Chem-
istry Development Kit (CDK [103, 104]), Rdkit [105] or 
Open Babel [106]. Since there are no OCaml bindings 
to those libraries, our current solution is to write small 
programs interfacing with them, in order to extract or 
import data to/from them. By following the UNIX design 
principles [107], it is easy to create, debug and maintain 
software that exchange data via text files. However, in 
some projects [14, 26, 28], we have written parsers for 
parts of the PDB [108], PQR [87] and MOL2 [109] file 
formats.

Currently, the OCaml ecosystem is weak in the 
Machine Learning field, especially when compared to 
Python and the Scikit-learn [110] library. At least, there 
is one library for classification using random forests [111] 
(opam package orandforest [112]) and a numerical library 
(opam package owl [113, 114]) with some machine learn-
ing functionalities like regression and neural networks. 
For deep learning, some OCaml bindings to TensorFlow 
[115, 116] and PyTorch [117] have been released recently. 
To palliate the deficiency in machine learning librar-
ies, we have recently developed several OCaml packages 
taping into the R [118] ecosystem; for support vector 
machines (opam package orsvm-e1071 [119]), random 
forests (opam package orrandomForest [120]) and gra-
dient boosted trees (opam package orxgboost [102]). 
We have also developed the classification performance 
metrics library in order to benchmark virtual screening 
experiments (opam package cpmlib [121]). Cpmlib fea-
tures ROC curves, AUC [122], enrichment factor, power 

Fig. 11 Graphical annotation of a query molecule using a BILD file 
generated by the ACPC software for viewing with UCSF Chimera. 
A query molecule of the CDK2 protein target is annotated in 
the electrostatic space, based on atomic contributions to AUC. 
Transparent green balls highlight atoms which if masked (their 
contribution is removed from the molecular encoding/fingerprint) 
would decrease the AUC reached by this molecule in a similarity 
search
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metric [123] and Boltzmann-Enhanced Discrimination of 
ROC (BEDROC [124]).

OCaml is best for back-end and system [125] pro-
gramming. To quickly annotate molecules or protein 
structures, rather than doing graphics programming 
in OCaml, we recommend generating BILD [126] files. 
BILD files are simple, human-readable line-oriented text 
files, easy to generate by a program or by hand. They can 
be viewed within UCSF Chimera [127] (Fig. 11).

While OCaml is a portable language, not all program-
mers write portable programs. OCaml code can be auto-
matically translated to JavaScript [128] to target web 
browsers (opam package js_of_ocaml). But parallel pro-
grams or programs relying extensively on the Unix mod-
ule might not work under Windows. Also, there may be 
less libraries/opam packages available under Windows. 
If Windows support is a primary concern, F# or Haskell 
[16] might be safer programming language choices. If 
access to a comprehensive chemoinformatics library is 
a prime concern, Scala might be a safer choice since its 
interoperability with Java would allow using the Chemis-
try Development Kit.

For managers, the fact that there are few OCaml pro-
grammers available on the market is a concern. However, 
we feel that programmers can become proficient in the 
language quickly, so this is not a major concern.

Conclusions
OCaml is a strongly typed programming language of the 
functional family. In this article, we have tried to share 
our experience in using it for Chemoinformatics and 
Structural Bioinformatics research.

This article should not be seen as an attempt at assert-
ing the superiority of OCaml and/or functional pro-
gramming over other programming languages and 
approaches. Rather, we encourage researchers to choose 
and use the tools that make them the most productive, 
even if those tools are not mainstream.

To us, OCaml has been proven quite productive for 
software prototyping in Chemoinformatics and Struc-
tural Bioinformatics method development. The software 
demonstrated here were used intensively and timely dur-
ing scientific validation campaigns, on many molecules 
and protein targets. We have never regretted our choice 
of OCaml and still use it today.
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