
Berenger et al. J Cheminform (2019) 11:10
https://doi.org/10.1186/s13321-019-0332-0

RESEARCH ARTICLE

Chemoinformatics and structural
bioinformatics in OCaml
Francois Berenger1* , Kam Y. J. Zhang2 and Yoshihiro Yamanishi1,3

Abstract

Background: OCaml is a functional programming language with strong static types, Hindley–Milner type inference
and garbage collection. In this article, we share our experience in prototyping chemoinformatics and structural bioin-
formatics software in OCaml.

Results: First, we introduce the language, list entry points for chemoinformaticians who would be interested in
OCaml and give code examples. Then, we list some scientific open source software written in OCaml. We also present
recent open source libraries useful in chemoinformatics. The parallelization of OCaml programs and their performance
is also shown. Finally, tools and methods useful when prototyping scientific software in OCaml are given.

Conclusions: In our experience, OCaml is a programming language of choice for method development in chemoin-
formatics and structural bioinformatics.

Keywords: Chemoinformatics, Structural bioinformatics, Bisector tree, Scientific software, Software prototyping,
Open source, Functional programming, OCaml

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
There are several schools of thought in computer
programming. Each school is represented by sev-
eral programming languages and some languages are
multi-paradigm.

In declarative languages (like SQL), a programmer
writes a kind of mathematical specification of what to
compute, and the compiler will automatically derive a
program implementing this specification. Prolog [1], is
also such a programming language where the specifica-
tion is given as a collection of logic predicates.

On the contrary, in imperative programming, the pro-
grammer writes in extensive details how to compute the
result he wants. Ada, C, Fortran and Pascal are famous
representatives of this style of programming.

In Object-Oriented programming, data structures and
the allowed operations on them are grouped into classes.
Classes can be hierarchically organized, and behavior

inherited so that generic code can be reused between
software components. C++, Java, Eiffel, Ruby and
Python are famous members of this family of languages.
Most Object-Oriented languages use the imperative style
of programming.

In functional programming, a program is a collection
of functions. State passing is done explicitly via function
parameters. Functional programming has a mathematical
taste and dates back to Lisp. Lisp, Scheme, OCaml, F#,
Haskell, Scala, Racket and Clojure are representatives of
the functional style of programming. There are several
advantages to using functional programming [2]. Since
state passing is explicit, functional programs are easy to
reason about. They easily fit in the head of the program-
mer. Some functional programming languages are pure
(e.g. Haskell); they guarantee referential transparency, the
fact that an expression can be replaced by its correspond-
ing value without changing the program behavior. There
are some articles about the productivity boost associated
with functional programming [3, 4].

While there are not many, some functional program-
ming libraries for chemoinformatics do exist. In Haskell,
the ‘smiles’ library [5] provides full support for the
OpenSMILES specification [6]. While the ‘radium’ library

Open Access

Journal of Cheminformatics

*Correspondence: beren314@bio.kyutech.ac.jp
1 Department of Bioscience and Bioinformatics, Faculty of Computer
Science and Systems Engineering, Kyushu Institute of Technology, Iizuka,
Fukuoka, Japan
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-1377-944X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-019-0332-0&domain=pdf

Page 2 of 13Berenger et al. J Cheminform (2019) 11:10

[7] provides the periodic table plus readers and writ-
ers for SMILES and condensed formulas. In Scala, the
‘chemf ’ library [8] provides a purely functional chemin-
formatics toolkit [9].

In this article, we concentrate on Objective Caml
(OCaml [10]), in the context of scientific software pro-
totyping for chemoinformatics and structural bio-
informatics. OCaml is a general purpose functional
programming language developed at INRIA, the French
national research institute for computer science, robot-
ics and applied mathematics. OCaml focuses on expres-
siveness and safety. Some of the language’s strengths
include its type system, with parametric polymorphism
(called generics in Java, templates in C++) and type
inference. Thanks to Hindley–Milner type inference
[11, 12], the OCaml programmer is freed from explic-
itly providing function parameters and result types. For
a course on programming languages and types, we refer
interested readers to Pierce [13]. OCaml supports user-
defined algebraic data types, records, sums/enums and
pattern matching. Pattern matching is a generalization of
the switch statement present in other languages. When
pattern matching, a program is driven by the type of the
parameter being matched upon. In OCaml, memory is
managed automatically, by an incremental garbage col-
lector, preventing memory corruption. Interactive use of
OCaml is possible via a read-eval-print loop called the
OCaml interpreter. Interacting with the interpreter is
a standard way to test a function or to check that some
functionality provided by a library works the way one
understands it. In addition to its byte-code compiler and
interpreter, OCaml offers a compiler that produces effi-
cient executables. Tail-recursive functions are automati-
cally translated to efficient loops by the OCaml compiler.
OCaml also features an object-oriented layer, with mul-
tiple inheritance, parametric and virtual classes. While
OCaml was initially used to develop symbolic computing
applications, such as automatic theorem provers, compil-
ers, interpreters and static program analyzers, it is now
used to develop software in many other areas.

Functions are first-class values in OCaml. A function
can be passed as an argument to, or returned by, another
function. OCaml is a multi-paradigm language. For per-
formance reasons, OCaml offers many imperative fea-
tures (exceptions, modifiable variables, records, arrays
and loop statements). OCaml built-in data types include
not only integers, floating point numbers, booleans, char-
acters and strings but also more advanced data types
such as tuples, records, arrays and lists.

Large programs are easy to structure due to modules,
which share some traits with classes in object-oriented
programming. Modules can be organized hierarchically
and parameterized over a number of other modules. Such

a function, from modules to module is called a functor
and allows high level generic programming.

OCaml’s evaluation strategy is strict. All parameters
to a function are evaluated prior to entering the func-
tion’s body. The compilation of OCaml programs is fast.
For example, the ∼ 3000 OCaml lines (without com-
ments) of the consent software [14] and its four executa-
bles compile from scratch and link in ∼ 3.8 s (resp ∼ 1.1)
using dune (version 1.6.2) and a single core (resp. up to
all cores) of our desktop computer (16 cores, Intel Xeon
2.1GHz, 64GB RAM, Linux Ubuntu 18.04.1 LTS).

Strong static types are types which are enforced by the
compiler. Due to the use of types and garbage collection,
several run-time errors which plague other programming
languages are absent from OCaml programs: null pointer
exception, dereference after free, type cast exception,
segmentation fault, unhandled switch cases and most
memory leaks. In functional programming, more com-
plex properties can be encoded and statically enforced by
structuring code using monads [15], which are pervasive
in Haskell [16], or by using dependent types (not avail-
able in OCaml, but in Coq [17], Idris [18, 19] and Agda
[20]). A function that is guaranteed to produce a result in
a finite time is called total. Functions for which there is
no such guarantee are called partial. For some functions,
Idris can check if they are total. However, such advanced
functional programming concepts are out of the scope of
this article.

Despite not being very popular, OCaml is not a niche
language. Most of its academic users work in computer
science, on compilers and formal methods. But, OCaml
is also used in bioinformatics [21–23], structural bioin-
formatics [24–27], chemoinformatics [14, 28], systems
biology [29–32] and ecotoxicology [33].

There are several industrial users of the language [34]
including Bloomberg, Citrix, Dassault Systèmes, Face-
book [35], Jane Street (a proprietary high frequency trad-
ing firm) and Microsoft.

OCaml has some successes in the industrial world:
Lexifi’s Modeling Language for Finance [36], the ASTRÉE
Static Analyzer [37] used by Airbus to certify on-board
software and Microsoft’s static driver verifier [38].
OCaml has several successes in the open-source world
too: the Unison file synchronizer [39], the MLdonkey
[40] multi-protocol peer-to-peer client, the Coq [17]
proof assistant [41] and FFTW’s symbolic optimizer of
fast Fourier transforms [42].

In the remaining of this article, resources to learn
OCaml are listed in “Resources to learn OCaml” sec-
tion. Explanations on types and how to read signatures
of OCaml functions are given in “Understanding OCaml
type signatures” section. Tools for proficiency in OCaml
are listed in “An OCaml programming environment”

Page 3 of 13Berenger et al. J Cheminform (2019) 11:10

section. Several uses cases of OCaml in Chemoinformat-
ics and Structural Bioinformatics are given in “OCaml
in chemoinformatics and structural bioinformatics” sec-
tion. The parallelization of scientific programs is dealt
with in “Accelerating chemoinformatics and structural
bioinformatics in OCaml” section. Finally, strengths and
weaknesses of the language and ecosystem are discussed
(“Scientific software prototyping in OCaml” and “OCaml
language and ecosystem drawbacks” sections), before
concluding.

Methods
Resources to learn OCaml
There are several books introducing the language [43–
45], some of them freely available online [46–48]. Other
books [49, 50] give an excellent introduction to func-
tional programming.

The “Caml Trading” video, a talk given at Carnegie
Mellon university [51], explains in details why OCaml
was chosen by a high frequency trading firm [52, 53].
Like researchers, this company has the technical require-
ments of correctness, agility and performance.

To give a try at the language within a browser, OCaml-
PRO offers an OCaml interpreter and some basic lessons
[54]. To learn the language via the official documenta-
tion online [55], here are the essential chapters: Chap-
ter 1 “The core language”, Chapter 2 “The module system”,
Chapter 4 “Labels and variants”, The Pervasives module
(a set of functions which is always available to the pro-
grammer), The list module (the most useful data struc-
ture in functional programming). One should be able to
start programming in OCaml after having read only this
material.

The standard library documentation is available online
[56]. While it allows one to have an idea of the standard
modules and their capabilities, it is not recommended
for large scale software development. For real world pro-
gramming, an extended standard library is necessary. For
example OCaml-containers (code [57] and documenta-
tion [58]) or OCaml batteries-included (code [59] and
documentation [60]) or Janestreet’s core (code [61] and
documentation [62]).

To give a taste of OCaml, Fig. 1 shows the complete
definition of a bisector-tree [63]. A bisector tree is a data
structure to store n-dimensional points provided a dis-
tance function between those points exists. Such a tree
allows to do fast nearest neighbor searches and orthogo-
nal queries [64]. Vantage point trees [65, 66] and µ-trees
[67] are closely-related data-structures which could be
used for the same purpose. Our implementation (opam
package bst [68]) is parameterized by a distance function
and bucketized, i.e. leaves of a tree can hold up to k ≥ 1
(user-chosen parameter) molecules.

Understanding OCaml type signatures
A type signature is a formal specification of the behavior
of a function. Unfortunately, most of the time, this speci-
fication is incomplete and unless the function’s name is
explicit enough, reading the documentation is necessary
to understand the complete specification.

Since being able to read type signatures is essential in
OCaml, we list in code as well as in plain English some of
the type signatures of essential functions of the list mod-
ule. The list module uses polymorphic types, i.e. a list can
contain elements of any type, but a given list can only
contain elements of the same type. α and β are standard
names for polymorphic types.

For brevity later on, a few definitions are given
hereafter.

Definition 1 The syntax

apply : α → β

defines the type of a function named apply from type
α to type β in which α and β are type parameters. The
equivalent C++ header file portion would be

Definition 2 Let’s call accumulate any function
which takes an α , a β and returns an α.

accumulate : α → β → α

Definition 3 Let’s call side-effect any function
which takes an α and returns nothing (in OCaml, noth-
ing’s type is called unit).

side-effect : α → unit

Fig. 1 OCaml code defining a bucketized bisector-tree. The code is
parameterized by a point type (P.t). The implementation works with
any point type, as long as it defines a distance function

Page 4 of 13Berenger et al. J Cheminform (2019) 11:10

Definition 4 Let’s call predicate any function which
takes an α and returns a Boolean.

predicate : α → bool

Definition 5 Let’s call comparison any function
which takes two alphas and returns an integer.

comparison : α → α → int

Then, it becomes possible to explain some list functions
and their type signatures.

cons: α → α list → α list

 The cons (construct) function takes an α , a
list of alphas and returns a list of alphas. The
:: syntax operator is also available for the
cons function. Hence, the OCaml expres-
sion 1 :: [2;3;4] constructs the list
[1;2;3;4] and α = int.

hd: α list → α

 hd (head) takes a list of alphas and returns an
α (the first one in the list).

tl: α list → α list

 tl (tail) takes a list of alphas and returns a list
of alphas (all elements of the list except the
first one). Note that head and tail will raise an
exception if called on the empty list [].

length: α list → int

 length takes a list of alphas and returns an
integer.

map: (α → β) → α list → β list

 This is the map function in Google’s map-
reduce [69]. map takes an apply, a list of alphas
and returns a list of betas. Using the function
with α = β is possible, but having the type sig-
nature using α and β makes the function more
generic.

fold: (α → β → α) → α → β list → α

 The reduce in Google’s map-reduce [69] is a
kind of fold. fold takes an accumulator, an α ,
a list of betas and returns an α.

iter: (α → unit) → α list → unit

 iter (iterate) takes a side-effect, a list of
alphas and returns nothing.

exists: (α → bool) → α list → bool

 exists takes a predicate, a list of alphas and
returns a Boolean.

filter: (α → bool) → α list → α list

 filter takes a predicate, a list of alphas and

returns a list of alphas (the ones satisfying the
predicate).

partition: (α → bool) → α list → α list ∗ α list

 partition takes a predicate, a list of alphas
and returns a pair of list of alphas (elements
satisfying the predicate on the left, others on
the right).

sort: (α → α → int) → α list → α list

 sort takes a comparison, a list of alphas and
returns a list of alphas (sorted according to the
order defined by the comparison function).

Programming most parts of the list module from scratch
is an excellent exercise for any student of the language.

An OCaml programming environment
Here follows a selection of tools for OCaml programming
in a UNIX-like environment. While different users may
use different tools, some of them are quite standard in a
productive and modern development environment.

OPAM the OCaml Package Man-
ager [70] allows to automati-
cally install OCaml software,
libraries (Fig. 2) and their
dependencies (even system
ones). OPAM is a source-
based, user-level pack-
age manager. It can install
a given compiler version
and packages in a so-called
“switch”, under the user’s
home directory. The collec-
tion of open source OPAM
packages is maintained by
the community [71].

opam-bundle can create a stand-alone,
self-extracting and auto-
matic installer for any
OCaml software with an
OPAM package description
file [72].

utop utop [73] is an improved
top-level (interactive inter-
preter). Utop supports line
editing, history, automatic
completion, colorful syntax
highlighting and more. Utop
can be controlled within
Emacs or as a standalone

Page 5 of 13Berenger et al. J Cheminform (2019) 11:10

terminal application. In the
Python world, the equivalent
of utop would be ipython.

Merlin is an editor helper [74]. It
provides completion, type
information and source
browsing (jump to defini-
tion/list uses) for Vim and
Emacs. Thanks to Merlin,
standard editors become
full integrated development
environments for OCaml.

Emacs with modes like tuareg,
ocaml or merlin, writing
OCaml programs under
Emacs is productive. Vim
also has good support for
OCaml. Microsoft Visual
Studio Code [75] and Atom
[76] also have some support
for OCaml.

Dune is the best choice to manage
the compilation of OCaml
projects. It is very fast, has
no system dependencies and
supports parallel builds on

all platforms. Build descrip-
tions are terse but still
human-readable (see Fig. 3).

ocp-browser is a terminal program
to browse the interface
and documentation of all
installed OCaml libraries
in an OPAM switch. ocp-
browser alleviates the need
to search and read HTML
documentation online while
programming.

ocp-indent
& ocamlformat

 automate and standardize
the indentation of OCaml
source code. ocp-indent
[77] and ocamlformat [78]
integrate well with Emacs
and Vim.

Results
OCaml in chemoinformatics and structural bioinformatics
We list some open source OCaml software that resulted
from research in chemoinformatics and structural bioin-
formatics [79].

The bisector-tree data-structure describbed in the
introduction is not a toy example. It can be used to accel-
erate similarity searches (Fig. 4).

For ligand-based virtual screening in 3D, the AutoCor-
relation of Partial Charges method (ACPC [28]) uses the
autocorrelation function [81] and linear binning [82] to
encode all atoms of a molecule into a rotation-translation
invariant representation. ACPC allows to rank-order a
database of compounds versus a query molecule and was
released in open source (opam package acpc [83]). ACPC
performed remarkably well in retrospective ligand-based

Fig. 2 OPAM package description file for the bisector tree library.
Such a file allows OPAM to automatically install/uninstall from source
this library and all its transitive dependencies

Fig. 3 Complete build description file for the bisector tree library and
it’s test executable

Page 6 of 13Berenger et al. J Cheminform (2019) 11:10

virtual screening experiments. At an average speed of
1649 molecule/s, ACPC reached an average median area
under the curve of 0.81 on 40 Directory of Useful Decoys
[84] targets.

Consent [14, 85] (opam package lbvs_consent [86])
performs ligand-based virtual screening using consen-
sus queries. When several active molecules are known,
screening with all of them is recommended (instead of
using just one). A consensus query can be created by
screening serially with different ligands before merg-
ing similarity scores, or by combining chemical finger-
prints. Consent was tested on 19 protein targets, 3776
known active and ∼ 2× 10

6 inactive molecules from
high throughput screening datasets. Three fingerprints
were investigated (MACCS, ECFP4 and an unfolded fin-
gerprint). Different consensus policies and consensus
sizes (number of known actives) were benchmarked. A
consensus fingerprint is always faster. In some circum-
stances, it can approach the performance of a consensus
of scores in terms of Area Under the Receiver Operating
Characteristic (ROC) Curve (AUC) and early retrieval.

EleKit [26, 27] was the first structural bioinformat-
ics software able to measure the similarity of a ligand’s
electrostatic field with that of a protein binding at a pro-
tein-protein interface (Fig. 5). Ligands showing a high
similarity in this setting are potential drugs breaking pro-
tein-protein interactions. EleKit was a complex software,

driving PDB2PQR [87], parsing PQR files, running the
Adaptive Poisson-Boltzmann Solver (APBS [88]) in par-
allel, parsing ABPS output files, creating and operating
3D Boolean masks.

Also in structural bioinformatics, Fragger [25, 89, 90] is
a protein fragment picker for 3D structural queries. From
a set of PDB files, Fragger can create a protein fragments
database. All fragment lengths are supported. Using the
triangular inequality, Fragger can efficiently search with a
query fragment and a distance threshold. Matching frag-
ments are ranked by distance to the query, which can con-
tain structural gaps. The allowed amino acid sequences
matching a query can be constrained. Fragger is meant for
protein design, loop grafting and related activities.

Fig. 4 Using a bisector-tree (BST) to accelerate similarity searches
on a database of 106 PUBCHEM molecules. Molecular encoding is
Faulon’s signature molecular descriptor [80] (an unfolded-counted
fingerprint) with height equal to one bond and parametrized over
MOL2 atom types. The database is searched for all molecules with
Tanimoto to query ≥ 0.99 (left; t = 0.01) or Tanimoto ≥ 0.8 (middle;
t = 0.2). The brute force version is shown on the right. 50 molecules
from the database were selected randomly to serve as queries.
Creating the BST (database indexing) took approximately 5 min using
a single core of our desktop computer

Fig. 5 Overview of EleKit applied to PDB codes 2B4J (1A) and 3LPU
(1B). The “ligand-protein” is shown as a green surface in 1A and 2A .
The “ligand-small-molecule” is shown as a smaller green surface in 1B
and 2B . The receptor protein is shown as a gray cartoon in 1A and 1B .
Electrostatic potential fields are calculated and stored in distinct grids
(2A and 2B). A boolean mask in 3D is created to select the solvent
region nearby the interface (3A and 3B). Finally, the similarity between
electrostatic potentials in the masked region (4A and 4B) is calculated
using the Spearman rank correlation coefficient (figure adapted from
Voet [26])

Page 7 of 13Berenger et al. J Cheminform (2019) 11:10

Accelerating chemoinformatics and structural
bioinformatics in OCaml
OCaml executables are fast. In terms of speed, OCaml
is placed just after Go in the Debian language shootout
[91]; the fastest language being C++ then C. However,
execution speed is not the most important in a research
setting. Programmer productivity is more important. In
terms of verbosity, OCaml code is close to Python and
far from Java (see Fig. 6). From past experience, an AUC
calculation in OCaml is about 20 times faster than the
equivalent python script [92]. While performing an AUC

calculation faster may not seem important, to scientifi-
cally validate a computational method, one might run
thousands of such calculations.

Since molecules can be processed independently, most
chemoinformatics tasks are easy to parallelize. The Par-
map OCaml library [94] provides parallel iter, map and
fold functions for arrays and lists on multi-core comput-
ers. Parallelizing code with Parmap is trivial (Fig. 7). Par-
map preserves semantics while achieving nearly optimal
speedup [94] (Figs. 8, 9).

For stream computing, when a program cannot hold
all items in memory (which is required by Parmap), we
developed the parany library (opam package parany

Fig. 6 Valid hello world programs to illustrate the idiomatic verbosity
of Java, C++, OCaml and Python-2.7. Keep in mind that in many
programming languages, programmers can make their source code
arbitrarily small, sometimes to the point that a program is no more
readable

Fig. 7 Git diff after parallelization of EleKit. Parallelizing EleKit using
Parmap was a two lines change in ∼ 3000 lines of code. All program
development and debugging was done on sequential code. With an
electrostatic calculation run-time of approximately 2 min per small
molecule, parallelization was mandatory for production use of EleKit
on thousands of molecules

Fig. 8 Performance of ACPC in the electrostatic space, using
Parmap for parallelization. Open Babel 2.3.9’s MACCS and FP4 C++
implementations run-times are shown to give an order of magnitude.
Run-times were averaged over three runs. Protein target: Human
immunodeficiency virus type 1 protease (HIVPR) from the Database
of Useful Decoys Enhanced (DUDE [93]); 26450 ligands and decoys

Fig. 9 Wall-clock time to analyze hundreds of molecules with EleKit
and Parmap. Up to four cores, the parallelization performance is
almost indistinguishable from a perfectly parallelizing program
(theoretical limit)

Page 8 of 13Berenger et al. J Cheminform (2019) 11:10

[95]). Parany is more generic than parmap. It is struc-
tured around three functions. An unfold function called
demux, an apply function called work and a fold/reduce
function called mux.

demux : unit → α

work : α → β

mux : β → unit

Some more complex technologies exist to write even
higher performance OCaml programs. SPOC [96] is an

OCaml library allowing general purpose GPU program-
ming, using Cuda or OpenCL kernels. SPOC allows to
create specific data sets usable by those kernels and auto-
matically manages memory transfers between CPU and
GPU.

BER MetaOCaml [97] is an OCaml dialect for multi-
stage programming [98]. It allows run-time C code gen-
eration and program execution. BER MetaOCaml can be
used to compile domain-specific languages and automate
the specialization of high-performance computational
kernels.

Fig. 10 Git diff excerpt of an actual code refactoring in the SVM part of a category-QSAR software. Sometimes, the R svmpath package encounters
numerical problems, like an exactly or computationally singular matrix. To deal with such rare cases, it was decided to drop a model from the bag
of models. Since a bagging classifier with 21 models was being trained, dropping one or two models was deemed better than letting the whole
software crash. Hence, an option type was introduced in the function optimal_lambda from file ‘svm_common.ml’, along with proper warning
messages. Then, the compiler forced updating the rest of the code

Page 9 of 13Berenger et al. J Cheminform (2019) 11:10

Discussion
Scientific software prototyping in OCaml
In an academic research setting, it is common for a soft-
ware project to be severely under staffed, compared
to industrial standards, i.e. a single person might be in
charge of the full software life-cycle (requirements gath-
ering, specification, design, implementation, speed opti-
mization, parameter tuning, test and validation, release
and packaging, maintenance). In research, requirements
are ill-defined and changing. Since the purpose of the
software is to scientifically show that an idea works,
having a high confidence in the software is important.
Moreover, during the course of the project, design deci-
sions might change and impact the whole code-base.
OCaml types and compiler allow to refactor software
fast and without missing any place that needs changing
(see Fig. 10 for an example of refactoring that only took
a few minutes). Thus, during prototyping, the program-
mer is not afraid to do drastic changes to the software
(agility). In such a setting, and when using OCaml, we
propose to abandon the practice of unit tests. Because,
there is not enough manpower to write and maintain
them. Note however that OCaml has tools for program-
mers who want to write unit [99] or property-based tests
[100] as comments inside their code. Since the software
will change a lot during its lifetime, maintaining unit tests
would be too costly and slow down the pace of research.
Of course, if we were using a dynamically-typed language
such as Python or Ruby, such a decision would be risky
and many problems discovered at run-time. Instead of
unit tests, we propose to use regression tests and end-to-
end validation, once a prototype is advanced enough. For

example, a valid output can be verified by hand from a
known input and added to a set of regression tests.

In the same vain, we propose to abandon OCaml inter-
face files when prototyping. Having to maintain interface
files slows down refactoring. Interface files of librar-
ies should only be added once a project is going to be
released.

When programming in OCaml, one strongly relies on
the compiler to catch errors. It is common to see a com-
plex but compiling OCaml program run without any
run-time error, even when running for the first time. Pro-
grams written in Haskell have this exact same property.

OCaml language and ecosystem drawbacks
When working in OCaml, if functors and module sig-
natures are heavily used, compiler error messages can
become hard to understand. Also, the required syntax is
nontrivial and might need some practice.

For chemoinformatics, a parser for Simplified Molecu-
lar-Input Line-Entry System (SMILES [101]) and a parser
for SMiles ARbitrary Target Specification (SMARTS
[102]) are the most obvious missing libraries. Also, nowa-
days it would not be reasonable to do chemoinformatics
research without using the functionalities of the Chem-
istry Development Kit (CDK [103, 104]), Rdkit [105] or
Open Babel [106]. Since there are no OCaml bindings
to those libraries, our current solution is to write small
programs interfacing with them, in order to extract or
import data to/from them. By following the UNIX design
principles [107], it is easy to create, debug and maintain
software that exchange data via text files. However, in
some projects [14, 26, 28], we have written parsers for
parts of the PDB [108], PQR [87] and MOL2 [109] file
formats.

Currently, the OCaml ecosystem is weak in the
Machine Learning field, especially when compared to
Python and the Scikit-learn [110] library. At least, there
is one library for classification using random forests [111]
(opam package orandforest [112]) and a numerical library
(opam package owl [113, 114]) with some machine learn-
ing functionalities like regression and neural networks.
For deep learning, some OCaml bindings to TensorFlow
[115, 116] and PyTorch [117] have been released recently.
To palliate the deficiency in machine learning librar-
ies, we have recently developed several OCaml packages
taping into the R [118] ecosystem; for support vector
machines (opam package orsvm-e1071 [119]), random
forests (opam package orrandomForest [120]) and gra-
dient boosted trees (opam package orxgboost [102]).
We have also developed the classification performance
metrics library in order to benchmark virtual screening
experiments (opam package cpmlib [121]). Cpmlib fea-
tures ROC curves, AUC [122], enrichment factor, power

Fig. 11 Graphical annotation of a query molecule using a BILD file
generated by the ACPC software for viewing with UCSF Chimera.
A query molecule of the CDK2 protein target is annotated in
the electrostatic space, based on atomic contributions to AUC.
Transparent green balls highlight atoms which if masked (their
contribution is removed from the molecular encoding/fingerprint)
would decrease the AUC reached by this molecule in a similarity
search

Page 10 of 13Berenger et al. J Cheminform (2019) 11:10

metric [123] and Boltzmann-Enhanced Discrimination of
ROC (BEDROC [124]).

OCaml is best for back-end and system [125] pro-
gramming. To quickly annotate molecules or protein
structures, rather than doing graphics programming
in OCaml, we recommend generating BILD [126] files.
BILD files are simple, human-readable line-oriented text
files, easy to generate by a program or by hand. They can
be viewed within UCSF Chimera [127] (Fig. 11).

While OCaml is a portable language, not all program-
mers write portable programs. OCaml code can be auto-
matically translated to JavaScript [128] to target web
browsers (opam package js_of_ocaml). But parallel pro-
grams or programs relying extensively on the Unix mod-
ule might not work under Windows. Also, there may be
less libraries/opam packages available under Windows.
If Windows support is a primary concern, F# or Haskell
[16] might be safer programming language choices. If
access to a comprehensive chemoinformatics library is
a prime concern, Scala might be a safer choice since its
interoperability with Java would allow using the Chemis-
try Development Kit.

For managers, the fact that there are few OCaml pro-
grammers available on the market is a concern. However,
we feel that programmers can become proficient in the
language quickly, so this is not a major concern.

Conclusions
OCaml is a strongly typed programming language of the
functional family. In this article, we have tried to share
our experience in using it for Chemoinformatics and
Structural Bioinformatics research.

This article should not be seen as an attempt at assert-
ing the superiority of OCaml and/or functional pro-
gramming over other programming languages and
approaches. Rather, we encourage researchers to choose
and use the tools that make them the most productive,
even if those tools are not mainstream.

To us, OCaml has been proven quite productive for
software prototyping in Chemoinformatics and Struc-
tural Bioinformatics method development. The software
demonstrated here were used intensively and timely dur-
ing scientific validation campaigns, on many molecules
and protein targets. We have never regretted our choice
of OCaml and still use it today.

Authors’ contributions
FB wrote the software, ran computational experiments and prepared all
figures and tables. All authors read and approved the final manuscript.

Author details
1 Department of Bioscience and Bioinformatics, Faculty of Computer Science
and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka,
Japan. 2 Laboratory for Structural Bioinformatics, Center for Biosystems

Dynamics Research, RIKEN, Yokohama, Kanagawa, Japan. 3 PRESTO, Japan Sci-
ence and Technology Agency, Kawaguchi, Saitama, Japan.

Acknowlegements
FB is a JSPS international research fellow http://www.jsps.go.jp/engli sh. This
work was supported by JST PRESTO Grant Number JPMJPR15D8 and JSPS
KAKENHI Grant Numbers 18H03334 and 18H02395. FB acknowledges the
use of ChemAxon’s JChem (2017) http://www.chema xon.com. All authors
acknowledge the use of Omega 2.5.1.4 from OpenEye Scientific Software,
Santa Fe, NM http://www.eyeso pen.com. Some of the computing power used
in this study was provided by RIKEN ACCC, on the Hokusai Large Memory
Application Computing Server. FB thanks all participants in the OCaml open-
source ecosystem for the many excellent libraries, tools and user support.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 6 September 2018 Accepted: 22 January 2019

References
 1. Colmerauer A, Roussel P (1996) The birth of Prolog. In: History of

programming languages—II. ACM, New York, pp 331–367. https ://doi.
org/10.1145/23428 6.10578 20

 2. Hughes J (1989) Why functional programming matters. Comput J
32(2):98–107. https ://doi.org/10.1093/comjn l/32.2.98

 3. Hudak P (1994) Haskell vs Ada vs C++ vs Awk vs... an experiment in
software prototyping productivity. Contract 14(92–C):0153

 4. Wiger U (2001) Four-fold increase in productivity and quality—indus-
trial-strength functional programming in telecom-class products.
Ericsson Telecom Ab, Stockholm

 5. Pavel Y (2018) Full support of OpenSMILES specification for Haskell.
http://githu b.com/zmact ep/smile s. Accessed 2018-12-01

 6. A, JC (2018) OpenSMILES specification version 1.0, 2016-05-15. http://
opens miles .org/opens miles .html. Accessed 2018-12-01

 7. Krzysztof L (2018) Haskell library for chemistry. http://githu b.com/klang
ner/radiu m. Accessed 2018-12-01

 8. Stefan H (2018) Purely functional cheminformatics toolkit written in
Scala. http://githu b.com/stefa n-hoeck /chemf . Accessed 2018-12-01

 9. Höck S, Riedl R (2012) chemf: a purely functional chemistry toolkit. J
Cheminform 4(1):38. https ://doi.org/10.1186/1758-2946-4-38

 10. Leroy X, Doligez D, Frisch A, Garrigue J, Rémy D et al (2016) The OCaml
system release 4.04: Documentation and user’s manual, Inria. https ://
hal.inria .fr/hal-00930 213v3 /docum ent

 11. Hindley R (1969) The principal type-scheme of an object in combina-
tory logic. Trans Am Math Soc 146:29–60

 12. Milner R (1978) A theory of type polymorphism in programming.
J Comput Syst Sci 17(3):348–375. https ://doi.org/10.1016/0022-
0000(78)90014 -4

 13. Pierce BC (2002) Types and programming languages. MIT press,
Cambridge

 14. Berenger F, Vu O, Meiler J (2017) Consensus queries in ligand-based
virtual screening experiments. J Cheminform 9(1):60. https ://doi.
org/10.1186/s1332 1-017-0248-5

 15. Wadler P (1990) Comprehending monads. In: Proceedings of the 1990
ACM conference on LISP and functional programming, LFP ’90. ACM,
New York, pp 61–78. https ://doi.org/10.1145/91556 .91592 (ISBN:
0-89791-368-X)

http://www.jsps.go.jp/english
http://www.chemaxon.com
http://www.eyesopen.com
https://doi.org/10.1145/234286.1057820
https://doi.org/10.1145/234286.1057820
https://doi.org/10.1093/comjnl/32.2.98
http://github.com/zmactep/smiles
http://opensmiles.org/opensmiles.html
http://opensmiles.org/opensmiles.html
http://github.com/klangner/radium
http://github.com/klangner/radium
http://github.com/stefan-hoeck/chemf
https://doi.org/10.1186/1758-2946-4-38
https://hal.inria.fr/hal-00930213v3/document
https://hal.inria.fr/hal-00930213v3/document
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1186/s13321-017-0248-5
https://doi.org/10.1186/s13321-017-0248-5
https://doi.org/10.1145/91556.91592

Page 11 of 13Berenger et al. J Cheminform (2019) 11:10

 16. Peyton Jones SL (2003) Haskell 98: introduction. J Funct Program
13(1):0–6. https ://doi.org/10.1017/S0956 79680 30003 15

 17. Barras B, Boutin S, Cornes C, Courant J, Filliatre J-C, Gimenez E, Herbelin
H, Huet G, Munoz C, Murthy C et al (1997) The Coq proof assistant refer-
ence manual: version 6.1. INRIA, Paris

 18. Brady E et al (2008) Idris, a language with dependent types. In: IFL 2008
 19. Brady E (2017) Type-driven development with Idris. Manning Publica-

tions, Shelter Island
 20. Norell U (2009) Dependently typed programming in Agda. In: Koop-

man PWM, Plasmeijer R, Swierstra SD (eds) 6th international school
on advanced functional programming, AFP 2008. Lecture notes in com-
puter science, vol 5832. Springer, Berlin, Heidelberg, pp 230–266. https
://doi.org/10.1007/978-3-642-04652 -0_5

 21. Mondet S, Aksoy BA, Rozenberg L, Hodes I, Hammerbacher J (2017)
Bioinformatics workflow management with the Wobidisco ecosystem.
https ://doi.org/10.1101/21388 4

 22. Rubinsteyn A, Kodysh J, Hodes I, Mondet S, Aksoy BA, Finnigan JP,
Bhardwaj N, Hammerbacher J (2017) Computational pipeline for the
PGV-001 neoantigen vaccine trial. https ://doi.org/10.1101/17451 6

 23. Rozenberg L, Hammerbacher J (2018) Prohlatype: a probabilistic
framework for HLA typing. https ://doi.org/10.1101/24496 2

 24. Jambon M, Andrieu O, Combet C, Deléage G, Delfaud F, Geourjon
C (2005) The SuMo server: 3D search for protein functional sites.
Bioinformatics 21(20):3929–3930. https ://doi.org/10.1093/bioin forma
tics/bti64 5

 25. Berenger F, Simoncini D, Voet A, Shrestha R, Zhang KYJ (2018) Frag-
ger: a protein fragment picker for structural queries [version 2; refer-
ees: 2 approved]. F1000Research 6(1722). https ://doi.org/10.12688 /
f1000 resea rch.12486 .2

 26. Voet A, Berenger F, Zhang KYJ (2013) Electrostatic similarities
between protein and small molecule ligands facilitate the design of
protein–protein interaction inhibitors. PLoS ONE 8(10):1–9. https ://
doi.org/10.1371/journ al.pone.00757 62

 27. Voet ARD, Kumar A, Berenger F, Zhang KYJ (2014) Combining in silico
and in cerebro approaches for virtual screening and pose predic-
tion in SAMPL4. J Comput Aided Mol Des 28(4):363–373. https ://doi.
org/10.1007/s1082 2-013-9702-2

 28. Berenger F, Voet A, Lee XY, Zhang KYJ (2014) A rotation-translation
invariant molecular descriptor of partial charges and its use in
ligand-based virtual screening. J Cheminform 6(1):23. https ://doi.
org/10.1186/1758-2946-6-23

 29. Danos V, Feret J, Fontana W, Harmer R, Krivine J (2007) Rule-based
modelling of cellular signalling. In: Caires L, Vasconcelos VT (eds)
CONCUR 2007—concurrency theory. Springer, Berlin, pp 17–41

 30. Feret J, Danos V, Krivine J, Harmer R, Fontana W (2009) Inter-
nal coarse-graining of molecular systems. Proc Natl Acad Sci
106(16):6453–6458. https ://doi.org/10.1073/pnas.08099 08106

 31. Deeds EJ, Krivine J, Feret J, Danos V, Fontana W (2012) Combinatorial
complexity and compositional drift in protein interaction networks.
PLoS ONE 7(3):1–14. https ://doi.org/10.1371/journ al.pone.00320 32

 32. Boutillier P, Maasha M, Li X, Medina-Abarca HF, Krivine J, Feret J,
Cristescu I, Forbes AG, Fontana W (2018) The Kappa platform for
rule-based modeling. Bioinformatics 34(13):583–592. https ://doi.
org/10.1093/bioin forma tics/bty27 2

 33. Charles S, Veber P, Delignette-Muller ML (2018) MOSAIC: a web-
interface for statistical analyses in ecotoxicology. Environ Sci Pollut
Res 25(12):11295–11302. https ://doi.org/10.1007/s1135 6-017-9809-4

 34. INRIA (2018) Caml Consortium. http://caml.inria .fr/conso rtium .
Accessed 2018-12-01

 35. Calcagno C, Distefano D, Dubreil J, Gabi D, Hooimeijer P, Luca M,
O’Hearn P, Papakonstantinou I, Purbrick J, Rodriguez D (2015) Moving
fast with software verification. In: Havelund K, Holzmann G, Joshi R
(eds) NASA formal methods. Springer, Cham, pp 3–11

 36. Peyton Jones S, Eber J-M, Seward J (2000) Composing contracts: an
adventure in financial engineering (functional pearl). In: Proceedings
of the fifth ACM SIGPLAN international conference on functional
programming. ICFP ’00. ACM, New York, NY, USA, pp 280–292. https
://doi.org/10.1145/35124 0.35126 7

 37. Miné A, Mauborgne L, Rival X, Feret J, Cousot P, Kastner D, Wilhelm
S, Ferdinand C (2016) Taking static analysis to the next level: proving
the absence of run-time errors and data races with Astrée. In: Eighth

European congress on embedded real time software and systems,
Toulouse, France

 38. Ball T, Rajamani SK (2002) The slam project: debugging system soft-
ware via static analysis. In: Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on principles of programming languages. POPL
’02. ACM, New York, NY, USA, pp 1–3. https ://doi.org/10.1145/50327
2.50327 4

 39. Pierce BC, Vouillon J (2004) What’s in unison? A formal specification
and reference implementation of a file synchronizer. Technical report
MS-CIS-03-36, Department of Computer and Information Science,
University of Pennsylvania

 40. Le Fessant F, Patarin S (2003) MLdonkey, a multi-network peer-to-
peer file-sharing program. Research report RR-4797. INRIA

 41. INRIA (2018) The Coq proof assistant. http://coq.inria .fr. Accessed
2018-12-01

 42. Frigo M (1999) A fast Fourier transform compiler. In: Proceedings
of the ACM SIGPLAN 1999 conference on programming language
design and implementation, PLDI ’99, vol 34. ACM, New York, pp
169–180. https ://doi.org/10.1145/30161 8.30166 1

 43. Chailloux E, Manoury P, Pagano B (2007) Développement
d’applications avec Objective Caml. O’REILLY & Associates, France.
https ://caml.inria .fr/pub/docs/oreil ly-book/ocaml -ora-book.pdf
(ISBN: 2-84177-121-0)

 44. Minsky Y, Madhavapeddy A, Hickey J (2013) Real World OCaml: func-
tional programming for the masses. O’Reilly Media Inc, Sebastopol

 45. Whitington J (2013) OCaml from the very beginning. Coherent Press,
Birmingham

 46. Emmanuel C, Pascal M, Bruno P (2018) Developing applications with
objective Caml. http://caml.inria .fr/pub/docs/oreil ly-book/html.
Accessed 2018-12-01

 47. Minsky Y, Madhavapeddy A, Hickey J (2018) Real World OCaml. http://
v1.realw orldo caml.org/v1/en/html. Accessed 2018-12-01

 48. Xavier L, Didier R (2018) Unix system programming in OCaml. http://
ocaml .githu b.io/ocaml unix. Accessed 2018-12-01

 49. Lipovaca M (2011) Learn you a Haskell for great good!. No Starch
Press, San Francisco

 50. Abelson H, Sussman GJ, Sussman J (1996) Structure and interpreta-
tion of computer programs, 2nd edn. The MIT Press, Cambridge

 51. Yaron M (2018) Caml trading. www.youtu be.com/watch ?v=hKcOk
Wzj0_s. Accessed 2018-12-01

 52. Minsky Y, Weeks S (2008) Caml trading—experiences with functional
programming on wall street. J Funct Program 18(4):553–564. https ://
doi.org/10.1017/S0956 79680 80067 6X

 53. Minsky Y (2011) OCaml for the Masses. Commun ACM 54(11):53–58.
https ://doi.org/10.1145/20183 96.20184 13

 54. OCamlPRO (2018) Try OCaml. http://try.ocaml pro.com. Accessed
2018-12-01

 55. Xavier L, Damien D, Alain F, Jacques G, Didier R, Jérôme V (2018) The
OCaml system release 4.07. https ://caml.inria .fr/pub/docs/manua
l-ocaml . Accessed 2018-12-01

 56. Xavier L, Damien D, Alain F, Jacques G, Didier R, Jérôme V (2018) The
standard library. http://caml.inria .fr/pub/docs/manua l-ocaml /stdli
b.html. Accessed 2018-12-01

 57. Simon C (2018) OCaml-containers. http://githu b.com/c-cube/ocaml
-conta iners . Accessed 2018-12-01

 58. Simon C (2018) OCaml-containers documentation. http://simon
.cedee la.fr/ocaml -conta iners /last/conta iners /index .html. Accessed
2018-12-01

 59. community O (2018) OCaml batteries included. https ://githu b.com/
ocaml -batte ries-team/batte ries-inclu ded. Accessed 2018-12-01

 60. community, O (2018) Batteries user guide. http://ocaml -batte ries-team.
githu b.io/batte ries-inclu ded/hdoc2 . Accessed 2018-12-01

 61. Street J (2018) Janestreet core. https ://githu b.com/janes treet /core.
Accessed 2018-12-01

 62. Street J (2018) Jane street core documentation. http://ocaml .janes treet
.com/ocaml -core/lates t/doc/core. Accessed 2018-12-01

 63. Kalantari I, McDonald G (1983) A data structure and an algorithm for
the nearest point problem. IEEE Trans Softw Eng 5:631–634

 64. Berg M, Cheong O, Kreveld M, Overmars M (2008) Computational
geometry: algorithms and applications, 3rd edn. Springer, Santa Clara

https://doi.org/10.1017/S0956796803000315
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1101/213884
https://doi.org/10.1101/174516
https://doi.org/10.1101/244962
https://doi.org/10.1093/bioinformatics/bti645
https://doi.org/10.1093/bioinformatics/bti645
https://doi.org/10.12688/f1000research.12486.2
https://doi.org/10.12688/f1000research.12486.2
https://doi.org/10.1371/journal.pone.0075762
https://doi.org/10.1371/journal.pone.0075762
https://doi.org/10.1007/s10822-013-9702-2
https://doi.org/10.1007/s10822-013-9702-2
https://doi.org/10.1186/1758-2946-6-23
https://doi.org/10.1186/1758-2946-6-23
https://doi.org/10.1073/pnas.0809908106
https://doi.org/10.1371/journal.pone.0032032
https://doi.org/10.1093/bioinformatics/bty272
https://doi.org/10.1093/bioinformatics/bty272
https://doi.org/10.1007/s11356-017-9809-4
http://caml.inria.fr/consortium
https://doi.org/10.1145/351240.351267
https://doi.org/10.1145/351240.351267
https://doi.org/10.1145/503272.503274
https://doi.org/10.1145/503272.503274
http://coq.inria.fr
https://doi.org/10.1145/301618.301661
https://caml.inria.fr/pub/docs/oreilly-book/ocaml-ora-book.pdf
http://caml.inria.fr/pub/docs/oreilly-book/html
http://v1.realworldocaml.org/v1/en/html
http://v1.realworldocaml.org/v1/en/html
http://ocaml.github.io/ocamlunix
http://ocaml.github.io/ocamlunix
http://www.youtube.com/watch?v=hKcOkWzj0_s
http://www.youtube.com/watch?v=hKcOkWzj0_s
https://doi.org/10.1017/S095679680800676X
https://doi.org/10.1017/S095679680800676X
https://doi.org/10.1145/2018396.2018413
http://try.ocamlpro.com
https://caml.inria.fr/pub/docs/manual-ocaml
https://caml.inria.fr/pub/docs/manual-ocaml
http://caml.inria.fr/pub/docs/manual-ocaml/stdlib.html
http://caml.inria.fr/pub/docs/manual-ocaml/stdlib.html
http://github.com/c-cube/ocaml-containers
http://github.com/c-cube/ocaml-containers
http://simon.cedeela.fr/ocaml-containers/last/containers/index.html
http://simon.cedeela.fr/ocaml-containers/last/containers/index.html
https://github.com/ocaml-batteries-team/batteries-included
https://github.com/ocaml-batteries-team/batteries-included
http://ocaml-batteries-team.github.io/batteries-included/hdoc2
http://ocaml-batteries-team.github.io/batteries-included/hdoc2
https://github.com/janestreet/core
http://ocaml.janestreet.com/ocaml-core/latest/doc/core
http://ocaml.janestreet.com/ocaml-core/latest/doc/core

Page 12 of 13Berenger et al. J Cheminform (2019) 11:10

 65. Uhlmann JK (1991) Satisfying general proximity/similarity que-
ries with metric trees. Inf Process Lett 40(4):175–179. https ://doi.
org/10.1016/0020-0190(91)90074 -R

 66. Yianilos PN (1993) Data structures and algorithms for nearest neighbor
search in general metric spaces. In: Proceedings of the fourth annual
ACM-SIAM symposium on discrete algorithms. SODA ’93. SIAM, Phila-
delphia, pp 311–321

 67. Xu H, Agrafiotis DK (2003) Nearest neighbor search in general metric
spaces using a tree data structure with a simple heuristic. J Chem Inf
Comput Sci 43(6):1933–1941. https ://doi.org/10.1021/ci034 150f

 68. Francois B (2018) Bisector tree implementation in OCaml. http://githu
b.com/UnixJ unkie /bisec -tree. Accessed 2018-12-01

 69. Dean J, Ghemawat S (2004) MapReduce: simplified data processing on
large clusters. In: Proceedings of the 6th conference on symposium on
opearting systems design & implementation, vol 6. OSDI’04. USENIX
Association, Berkeley, CA, USA, p 10

 70. OCamlPRO (2018) OCaml package manager. http://opam.ocaml .org.
Accessed 2018-12-01

 71. community, O (2018) OPAM repository. http://githu b.com/ocaml /
opam-repos itory . Accessed 2018-12-01

 72. Louis G (2018) opam-bundle. http://githu b.com/AltGr /opam-bundl e.
Accessed 2018-12-01

 73. Jérémie D (2018) Universal toplevel for OCaml. http://githu b.com/
ocaml -commu nity/utop. Accessed 2018-12-01

 74. Frédéric B, Thomas R (2018) Context sensitive completion for OCaml in
Vim and Emacs. http://githu b.com/ocaml /merli n. Accessed 2018-12-01

 75. Microsoft (2018) Visual studio code. https ://code.visua lstud io.com.
Accessed 2018-12-01

 76. GitHub (2018) A hackable text editor. http://atom.io. Accessed
2018-12-01

 77. OCamlPRO (2018) Indentation tool for OCaml. http://githu b.com/
OCaml Pro/ocp-inden t. Accessed 2018-12-01

 78. Hugo H (2018) Auto-formatter for OCaml code. http://githu b.com/
ocaml -ppx/ocaml forma t. Accessed 2018-12-01

 79. Bérenger F (2016) Nouveaux Logiciels Pour la Biologie Structurale
Computationnelle et la Chémoinformatique. PhD thesis, Paris, CNAM

 80. Faulon J-L, Visco DP, Pophale RS (2003) The signature molecular descrip-
tor. 1. Using extended valence sequences in QSAR and QSPR studies.
J Chem Inf Comput Sci 43(3):707–720. https ://doi.org/10.1021/ci020
345w

 81. Moreau G, Broto P (1980) The autocorrelation of a topological structure:
a new molecular descriptor. Nouv J Chim 4(6):359–360

 82. Wand MP (1994) Fast computation of multivariate kernel estimators.
J Comput Graph Stat 3(4):433–445. https ://doi.org/10.1080/10618
600.1994.10474 656

 83. Francois B (2018) Chemoinformatics tool for ligand-based virtual
screening. http://githu b.com/UnixJ unkie /ACPC. Accessed 2018-12-01

 84. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular
docking. J Med Chem 49(23):6789–6801

 85. Berenger F (2017) UnixJunkie/consent: release for publication. J Chem-
inform. https ://doi.org/10.5281/zenod o.10067 28

 86. Francois B (2018) Ligand-based virtual screening with consensus que-
ries. http://githu b.com/UnixJ unkie /conse nt. Accessed 2018-12-01

 87. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an
automated pipeline for the setup of Poisson–Boltzmann electrostatics
calculations. Nucleic Acids Res 32:665–667. https ://doi.org/10.1093/nar/
gkh38 1

 88. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostat-
ics of nanosystems: application to microtubules and the ribosome. Proc
Natl Acad Sci 98(18):10037–10041. https ://doi.org/10.1073/pnas.18134
2398

 89. Berenger F (2017) UnixJunkie/fragger: release for Publication in F1000R.
https ://doi.org/10.5281/zenod o.87732 0

 90. Francois B (2018) A protein fragments picker. http://githu b.com/UnixJ
unkie /fragg er. Accessed 2018-12-01

 91. Gouy I (2018) Debian language shootout. http://bench marks game-
team.pages .debia n.net/bench marks game. Accessed 2018-12-01

 92. Swamidass SJ, Azencott C-A, Daily K, Baldi P (2010) A CROC stronger
than ROC: measuring, visualizing and optimizing early retrieval. Bioin-
formatics 26(10):1348–1356. https ://doi.org/10.1093/bioin forma tics/
btq14 0

 93. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful
decoys, enhanced (DUD-E): better ligands and decoys for better bench-
marking. J Med Chem 55(14):6582–6594. https ://doi.org/10.1021/jm300
687e

 94. Danelutto M, Cosmo RD (2012) A minimal disruption skeleton experi-
ment: seamless map and reduce embedding in OCaml. Procedia
Comput Sci 9:1837–1846. https ://doi.org/10.1016/j.procs .2012.04.202.
Proceedings of the International Conference on Computational Sci-
ence, ICCS 2012

 95. Francois B (2018) parany. http://githu b.com/UnixJ unkie /paran y.
Accessed 2018-12-01

 96. Bourgoin M, Chailloux E, Lamotte J-L (2014) Efficient abstractions for
GPGPU programming. Int J Parallel Program 42(4):583–600. https ://doi.
org/10.1007/s1076 6-013-0261-x

 97. Kiselyov O (2014) The design and implementation of BER MetaOCaml.
In: Codish M, Sumii E (eds) Functional and logic programming. Springer,
Cham, pp 86–102

 98. Taha W (2004) A gentle introduction to multi-stage programming. In:
Lengauer C, Batory DS, Consel C, Odersky M (eds) Domain-specific
program generation, international seminar, Dagstuhl Castle, Germany,
March 23–28, 2003. Lecture notes in computer science, vol 3016.
Springer, Berlin, Heidelberg, pp 30–50

 99. Le Gall S (2018) ounit. http://githu b.com/gildo r478/ounit . Accessed
2018-12-01

 100. Cruanes S (2018) qcheck. https ://githu b.com/c-cube/qchec k. Accessed
2018-12-01

 101. Weininger D (1988) SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules. J Chem Inf
Comput Sci 28(1):31–36. https ://doi.org/10.1021/ci000 57a00 5

 102. Daylight Chemical Information Systems Inc. SMARTS. http://www.dayli
ght.com/dayht ml/doc/theor y/theor y.smart s.html. Accessed 1 Dec 2018

 103. Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova
N, Kuhn S, Pluskal T, Rojas-Chertó M, Spjuth O, Torrance G, Evelo CT,
Guha R, Steinbeck C (2017) The Chemistry Development Kit (CDK) v2.0:
atom typing, depiction, molecular formulas, and substructure search-
ing. J Cheminform 9(1):33. https ://doi.org/10.1186/s1332 1-017-0220-4

 104. contributors C (2018) Chemistry development kit. http://cdk.githu b.io.
Accessed 2018-12-01

 105. Tosco P, Stiefl N, Landrum G (2014) Bringing the MMFF force field to the
rdkit: implementation and validation. J Cheminform 6(1):37. https ://doi.
org/10.1186/s1332 1-014-0037-3

 106. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison
GR (2011) Open babel: an open chemical toolbox. J Cheminform
3(1):33. https ://doi.org/10.1186/1758-2946-3-33

 107. Raymond ES (2004) The art of unix programming. Addison-Wesley
Professional, Indianapolis

 108. wwwPDB (2008) Protein data bank contents guide: atomic coordinate
entry format description version 3.30. wwwPDB, Piscataway, NJ, USA

 109. Tripos I (2005) Tripos Mol2 file format. Tripos Inc, St. Louis
 110. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,

Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A,
Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn:
machine learning in Python. J Mach Learn Res 12:2825–2830

 111. Breiman L (2001) Random forests. Mach Learn 45(1):5–32. https ://doi.
org/10.1023/A:10109 33404 324

 112. Bastian T (2018) ORandForest. http://githu b.com/tobas t/ORand Fores t.
Accessed 2018-12-01

 113. Wang L (2017) Owl: a general-purpose numerical library in OCaml.
CoRR. arXiv :1707.09616

 114. Wang L (2018) Owl-OCaml scientific and engineering computing.
http://githu b.com/owlba rn/owl. Accessed 2018-12-01

 115. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghe-
mawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S,
Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y,
Zheng X (2016) Tensorflow: a system for large-scale machine learning.
In: Proceedings of the 12th USENIX conference on operating systems
design and implementation. OSDI’16. USENIX Association, Berkeley, CA,
USA, pp 265–283

 116. Mazare L (2018) tensorflow-ocaml. http://githu b.com/Laure ntMaz are/
tenso rflow -ocaml . Accessed 2018-12-01

https://doi.org/10.1016/0020-0190(91)90074-R
https://doi.org/10.1016/0020-0190(91)90074-R
https://doi.org/10.1021/ci034150f
http://github.com/UnixJunkie/bisec-tree
http://github.com/UnixJunkie/bisec-tree
http://opam.ocaml.org
http://github.com/ocaml/opam-repository
http://github.com/ocaml/opam-repository
http://github.com/AltGr/opam-bundle
http://github.com/ocaml-community/utop
http://github.com/ocaml-community/utop
http://github.com/ocaml/merlin
https://code.visualstudio.com
http://atom.io
http://github.com/OCamlPro/ocp-indent
http://github.com/OCamlPro/ocp-indent
http://github.com/ocaml-ppx/ocamlformat
http://github.com/ocaml-ppx/ocamlformat
https://doi.org/10.1021/ci020345w
https://doi.org/10.1021/ci020345w
https://doi.org/10.1080/10618600.1994.10474656
https://doi.org/10.1080/10618600.1994.10474656
http://github.com/UnixJunkie/ACPC
https://doi.org/10.5281/zenodo.1006728
http://github.com/UnixJunkie/consent
https://doi.org/10.1093/nar/gkh381
https://doi.org/10.1093/nar/gkh381
https://doi.org/10.1073/pnas.181342398
https://doi.org/10.1073/pnas.181342398
https://doi.org/10.5281/zenodo.877320
http://github.com/UnixJunkie/fragger
http://github.com/UnixJunkie/fragger
http://benchmarksgame-team.pages.debian.net/benchmarksgame
http://benchmarksgame-team.pages.debian.net/benchmarksgame
https://doi.org/10.1093/bioinformatics/btq140
https://doi.org/10.1093/bioinformatics/btq140
https://doi.org/10.1021/jm300687e
https://doi.org/10.1021/jm300687e
https://doi.org/10.1016/j.procs.2012.04.202
http://github.com/UnixJunkie/parany
https://doi.org/10.1007/s10766-013-0261-x
https://doi.org/10.1007/s10766-013-0261-x
http://github.com/gildor478/ounit
https://github.com/c-cube/qcheck
https://doi.org/10.1021/ci00057a005
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html.
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html.
https://doi.org/10.1186/s13321-017-0220-4
http://cdk.github.io
https://doi.org/10.1186/s13321-014-0037-3
https://doi.org/10.1186/s13321-014-0037-3
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://github.com/tobast/ORandForest
http://arxiv.org/abs/1707.09616
http://github.com/owlbarn/owl
http://github.com/LaurentMazare/tensorflow-ocaml
http://github.com/LaurentMazare/tensorflow-ocaml

Page 13 of 13Berenger et al. J Cheminform (2019) 11:10

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

 117. Mazare L (2018) ocaml-torch. http://githu b.com/Laure ntMaz are/ocaml
-torch . Accessed 2018-12-01

 118. R Core Team (2018) R: a language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria

 119. Berenger F (2018) orsvm_e1071 - OCaml wrapper to R packages e1071
and svmpath. http://githu b.com/UnixJ unkie /orsvm -e1071 . Accessed
2018-12-01

 120. Berenger F (2018) orrandomForest—classification or regression using
random forests. http://githu b.com/UnixJ unkie /orran domFo rest.
Accessed 2018-12-01

 121. Berenger F (2018) cpm—classification performance metrics library.
http://githu b.com/UnixJ unkie /cpmli b. Accessed 2018-12-01

 122. Bradley AP (1997) The use of the area under the ROC curve in the evalu-
ation of machine learning algorithms. Pattern Recogn 30(7):1145–1159.
https ://doi.org/10.1016/S0031 -3203(96)00142 -2

 123. Lopes JCD, dos Santos FM, Martins-José A, Augustyns K, De Winter H
(2017) The power metric: a new statistically robust enrichment-type

metric for virtual screening applications with early recovery capability. J
Cheminform 9(1):7. https ://doi.org/10.1186/s1332 1-016-0189-4

 124. Truchon J-F, Bayly CI (2007) Evaluating virtual screening methods: good
and bad metrics for the early recognition problem. J Chem Inf Model
47(2):488–508. https ://doi.org/10.1021/ci600 426e

 125. Leroy X, Rémy D (2014) Unix system programming in OCaml
 126. UCSF (2018) Chimera BILD file format. http://www.cgl.ucsf.edu/chime

ra/docs/Users Guide /bild.html. Accessed 2018-12-01
 127. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng

EC, Ferrin TE (2004) UCSF Chimera—a visualization system for explora-
tory research and analysis. J Comput Chem 25(13):1605–1612. https ://
doi.org/10.1002/jcc.20084

 128. Vouillon J, Balat V (2014) From bytecode to JavaScript: the Js of ocaml
compiler. Softw Pract Exp 44(8):951–972. https ://doi.org/10.1002/
spe.2187

http://github.com/LaurentMazare/ocaml-torch
http://github.com/LaurentMazare/ocaml-torch
http://github.com/UnixJunkie/orsvm-e1071
http://github.com/UnixJunkie/orrandomForest
http://github.com/UnixJunkie/cpmlib
https://doi.org/10.1016/S0031-3203(96)00142-2
https://doi.org/10.1186/s13321-016-0189-4
https://doi.org/10.1021/ci600426e
http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/bild.html
http://www.cgl.ucsf.edu/chimera/docs/UsersGuide/bild.html
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1002/jcc.20084
https://doi.org/10.1002/spe.2187
https://doi.org/10.1002/spe.2187

	Chemoinformatics and structural bioinformatics in OCaml
	Abstract
	Background:
	Results:
	Conclusions:

	Introduction
	Methods
	Resources to learn OCaml
	Understanding OCaml type signatures
	An OCaml programming environment

	Results
	OCaml in chemoinformatics and structural bioinformatics
	Accelerating chemoinformatics and structural bioinformatics in OCaml

	Discussion
	Scientific software prototyping in OCaml
	OCaml language and ecosystem drawbacks

	Conclusions
	Authors’ contributions
	References

