
Pletscher‑Frankild and Jensen J Cheminform (2019) 11:19
https://doi.org/10.1186/s13321‑019‑0344‑9

SOFTWARE

Design, implementation, and operation
of a rapid, robust named entity recognition web
service
Sune Pletscher‑Frankild1,2 and Lars Juhl Jensen1*

Abstract

Most BioCreative tasks to date have focused on assessing the quality of text‑mining annotations in terms of preci‑
sion and recall. Interoperability, speed, and stability are, however, other important factors to consider for practical
applications of text mining. For about a decade, we have run named entity recognition (NER) web services, which are
designed to be efficient, implemented using a multi‑threaded queueing system to robustly handle many simultane‑
ous requests, and hosted at a supercomputer facility. To participate in this new task, we extended the existing NER
tagging service with support for the BeCalm API. The tagger suffered no downtime during the challenge and, as in
earlier tests, proved to be highly efficient, consistently processing requests of 5000 abstracts in less than half a minute.
In fact, the majority of this time was spent not on the NER task but rather on retrieving the document texts from the
challenge servers. The latter was found to be the main bottleneck even when hosting a copy of the tagging service
on a Raspberry Pi 3, showing that local document storage or caching would be desirable features to include in future
revisions of the API standard.

Keywords: Text mining, Named entity recognition, Web services

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
BioCreative and other shared tasks in the biomedical
text-mining community have over the years played a key
role in progressively improving text mining methods, in
particular for named entity recognition (NER). Most Bio-
Creative tasks have focused purely on evaluating the pre-
cision and recall [1, 2], with the BioC interoperability task
[3] and the interactive annotation task (IAT) [4] being
notable exceptions. However, as illustrated by the lat-
ter two tasks, whereas precision and recall are obviously
important factors, they are far from the only factors that
matter when using text mining in practice. Interoperabil-
ity, speed, and stability are other very important factors;
the new Technical Interoperability and Performance of

annotation Servers (TIPS) task set out to evaluate just
that.

Running fast and robust web services is not trivial.
Many academic online tools will become unresponsive or
even crash if subjected to many simultaneous requests,
e.g. when using them on a practical course. Also, it is
impossible to ensure near perfect uptime unless the ser-
vices are hosted professionally with reliable power and
internet connection. Handling these issues requires a
focus on the engineering aspects rather than only on the
scientific quality of the tools.

We participated in the BioCreative V IAT [4] with
the interactive annotation tool, EXTRACT, which helps
curators find and extract standard-compliant terms for
annotation of metagenomic records and other sam-
ples [5]. Behind its web-based user interface, the sys-
tem makes use of the same real-time tagger for NER as
the augmented browsing tool Reflect [6]. The core NER
engine was designed from the ground up with speed in
mind and is capable of tagging thousands of PubMed

Open Access

Journal of Cheminformatics

*Correspondence: lars.juhl.jensen@cpr.ku.dk
1 Disease Systems Biology Program, Novo Nordisk Foundation Center
for Protein Research, Faculty of Health and Medical Sciences, University
of Copenhagen, Copenhagen, Denmark
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-7885-715X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-019-0344-9&domain=pdf

Page 2 of 6Pletscher‑Frankild and Jensen J Cheminform (2019) 11:19

abstracts per second per CPU core [7]. This makes it ide-
ally suited for large-scale and real-time applications, such
as the TIPS task.

Here, we present the entire system for the NER web
service that underlies the EXTRACT [5] and Reflect
tools [6] as well as our entry in the TIPS challenge. This
includes not only the tagger software itself, which has
been described in several earlier publications, but also
the Mamba web server software that enables us to host
multi-threaded web services with preloaded data (e.g. the
tagger dictionary) and priority queues to efficiently han-
dle even high request rates. The system delivered a total
turn-around time of about 1 s for small requests, and
was able to process approximately 5000–10,000 abstracts
per minutes for larger batch requests. Notably, the vast
majority of this time was spent on retrieving the docu-
ment text rather than actual processing of it; to make the
server faster, it would thus be necessary to locally store or
cache the documents, which was explicitly not permitted
in the TIPS task.

Methods
Dictionaries used for NER and normalization
The server uses a combination of previously published
dictionaries to recognize six of the types of entities
accepted by the BeCalm server and normalize them to
identifiers from databases and ontologies. These are a
subset of the entity types used in EXTRACT v2 [5].

For annotation of gene/protein names, the tagger uses a
dictionary covering the 9.6 million protein-coding genes
from 2031 organisms included in STRING v10.5 [8]
as well as ncRNAs from the RAIN database [9]. Unlike
many NER systems, the BeCalm API makes a distinction
between genes and their protein products. Because the
STRING database is locus-based, i.e. it does not distin-
guish between splice isoforms, and because ncRNAs are
also included, we chose to use the type GENE for these
annotations and to not support the PROTEIN annota-
tion type. All recognized names are disambiguated to
their respective STRING or RAIN identifiers, which are
derived from the Ensembl [10], RefSeq [11], and miRBase
[12] databases.

Annotations of the type CHEMICAL are made using
a dictionary comprised of small-molecule compounds
from the PubChem database [13], which was developed
and used for recognition of chemical names in STITCH
v5 [14]. All annotations of chemicals are normalized to
PubChem compound identifiers.

The tagger makes annotations of the type ORGAN-
ISM using an updated version of the dictionary of the
SPECIES/ORGANISMS tagger [7]. The dictionary was
constructed based on NCBI Taxonomy [10], and all anno-
tations are thus normalized to NCBI taxon identifiers.

To perform annotations of the types SUBCELLULAR_
STRU CTU RE, TISSUE_AND_ORGAN, and DISEASE the
tagger uses the dictionaries created as part of the COM-
PARTMENTS [15], TISSUES [16, 17], and DISEASES
[18] database, respectively. These were constructed from
Gene Ontology [19], Brenda Tissue Ontology [20], and
Disease Ontology [21], identifiers from which are used
for normalization of the annotations.

The version of the complete dictionary used by Tagger
for the TIPS task has been deposited on FigShare (https
://doi.org/10.6084/m9.figsh are.45782 92). The reduced
dictionary used by PiTagger has also been deposited on
Figshare (https ://doi.org/10.6084/m9.figsh are.46351 75).
The latest version of the dictionary, which is used by the
production server, is available at http://downl oad.jense
nlab.org/tagge r_dicti onary .tar.gz.

Named entity recognition software
The core of the NER system is a highly optimized dic-
tionary-based tagger engine, implemented in C++. It
is able to perform flexible matching of a dictionary with
millions of names against thousands of abstracts per sec-
ond per CPU core [7]. The tagger is furthermore inher-
ently thread safe, for which reason a single instance of the
tagger can easily handle many parallel requests. These
properties make it an excellent starting point for build-
ing a real-time service that can handle large requests as
required for TIPS task.

Although the TIPS task does not assess the quality of
the annotations, it is worth noting that the speed of the
tagger was not achieved by sacrificing quality. The qual-
ity of the tagging results for organism names was previ-
ously evaluated on gold-standard corpora and found to
be comparable to the best methods with precision and
recall of ~ 83% and ~ 73%, respectively [7, 22]. The NER
quality has not been benchmarked directly for chemicals,
genes, tissues, and diseases; however, these NER compo-
nents have shown to give good results when used as the
basis for association extraction [8, 9, 13, 15–18].

The tagger software is open source and available at
https ://bitbu cket.org/larsj uhlje nsen/tagge r/. It can be
used either as a command-line tool or as a Python mod-
ule. It is also distributed as a Docker container at https ://
hub.docke r.com/r/larsj uhlje nsen/tagge r/.

Mamba web service framework
To be able to robustly host web services, we developed
an in-house Python framework, Mamba, which can
simultaneously run several compute-intensive requests
in parallel while remaining highly responsive to small
requests. The framework has a modular structure that
enables us to use it both for the tagger, which is the
focus of this paper, and for serving precomputed results

https://doi.org/10.6084/m9.figshare.4578292
https://doi.org/10.6084/m9.figshare.4578292
https://doi.org/10.6084/m9.figshare.4635175
http://download.jensenlab.org/tagger_dictionary.tar.gz
http://download.jensenlab.org/tagger_dictionary.tar.gz
https://bitbucket.org/larsjuhljensen/tagger/
https://hub.docker.com/r/larsjuhljensen/tagger/
https://hub.docker.com/r/larsjuhljensen/tagger/

Page 3 of 6Pletscher‑Frankild and Jensen J Cheminform (2019) 11:19

from relational database through REST APIs and inter-
active web interfaces. The REST API code accesses a
single instance of the tagger engine through its Python
module, which preloads the complete dictionary into
RAM when the Mamba server is started.

Mamba is a stand-alone multithreaded Python web-
server created specifically to expose computationally
heavy and/or heavily requested services as web services.
Mamba was designed to solve two main objectives
native to websites exposing a computational pipeline.
Firstly, Mamba protects against clients overloading the
backend system by controlling computational resources
in terms number of simultaneous requests and mem-
ory usage, which is all specified in a standard configu-
ration file format. Secondly, Mamba is designed to be
as simple as possible to set up and run while allowing
fine-grained resource control and providing a plugin-
framework for project-specific code, such as the tagger.
Plugins implement their specialized functionality as a
Python API class per request type.

Mamba uses task queues combined with a configur-
able number of worker-threads handling the queued
tasks. The length of the queue combined with the num-
ber of worker threads provide the first level of resource
control, which prevents that too many tasks are exe-
cuted at the same time, which could cause the service
to crash, or that the queue becomes excessively long,
which could make the service unavailable for extended
periods of time. In addition to that, Mamba comes with
configurable per user and overall resource restrictions,
which limit the maximum number of simultaneous
requests and the memory usage used per IP address.
When these limits are reached, requests will be rejected
using the appropriate HTTP status code.

Each Mamba server will require task specific parsing
and processing of input data, and Mamba provides a
task-based API for this that is centered around a sin-
gle virtual Mamba request class. The configuration file
specifies where Mamba should look for project-specific
Request classes, which will be loaded as Python code
files when starting the server, also allowing data such as
the dictionary to be preloaded. The API allows tasks to
jump between task queues, which represents different
stages of the task. For example, we use separate queues
for the tagger to do the initial parsing of the request,
to download the document text from the document
server, and to perform the actual named entity recog-
nition. This enables us to specify that many document
download tasks can take place in parallel (which is not
a CPU intensive), but that only a few actual NER tag-
ging tasks can run in parallel (the CPU intensive part
of a request). When configured appropriately, this
makes the Mamba server very responsive to all users

as it is constantly aware of preventing system from
overloading.

To further improve the response time, stability, and
handling of multiple requests, even in the thousands, the
main input mechanism is controlled by a single POSIX
select statement. Mamba listens to a single port through
a select statement that runs as single main thread; this
sets it apart from most other Python-based web-service
frameworks, which handle each input as new thread. The
select statement collects data for all incoming requests
as they are received over the network and adds a new
task to the parse queue only once a full request has been
received. From thereon the processing is handled by the
thread pools described above, until all processing has
been done and the result is ready to be sent back to the
client. Mamba then uses the same efficient select state-
ment that receives the incoming data to send the result
back as an HTTP response to the client. Mamba auto-
matically cleans up incomplete requests caused by com-
munication errors, restarts worker threads if they crash,
and catches any exceptions produced by Mamba or its
plugins, returning the appropriate HTTP status code.

Implementing the BeCalm API itself simply involved
adding a request class the Mamba tagger module. Dif-
ferent parts of the BeCalm API run in different queues
to ensure that e.g. getStatus requests and the initial pars-
ing of getAnnotations requests are executed immediately,
that many document downloads can run in parallel, and
that not too many of the actual CPU-intensive NER tasks
are running at the same time. The queues used for this
are not exclusive to BeCalm API, but are shared with the
other tagger APIs and the EXTRACT tool [4].

Hardware and hosting
The main tagger runs on a single server with one Intel
Xeon E5-2620 2.4 GHz CPU and 256 GB of RAM. This
server also runs many other resources and databases
related to text mining, including EXTRACT [5], SPE-
CIES/ORGANISMS [7], COMPARTMENTS [15], TIS-
SUES [16, 17], and DISEASES [18]. This server—from
hereon referred to as Tagger—is hosted at the high-
performance computing facility Computerome (https ://
compu terom e.dtu.dk) that provides it with a highly reli-
able gigabit internet connection.

To test the influence of the performance of actual doc-
ument tagging vs. overhead associated with fetching of
document texts, we ran a second instance of the tagger
software on a Raspberry Pi 3 with a 1.2 GHz quad-core
ARM Cortex-A53 and 1 GB of RAM. Due to the limited
memory, this instance runs with a reduced dictionary;
however, it should be noted that tagging speed is largely
independent of dictionary size because the tagging algo-
rithm is based on hash lookups [7]. This instance was

https://computerome.dtu.dk
https://computerome.dtu.dk

Page 4 of 6Pletscher‑Frankild and Jensen J Cheminform (2019) 11:19

hosted over my home internet connection (60 Mbit/s
download, 25 Mbit/s upload) and is in the following
referred to as PiTagger.

Results and discussion
Rapid annotation of biomedical entities
To test the speed of Tagger and PiTagger when accessed
through the BeCalm API, we submitted private requests
for tagging of 1, 10, 100, 1000, and 5000 abstracts from
the abstract and patent servers via the BeCalm web
interface. All settings except from the number of docu-
ments to tag were left at their default values. Each of the
five sizes of tagging requests was repeated five times at
four different timepoints, giving a total of 20 observa-
tions of the total time required for tagging for each size
of request from each document source on each of the two
tagger servers. These results are summarized as means
and standard deviations in Table 1; the detailed data with
each individual observation are available in Additional
file 1: Tables S1 and S2.

Neither Tagger nor PiTagger suffered any errors or
slowdowns during these tests, despite the Tagger server
hosting multiple other resources and the PiTagger run-
ning on minimal hardware. This shows that the software
is not only fast but also stable. This is unsurprising since
all parts except the BeCalm API-specific code have been
used in a production setting for several years.

In summary, the Tagger speed tests showed that
there is a constant overhead of about 1 s on all tagging
requests, which dominates the picture up to tagging of
about 100 patent abstracts. For larger requests, the ser-
vice takes ~ 5 and ~ 10 s more per 1000 patent abstracts
and PubMed abstracts, respectively. This difference is
presumably explained by PubMed abstracts being, on
average, about twice as long as patent abstracts. Notably,
the vast majority of the time is spent on fetching the doc-
ument texts, with only about ~ 20% of time being spent
on actual processing. Although explicitly not permitted
in the TIPS task, local storage or caching of documents

on the annotation server would thus be an attractive
future feature.

To further test and illustrate that retrieval of document
texts is the main bottleneck, we set up a second copy of
the tagger code, PiTagger, to run on a Raspberry Pi 3 with
a reduced dictionary. However, as the tagging speed is
largely independent of dictionary size, the performance
numbers can nonetheless be directly compared. For small
requests, the total time is indistinguishable between Tag-
ger and PiTagger, and even for large requests PiTagger
takes only about 50% longer than Tagger (Table 1). This
is the case despite the service running only one thread
per request, thus utilizes only a quarter of the compute
power of a Raspberry Pi 3 in these tests. The PiTagger did
not participate in the full official TIPS evaluation.

The total tagging time for the official TIPS requests
was in the beginning consistently longer than for the pri-
vate requests reported in Table 1, which were submitted
during the same weeks. Monitoring the tagging services
during TIPS requests revealed that actual document pro-
cessing was as fast as always. In light of the results above,
we assume that this slowdown was due to the fetching
of documents taking longer in the official tests, when all
participants simultaneously sent requests to the central
document servers, thus making them even more of a bot-
tleneck. It is thus also no surprise that the fast servers all
performed equally well, since they all spent far more time
on downloading the text documents and uploading the
annotations than on processing them.

Extending the BeCalm API
The BeCalm API in its current form has certain design
constraints that limit the flexibility and thereby useful-
ness of the annotation servers. Firstly, document text is
not submitted as part of the request, but must instead
be fetched from designated sources based on the sub-
mitted document identifiers. Secondly, the results can-
not be returned directly to the end user, but must be
returned to the central BeCalm server. Through creative

Table 1 Performance of the taggers

For small requests the total turnaround time is ~ 1 s. Larger requests take an extra 5–10 s per 1000 abstracts to be processed on Tagger. Notably, most of this time is
spent on retrieving the document texts from document identifiers, whereas the actual NER step takes only about 20% of the total time. This is reflected in the fact that
the PiTagger, which runs on a Raspberry Pi 3, takes only about 50% longer to process large requests

Documents Tagger: total time (s) PiTagger: total time (s)

Abstract server Patent server Abstract server Patent server

1 0.87 ± 0.32 0.84 ± 0.32 0.75 ± 0.34 0.84 ± 0.24

10 0.98 ± 0.30 0.83 ± 0.26 1.10 ± 0.28 0.87 ± 0.37

100 1.89 ± 0.29 1.48 ± 0.27 2.34 ± 0.33 1.52 ± 0.34

1000 11.31 ± 0.68 6.02 ± 0.37 15.23 ± 0.48 8.89 ± 0.48

5000 52.18 ± 2.76 26.67 ± 1.16 72.73 ± 1.81 40.83 ± 1.01

Page 5 of 6Pletscher‑Frankild and Jensen J Cheminform (2019) 11:19

use of the custom_parameters part of the request, our
implementation circumvents both of these constraints.

Instead of hardwiring the annotation server to
use only the abstract and patent servers provided by
BeCalm, the relationships between source and server
URL are specified within a servers subsection of cus-
tom_parameters. This enables end users to obtain the
tagging results for any desired documents, provided
they make the documents available through an API
compatible with the one used by the BeCalm document
servers.

Similarly, the annotation server is not hardwired to
return the annotation results to the BeCalm server.
Instead, the saveAnnotations request will be made to the
URL specified in as apiurl in the custom_parameters sec-
tion. This allows end users to set up their own server to
receive the results directly, if they so wish.

Conclusions
Turning scientific software into a stable and fast web ser-
vice can be a challenging engineering task. First, the soft-
ware has to be sufficiently fast, which will often require
optimization of the implementation. Second, it has to
be made robust enough to handle many simultaneous
requests without overloading the server. Third, it has to
be hosted in a manner that ensures the server is available
at all times.

In case of the Tagger NER software, the implementa-
tion itself was already highly optimized, since it was
designed to be used on very large text corpora. The
issues related to robustness of the web service were dealt
with by the Mamba web service framework, which uses
queues with associated thread pools to efficiently process
multiple requests in parallel, while protecting the server
against being overloaded if a user floods it with requests.
Finally, we hosted the web service at a supercomputing
facility to ensure high availability. The result was a server
which indeed was among the fastest and suffered no
downtime during the challenge.

However, even if a web service is both stable and fast,
processing large amounts of text through web services
can be inefficient. This is because transferring the input
text and the output data to and from the web service can
easily take much longer than the actual computations.
When processing large text corpora, a better solution
is thus usually to run the software locally. To make this
as easy as possible, we make the Tagger software avail-
able as as a Docker container (https ://hub.docke r.com/r/
larsj uhlje nsen/tagge r/) and provide a download file with
the dictionary used by the web service (http://downl oad.
jense nlab.org/tagge r_dicti onary .tar.gz).

Additional file

Additional file 1. Supplementary tables with detailed performance evalu‑
ation data.

Authors’ contributions
SPF developed the Mamba framework and the Python integration of the Tag‑
ger. LJJ developed the C++ Tagger software, implemented the BeCalm API
support, and performed the performance tests. Both authors contributed to
writing the manuscript. Both authors read and approved the final manuscript.

Author details
1 Disease Systems Biology Program, Novo Nordisk Foundation Center for Pro‑
tein Research, Faculty of Health and Medical Sciences, University of Copen‑
hagen, Copenhagen, Denmark. 2 Present Address: Intomics A/S, Lyngby,
Denmark.

Acknowledgements
Thanks to Helen V. Cook for improvements to the source code and documen‑
tation of the tagger and the organizers of the 3rd Biomedical Linked Annota‑
tion Hackathon (BLAH3), where the BeCalm API was developed.

Competing interests
The authors declare that they have no competing interests.

Availability and requirements
The Mamba and Tagger source code is available under the BSD 2‑clause
license from https ://bitbu cket.org/larsj uhlje nsen/mamba / and https ://bitbu
cket.org/larsj uhlje nsen/tagge r/. The software is designed to run under Linux
or BSD and is implemented in Python and C++. The dictionary used by Tag‑
ger is available under the Creative Commons Attribution license (CC BY 4.0) at
https ://doi.org/10.6084/m9.figsh are.45782 92 and the reduced dictionary used
by PiTagger at https ://doi.org/10.6084/m9.figsh are.46351 75).

Funding
This work was supported by the Novo Nordisk Foundation [NNF14CC0001].
The funding body had no role in the study design, analysis, interpretation, or
writing of the manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 30 July 2018 Accepted: 4 March 2019

References
 1. Wu CH, Arighi CN, Cohen KB et al (2012) BioCreative—2012 virtual

issue. Database, 2012, bas049
 2. Arighi CN, Wu CH, Cohen KB et al (2014) BioCreative‑IV virtual issue.

Database, 2014, bau039
 3. Comeau DC, Batista‑Navarro RT, Dai H‑J et al (2014) BioC interoperabil‑

ity track overview. Database, 2014, bau053
 4. Wang Q, Abdul S, Almeida L et al (2016) Overview of the interactive

task in BioCreative V. Database, 2016, baw119
 5. Pafilis E, Buttigieg PL, Ferrell B et al (2016) EXTRACT: interactive extrac‑

tion of environment metadata and term suggestion for metagenomic
sample annotation. Database, 2016, baw005.3. The NBCI Taxonomy
Database: http://www.ncbi.nlm.nih.gov/taxon omy

 6. Pafilis E, O’Donoghue SI, Jensen LJ et al (2009) Reflect: augmented
browsing for the life scientist. Nat Biotechnol 27:508–510

 7. Pafilis E, Pletscher‑Frankild SP, Fanini L et al (2013) The SPECIES and
ORGANISMS resources for fast and accurate identification of taxonomic
names in text. PLoS ONE 8:e65390

https://hub.docker.com/r/larsjuhljensen/tagger/
https://hub.docker.com/r/larsjuhljensen/tagger/
http://download.jensenlab.org/tagger_dictionary.tar.gz
http://download.jensenlab.org/tagger_dictionary.tar.gz
https://doi.org/10.1186/s13321-019-0344-9
https://bitbucket.org/larsjuhljensen/mamba/
https://bitbucket.org/larsjuhljensen/tagger/
https://bitbucket.org/larsjuhljensen/tagger/
https://doi.org/10.6084/m9.figshare.4578292
https://doi.org/10.6084/m9.figshare.4635175
http://www.ncbi.nlm.nih.gov/taxonomy

Page 6 of 6Pletscher‑Frankild and Jensen J Cheminform (2019) 11:19

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

 8. Szklarczyk D, Morris JH, Cook H et al (2017) The STRING database in 2017:
quality‑controlled protein–protein association networks, made broadly
accessible. Nucleic Acids Res 45:D362–D368

 9. Junge A, Refsgaard JC, Garde C et al (2017) RAIN: RNA–protein Associa‑
tion and Interaction Networks. Database, 2017, baw167

 10. Aken BL, Achuthan P, Akanni W et al (2017) Ensembl 2017. Nucleic Acids
Res 45:D635–D642

 11. NCBI Resource Coordinators (2016) Database resources of the National
Center for biotechnology information. Nucleic Acids Res 44:D7–D19

 12. Kozomara A, Griffiths‑Jones S (2014) miRBase: annotating high con‑
fidence microRNAs using deep sequencing data. Nucleic Acids Res
42:D68–D73

 13. Kim S, Thiessen PA, Bolton EE et al (2016) PubChem substance and com‑
pound databases. Nucleic Acids Res 44:D1202–D1213

 14. Szklarczyk D, Santos A, von Mering C et al (2016) STITCH 5: augmenting
protein–chemical interaction networks with tissue and affinity data.
Nucleic Acids Res 44:D380–D384

 15. Binder JX, Pletscher‑Frankild S, Tsafou K et al (2014) COMPARTMENTS:
unification and visualization of protein subcellular localization evidence.
Database, 2014, bau012

 16. Santos A, Tsafou K, Stolte C et al (2015) Comprehensive comparison of
large‑scale tissue expression datasets. PeerJ 3:e1054

 17. Palasca O, Santos A, Stolte C et al (2018). TISSUES 2.0: an integrative web
resource on mammalian tissue expression. Database, 2018:bay003

 18. Pletscher‑Frankild S, Pallejà A, Tsafou K et al (2015) DISEASES: text mining
and data integration of disease–gene associations. Methods 74:83–89

 19. The Gene Ontology Consortium (2017) Expansion of the gene ontology
knowledgebase and resources. Nucleic Acids Res 45:D331–D338

 20. Placzek S, Schomburg I, Chang A et al (2017) BRENDA in 2017: new
perspectives and new tools in BRENDA. Nucleic Acids Res 45:D380–D388

 21. Kibbe WA, Arze C, Felix V et al (2015) Disease Ontology 2015 update: an
expanded and updated database of human diseases for linking biomedi‑
cal knowledge through disease data. Nucleic Acids Res 43:D1071–D1078

 22. Cook H, Pafilis E, Jensen LJ (2016) A dictionary‑ and rule‑based system
for identification of bacteria and habitats in text. Proc BioNLP Shar Task
Workshop 4:50–55

	Design, implementation, and operation of a rapid, robust named entity recognition web service
	Abstract
	Introduction
	Methods
	Dictionaries used for NER and normalization
	Named entity recognition software
	Mamba web service framework
	Hardware and hosting

	Results and discussion
	Rapid annotation of biomedical entities
	Extending the BeCalm API

	Conclusions
	Authors’ contributions
	References

