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Abstract 

Deep learning methods applied to drug discovery have been used to generate novel structures. In this study, we 
propose a new deep learning architecture, LatentGAN, which combines an autoencoder and a generative adversarial 
neural network for de novo molecular design. We applied the method in two scenarios: one to generate random 
drug‑like compounds and another to generate target‑biased compounds. Our results show that the method works 
well in both cases. Sampled compounds from the trained model can largely occupy the same chemical space as the 
training set and also generate a substantial fraction of novel compounds. Moreover, the drug‑likeness score of com‑
pounds sampled from LatentGAN is also similar to that of the training set. Lastly, generated compounds differ from 
those obtained with a Recurrent Neural Network‑based generative model approach, indicating that both methods 
can be used complementarily.
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Introduction
There has been a surge of deep learning methods applied 
to cheminformatics in the last few years [1–5]. Whereas 
much impact has been demonstrated in deep learning 
methods that replace traditional machine learning (ML) 
approaches (e.g., QSAR modelling [6]), a more profound 
impact is the application of generative models in de novo 
drug design [7–9]. Historically, de novo design was per-
formed by searching virtual libraries based on known 
chemical reactions alongside a set of available chemi-
cal building blocks [10] or by using transformational 
rules based on the expertise of medicinal chemists to 
design analogues to a query structure [11]. While many 
successes using these techniques have been reported in 
literature [12], it is worthwhile to point out that these 

methods rely heavily on predefined rules of structure 
generation and do not have the concept of learning 
prior knowledge on how drug-like molecules should be. 
In contrast, deep generative models learn how to gen-
erate molecules by generalizing the probability of the 
generation process of a large set of chemical structures 
(i.e., training set). Then, structure generation is basically 
a sampling process following the learned probability dis-
tribution [7, 8, 13, 14]. It is a data-driven process and 
requires very few predefined rules.

Early attempted architectures were inspired by the 
deep learning methods used in natural language process-
ing (NLP) [7, 15]. A recurrent neural network (RNN) 
trained with a set of molecules represented as SMILES 
strings [16] is able to generate a much bigger chemical 
space than the training set. Later on, the REINVENT 
method was proposed, which combines RNNs with rein-
forcement learning to generate structures with desir-
able properties [8]. Another architecture, the variational 
autoencoder (VAE), was also shown to generate novel 
chemical space [9, 17]. This architecture is comprised of 
an encoder, that converts the molecule to a latent vector 
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representation and a decoder, from which the latent rep-
resentation tries to generate the input molecule again. By 
changing the internal latent representation and decod-
ing it, new chemical space can be obtained. More studies 
followed that improved the architecture, in both making 
it more robust and improving the quality of the latent 
representation generated [18–20]. One special mention 
is the use of randomized SMILES [14, 21, 22]. Instead 
of using a unique SMILES representation for each mol-
ecule, different representations are used in every stage 
of the training. With this improvement, the quality of 
the chemical space generated in both RNNs and VAEs is 
much higher and the models tend to overfit much less. 
Besides the SMILES string based de novo structure gen-
eration methods, methods of generating molecules based 
on molecular graphs have also been proposed and, by 
using them, molecules can be directly generated step-by-
step as molecular graphs [23–26].

Generative adversarial neural (GAN) networks [27] 
have become a very popular architecture for generat-
ing highly realistic content [28]. A GAN has two com-
ponents, a generator and a discriminator, that compete 
against each other during training. The generator gener-
ates artificial data and the discriminator attempts to dis-
tinguish it from real data. The model is trained until the 
discriminator is unable to distinguish the artificial data 
from the real data. The first use in molecule generation 
was ORGAN [29] and its improved version, ORGANIC 
[30]. The former was tested with both molecular genera-
tion as well as musical scores, whereas the latter was tar-
geted directly at inverse design of molecules. ORGANIC 
had trouble optimizing towards the discrete values from 
the Lipinski Rule of Five [31] heuristic score but showed 
some success in optimizing the QED [11] score. An algo-
rithm combining GAN with RL was also used in RANC 
[32] and ATNC [33] where the central RNN was sub-
stituted by a differential neural computer (DNC) [34], a 
more advanced recurrent neural network architecture. 
The authors demonstrated that DNC-based architectures 
can handle longer SMILES and generate more diversity.

In this study, a new molecular generation strategy is 
described which combines an autoencoder and a GAN. 
The difference between this method and previous GAN 
methods such as ORGANIC and RANC is that the gen-
erator and discriminator network do not use SMILES 
strings as input, but instead n-dimensional vectors 
derived from the code-layer of an autoencoder trained as 
a SMILES heteroencoder [35]. This allows the model to 
focus on optimizing the sampling and not worry about 
SMILES syntax issues. The decoder part of a pretrained 
heteroencoder [22] neural network was used to translate 
the generated n-dimensional vector into molecular struc-
tures. We first trained the GAN on a set of ChEMBL [36] 

compounds and, after training, the GAN model was able 
to generate drug-like structures. Next, additional GAN 
models were trained on three target specific datasets 
(corresponding to EGFR, HTR1A and S1PR1 targets). 
Our results show that these GAN model can generate 
compounds which are similar to the ones in the training 
set but are still novel structures. We envision the Latent-
GAN to be a useful tool for de novo molecule design.

Methods and materials
Heteroencoder architecture
A heteroencoder is an autoencoder architecture trained 
on pairs of different representations of the same entity, 
i.e. different non-canonical SMILES of the same mol-
ecule. It consists of two neural networks, namely, the 
encoder and decoder, which are jointly trained as a trans-
formation pipeline. The encoder is responsible for trans-
lating one-hot encoded SMILES strings into a numerical 
latent representation whereas the decoder accepts this 
latent representation and attempts to reconstruct one 
of the possible non-canonical SMILES string that it rep-
resents. The implementation followed the architecture 
previously reported in [22] with some changes (Fig.  1, 
bottom).

Initially, the one-hot encoded SMILES string is propa-
gated through a two-layer bidirectional encoder with 
512 Long Short-Term Memory [26] units per layer, half 
of which are used for the forward and half for the back-
ward direction. The output of both directions is then 
concatenated and input to a feed-forward layer with 512 
dimensions. As a regularizing step during training, the 
resulting vector is perturbed by applying additive zero-
centered gaussian noise with a standard deviation of 0.1. 
The latent representation of the molecule is fed to a feed-
forward layer, the output of which is copied and inserted 
as hidden and cell states to a four-layer unidirectional 
LSTM RNN decoder with the same specifications as the 
encoder. Finally, the output of the last layer is processed 
by a feed-forward layer with softmax activation, to return 
the probability of sampling each character of the known 
character set of the dataset. Batch normalization with a 
momentum value of 0.9 [37] is applied on the output of 
every hidden layer, except for the gaussian noise layer.

The heteroencoder network was trained for 100 epochs 
with a batch size of 128 and using a constant learning 
rate of  10−3 for the first 50 epochs and an exponential 
decay following that, reaching a value of  10−6 in the final 
epoch. The decoder was trained using the teacher’s forc-
ing method [38]. The model was trained using the decod-
ing loss function of categorial cross entropy between the 
decoded and the training SMILES. After training the het-
eroencoder, the noise layer is deactivated, resulting in a 
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deterministic encoding and decoding of the GAN train-
ing and sampled sets.

The GAN architecture
A Wasserstein GAN with gradient penalty (WGAN-GP) 
[39, 40] was chosen as a GAN model. Every GAN consists 
of two neural networks, generator and discriminator that 
train simultaneously (Fig. 1, top). First, the discriminator, 
usually called the critic in the context of WGANs, tries to 
distinguish between real data and fake data. It is formed 
by three feed-forward layers of 256 dimensions each with 
the leaky ReLU [41] activation function between, except 
for the last layer where no activation function was used. 
Second, the generator consists of five feed-forward lay-
ers of 256 dimensions each with batch normalization and 
leaky ReLU activation function between each.

Workflow for training and sampling of the LatentGAN
The heteroencoder model was first pre-trained on the 
ChEMBL database for mapping structures to latent vec-
tors. To train the full GAN model, first the latent vector 
h of the training set was generated using the encoder part 
of the heteroencoder. Then, it was used as the true data 
input for the discriminator, while a set of random vec-
tors sampled from a uniform distribution were taken as 
fake data input to the generator. For every five batches of 
training for the discriminator, one batch was assigned to 

train the generator, so that the critic is kept ahead while 
providing the generator with higher gradients. Once the 
GAN training was finished, the Generator was sampled 
multiple times and the resulting latent vectors were fed 
into the decoder to obtain the SMILES strings of the 
underlying molecules.

Dataset and machine learning models for scoring
The heteroencoder was trained on 1,347,173 SMILES 
from the ChEMBL [36] dataset. This is a subset of 
ChEMBL 25 without duplicates that has been standard-
ized using the MolVS [42] v0.1.1 package with respect 
to the fragment, charge, isotope, stereochemistry and 
tautomeric states. The set is limited to SMILES of con-
taining only [H, C, N, O, S, Cl, Br] atoms and a total of 
50 heavy atoms or less. Furthermore, molecules known 
to be active towards DRD2 were removed as part of an 
experiment for the heteroencoder (the process of which 
can be found at [35], which uses the same decoder model, 
but not the encoder). A set of randomly selected 100,000 
ChEMBL compounds were later selected for train-
ing a general GAN model. Moreover, three target data-
sets (corresponding to EGFR, S1PR1 and HTR1A) were 
extracted from ExCAPE-DB [43] for training target spe-
cific GANs. The ExCAPE-DB datasets were then clus-
tered into training and test sets so that chemical series 
were assigned either to the training or to the test set 

Fig. 1 Workflow of the LatentGAN. The latent vectors generated from the encoder part of the heteroencoder is used as the input for the GAN. Once 
the training of the GAN is finished, new compounds are generated by first sampling the generator network of the GAN and then converting the 
sampled latent vector into a molecular structure using the decoder component of the heteroencoder
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(Table 1). To benchmark the performance of the targeted 
models, RNN based generative models for the three tar-
gets were also created by first training a prior RNN model 
on the same ChEMBL set used for training the heteroen-
coder model and then using transfer learning [7] on each 
focused target set. Target prediction models were calcu-
lated for each target using the Support vector machine 
learning (SVM) implementation in the Scikit-learn [44] 

package and the 2048-length FCFP6 fingerprint were cal-
culated using RDKit [45].

Related works
A related architecture to the LatentGAN is the Adversar-
ial Autoencoder (AAE) [46]. The AAE uses a discrimina-
tor to introduce adversarial training to the autoencoder 
and is trained typically using a 3-step training scheme of 
(a) discriminator, (b) encoder, (c) encoder and decoder, 
compared to the LatentGANs 2-step training. The AAE 
have been used in generative modeling of molecules to 
sample molecular fingerprints using additional encoder 
training steps [47], as well as SMILES representations [48, 
49]. In other application areas, Conditional AAEs with 
similar training schemes have been applied to manipulate 
images of faces [50]. For the later application, approaches 
that have utilized multiple discriminators have been used 
to combine conditional VAEs and conditional GANs 
to enforce constraints on the latent space [51] and thus 
increase the realism of the images.

Results and discussion
Training the heteroencoder
The heteroencoder was trained on the 1,347,173 
ChEMBL dataset compounds for 100 epochs. SMILES 
generated validity for the whole training set was 99% 
and 18% of the molecules were not reconstructed prop-
erly. Notice that the reconstruction error corresponds to 
decoding to a valid SMILES that belongs to a different 

Table 1 Targeted data set and the performance of the SVM 
models

Training set size (training set), test set size (test set), receiver operating 
characteristic area under the curve (ROC-AUC), kappa value

Target Training set Test set SVM model

ROC-AUC Kappa value

EGFR 2949 2326 0.850 0.56

HTR1A 48,283 23,048 0.993 0.90

S1PR1 49,381 23,745 0.995 0.91

Table 2 The performance of  heteroencoder in  both  the 
training and test sets

Percent of valid SMILES strings generated by the decoder (validity), percent of 
molecules not reconstructed correctly from valid SMILES (reconstruction error)

Dataset # compounds Validity (%) Reconstruction 
error (%)

Training set 974,105 99 18

Test set 10,823 98 20

Fig. 2 Plot of the first two PCA components (explained variance 74.1%) of a set of 200,000 generated molecules from the ChEMBL LatentGAN 
model using the MQN fingerprint
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compound; reconstruction to a different SMILES of 
the same molecule is not counted as an error. Test set 
compounds were taken as input to the encoder and 
their latent values were calculated and then decoded to 
SMILES string, the validity and reconstruction error of 
test set are 98% and 20% respectively (Table 2).

Training on the ChEMBL subset
A LatentGAN was trained on a randomly selected 
100,000 ChEMBL subset with the objective of obtain-
ing drug-like compounds. The model was trained for 
30,000 epochs until both discriminator and generator 
models had converged. Next, 200,000 compounds were 
generated from the LatentGAN model and were com-
pared with the 100,000 ChEMBL training compounds to 
examine the coverage of the chemical space. The MQN 
[52] fingerprint was generated for all compounds in both 
sets and the top two principal components of a PCA were 
plotted (Fig. 2) and shows how both compound sets cover 
a similar chemical space.

Training on the biased dataset
Another interesting question to answer is if the Latent-
GAN can be trained to generate target specific com-
pounds. The active compounds of training set were then 
used as the real data to train the LatentGAN. Each GAN 
model was trained 10,000 epochs and once the training 
was finished, 50,000 compounds were sampled from the 
generator and decoded with the heteroencoder. Then, 
three targets (EGFR, HTR1A and S1PR1) were selected 
and SVM target prediction models were built (see meth-
ods) to predict target activity on each target using the 
corresponding model (Table  3). Results show that in all 
cases validity was above 80% and the uniqueness of valid 
compound was 56%, 66% and 31% for EGFR, HTR1A 
and S1PR1 respectively. Comparing with the sample 
set of ChEMBL model these numbers are much lower, 
but this can be due to the smaller size of training sets. 

Additionally, RNN models with transfer learning trained 
on the three targets (see “Methods and materials”) show 
a higher percentage of validity, but their percentage of 
uniqueness is lower in all cases except for S1PR1. Regard-
ing the novelty, the values are 97%, 95% and 98% for 
EGFR, HTR1A and S1PR1 respectively and are slightly 
higher than the values of the RNN transfer learning 
models. This demonstrates that LatentGAN not only can 
generate valid SMILES but also most of them are novel 
to the training set, which is very important for de novo 
design tasks. All the sampled valid SMILES were then 
evaluated by the SVM models and a high percentage of 
the LatentGAN generated ones were predicted as active 

Table 3 Metrics obtained from a 50,000 SMILES sample of all the models trained

Dataset used (Dataset), Architecture used (Arch.), Percent of valid molecules in the sampled set (Valid), Percent of valid unique compounds (Unique), Percent of 
unique novel (not present in the training set) compounds (Novel), Percent of unique active compounds (Active), Recovered actives from the test set given the entire 
number of actives in the test set (Recovered actives/Total Actives), Recovered neighbors of active compounds using FCFP6 fingerprint with 2048 bits and a threshold 
Tanimoto similarity of 0.7

Dataset Arch. Valid (%) Unique (%) Novel (%) Active (%) Recovered actives/total 
actives (%)

Recovered 
neighbors

EGFR GAN 86 56 97 71 5.26 196

RNN 96 46 95 65 7.74 238

HTR1A GAN 86 66 95 71 5.05 284

RNN 96 50 90 81 7.28 384

S1PR1 GAN 89 31 98 44 0.93 24

RNN 97 35 97 65 3.72 43

Fig. 3 Venn diagram of LatentGAN (red) and RNN (blue) active 
compounds/scaffolds
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for these three targets (71%, 71% and 44%, for EGFR, 
HTR1A and S1PR1 respectively). These scores were 
better than the RNN models with respect to EGFR, but 
worse with respect to other two. Additionally, the com-
parison between LatentGAN and RNN generated active 
structures (Fig.  3) shows that the overlap is very small 

between the two architectures at both compound and 
scaffold levels. The compounds generated by LatentGAN 
were evaluated using the RNN model for a probabilistic 
estimation of whether the RNN model eventually would 
cover the LatentGAN output space, and it was shown to 

Fig. 4 The distribution of Murcko scaffold similarity (left) and FCFP6 Tanimoto compound similarity (right) to the training set of molecules 
generated by LatentGAN models for a EGFR, b S1PR1 and c HTR1A
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be very unlikely (see Additional file  1). This highlights 
that both architectures can work complementarily. 

Full compound and Murcko scaffold [53] similar-
ity was calculated between the actives in the sampled 
set and the actives in training set. Results (Fig. 4) show 
that, for each target, there are around 5% of gener-
ated compounds that are identical to the training sets. 
Additionally, there are around 25%, 24% and 21% com-
pounds having similarity lower than 0.4 to the train-
ing set in EGFR, HTR1A and S1PR1 respectively. This 
means that LatentGAN is able to generate very dissimi-
lar compounds to the training set. In terms of scaffold 
similarity comparison, it is not surprising that the per-
centage of scaffolds identical to the training set is much 
higher for all the targets. Nevertheless, around 14% of 
scaffolds in the sample set have low similarity to the 
training set (< 0.4) for all three tested cases.

A PCA analysis using the MQN fingerprint was per-
formed to compare the chemical space of sampled sets 
and training sets of all targets and shows that the sam-
pled compound sets cover most of the chemical space 
of the training sets (Fig. 5). Interestingly, there are some 

regions in the PCA plots where most of the sampled 
compounds around the training compounds are pre-
dicted as inactive, for example the left lower corner in 
EGFR (Fig. 5a) and the right-hand side region in S1PR1 
(Fig. 5c). The training compounds in those regions are 
non-druglike compounds and outliers in the training 
set and the SVM models predicted them as inactive. No 
conclusive relationship between these regions of outli-
ers and the scaffolds of lower similarity (Fig. 6). Addi-
tionally, we also evaluated the amount of the actives 
in the test set recovered by the sample set (Table 3). It 
is interesting to note that there are more active com-
pounds belonging to the test set recovered by RNN 
model for all three targets, indicating that using mul-
tiple types of generative model for structure genera-
tion can be a viable strategy. Lastly, some examples 
generated by LatentGAN were drawn (Fig.  7) and the 
QED drug-likeness score [11] and Synthetic Accessibil-
ity (SA) score [54] distributions for each of the targets 
were plotted (Figs.  8 and 9, respectively). Training set 
compounds have a slightly higher drug-likeness, yet the 

Fig. 5 PCA analysis for a EGFR (explained variance 82.8%), b HTR1A (explained variance 75.0%) and c S1PR1 (explained variance 79.3%) dataset. The 
red dots are the training set, the blue dots are the predicted inactive compounds in the sampled set and other dots are the predicted actives in the 
sampled set with different level of probability of being active
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overall distributions are similar, showing that Latent-
GAN models can generate drug-like compounds.

Comparison with similar generative networks
The LatentGAN was assessed using the MOSES bench-
mark platform [48], where several generative metrics are 
used to evaluate the properties of molecular generative 
networks on a sample of 30,000 SMILES after training 
on a canonical SMILES subset of the ZINC database [55] 
of size 1,584,663. The full table of results for the MOSES 
benchmark is maintained and regularly updated at [56]. 
When compared to the similar structured networks of 
VAE, JTN-VAE [20] and AAE, it is noticeable that VAE 
model have an output distribution that has a significant 
overlap with the training set, as shown by the high scores 
of most test metrics (where the test set has a similar 

distribution to the training set) and the low novelty, indi-
cating a mode collapse. When compared against the 
JTN-VAE and AAE models, the LatentGAN has shows 
comparable or better results in the Fréchet ChemNet 
Distance (FCD) [57], Fragment (Frag) and Scaffold (Scaf ) 
similarities, while producing slightly worse results in the 
cosine similarity to the nearest neighbor in the test set 
(SNN).

On the properties of autoencoder latent spaces
In earlier VAE or AAE based architectures for generative 
molecular models, the role of the encoder is to forcefully 
fit the latent space of the training data to a Gaussian prior 
[47] or at least some continuous distribution [9], achieved 
in the latter with a loss function based on Kullback–Lei-
bler (KL) divergence [58]. This requires the assumption 

Fig. 6 The same PCA analysis, showing the Murcko scaffold similarities of the predicted active compounds for a EGFR (explained variance 80.2%), b 
HTR1A (explained variance 74.1%) and c S1PR1 (explained variance 71.3%). Note that due to the lower amount in the outlier region of c, the image 
has been rotated slightly. No significant relationship between the scaffold similarities and the regions was found. For a separation of the generated 
points by similarity interval, see Additional file 1
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EGFR

Prob Act: 0.9
Similarity: 0.34

Prob Act: 0.92
Similarity: 0.35

Prob Act: 0.9
Similarity: 0.33

1 2 3

HTR1A

Prob Act: 0.99
Similarity: 0.55

Prob Act: 0.99
Similarity: 0.52

Prob Act: 0.97
Similarity: 0.5

4 5 6

S1PR1

Prob Act: 0.96
Similarity: 0.43

Prob Act: 0.96
Similarity: 0.42

Prob Act: 0.97
Similarity: 0.4

7 8 9

Fig. 7 Examples generated by the LatentGAN. Compound 1‑3 are generated by the EGFR model, 4–6 are generated by HTR1A model and 7–9 are 
generated by S1PR1 model
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that by interpolating in the latent space between two 
molecules, the decoded molecule would then have either 
a structure or property that also lies between these mol-
ecules. This is not an intuitive representation, as the 
chemical space is clearly discontinuous—there is nothing 
between e.g.  C4H10 and  C5H12. The LatentGAN heteroen-
coder instead makes no assumption with regards to the 
latent space as no ground truth exists for this representa-
tion. Instead it is trained based strictly on the categorial 
cross entropy loss of the reconstruction. The result in a 
space of encoded latent vectors that the GAN later trains 
on that does not necessarily have to be continuous.

The complexity of the SMILES representation can 
also be a problem the training, as molecules of similar 
structures can have very different canonical SMILES 
when the starting atom changes, resulting in dissimilar 
latent representations of the same molecule. By train-
ing on non-canonical (random) SMILES [14, 21], this 
issue is alleviated since different non-canonical forms 
of the same molecule are encoded to the same latent 
space point which furthermore leads to a more chemi-
cally relevant latent space [22]. In addition, the multiple 
representations of the same molecule during training 
reduces the risk of overfitting the conditional prob-
abilities of the decoder towards compounds who share 

a common substring of the SMILES in the canonical 
representation.

Conclusions
A new molecule de novo design method, LatentGAN, 
was proposed by combining a heteroencoder and a 
generative adversarial network. In our method, the 
pretrained autoencoder was used to map the molecu-
lar structure to latent vector and the GAN was trained 
using latent vectors as input as well as output, all in 
separate steps. Once the training of the GAN was fin-
ished, the sampled latent vectors were mapped back 
to structures by the decoder of the autoencoder neu-
ral network. As a first experiment, after training on a 
subset of ChEMBL compounds, the LatentGAN was 
able to generate similar drug-like compounds. We later 
applied the method on three target biased datasets 
(EGFR, HTR1A and S1PR1) to investigate the capabil-
ity of the LatentGAN to generate biased compounds. 
Encouragingly, our results show that most of the sam-
pled compounds from the trained model are predicted 
to be active to the target which it was trained against, 
with a substantial portion of the sampled compounds 
being novel with respect to the training set. Addition-
ally, after comparing the structures generated from 
the LatentGAN and the RNN based models for the 

Fig. 8 QED distributions of sampled molecules from EGFR (a), HTR1A (b) and S1PR1 (c)



Page 11 of 13Prykhodko et al. J Cheminform           (2019) 11:74 

corresponding targets, it seems that there is very little 
overlap among the two sets implying that the two types 
of models can be complementary to each other. In sum-
mary, these results show that LatentGAN can be a valu-
able tool for de novo drug design.
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