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Abstract 

The aim of this article is to show how thevpower of statistics and cheminformatics can be combined, in R, using two 
packages: rcdk and cluster.

We describe the role of clustering methods for identifying similar structures in a group of 23 molecules according to 
their fingerprints. The most commonly used method is to group the molecules using a “score” obtained by measuring 
the average distance between them. This score reflects the similarity/non-similarity between compounds and helps 
us identify active or potentially toxic substances through predictive studies.

Clustering is the process by which the common characteristics of a particular class of compounds are identified. For 
clustering applications, we are generally measure the molecular fingerprint similarity with the Tanimoto coefficient. 
Based on the molecular fingerprints, we calculated the molecular distances between the methotrexate molecule and 
the other 23 molecules in the group, and organized them into a matrix. According to the molecular distances and 
Ward ’s method, the molecules were grouped into 3 clusters. We can presume structural similarity between the com-
pounds and their locations in the cluster map. Because only 5 molecules were included in the methotrexate cluster, 
we considered that they might have similar properties and might be further tested as potential drug candidates.
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Introduction
Discovery, synthesis and production of new drugs is still 
challenging for researchers because of the complex struc-
tures of endogenous molecules involved in the pathogenesis 
of diseases such as AIDS, cancer and autism [16]. Modern 
drug research is characterized by the growing number of 
lead molecules and the need to examine and characterize all 
of these compounds over short periods [14, 39].

Chemical database mining based on the similar com-
pounds search is an in silico method widely used in the 
drug discovery process [28, 33]. It can be used in the initial 
stages of drug discovery and speeds up the entire process 
[10]. The requirement to store, manage and analyse these 
rapidly growing resources has given rise to a relatively new 

field known as computer-assisted drug design (CADD) 
[22, 39, 40].

Computational chemistry is a very effective approach 
in drug design for the identification of lead compounds. 
Various virtual screening techniques can be used to 
reduce the cost and time required to identify a potential 
drug [2]. As a computational method in drug discovery 
and virtual screening, clustering of chemical compounds 
by the similarity of their molecular fingerprints can be 
used to identify similar structures in a large set of similar 
data [38, 41]. Their virtual screening performance is com-
parable to other,more complex, methods. There are many 
types of fingerprints, each of which represents a different 
aspect of the molecule [37, 42, 43].

Clustering is an unsupervised machine learning tech-
nique that groups data with similar properties. This 
technique for statistical data analysis is widely used in 
cheminformatics [19].
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A cluster is, in this case, a collection of molecules which 
are organized in groups, according to their molecular fin-
gerprints [3, 17].

Despite the large number of clustering methods, only 
a few of them are widely used in practice. In this paper, 
only two of them were used, which proved to be suit-
able for chemical structure analysis: hierarchical cluster-
ing and K-means method. Regardless of the method, the 
results were the same.

Methods
All the software used for this article can be installed on 
Windows, Linux or macOS operating systems.

Initially, built as an environment for statistical comput-
ing, R, a GNU project, provides a wide variety of pack-
ages for cheminformatics that are suitable for calculating 
molecular fingerprints and clustering [13, 25, 46]. The 
latest version of R can be downloaded form the CRAN 
repository. R Studi o is considered one of the best IDEs 
(integrated development environments) for R and was 
also used for this article. In this paper, R version 3.6.0 and 
RStudio version 1.2.1335 were used.

Marvin Sketch version 17.3, from ChemA xon, an aca-
demic software package, was used to draw, display and 
characterize the chemical structures [8]. The molecules 
were imported in Marvin Sketch using their IUPAC 
names (International Union of Pure and Applied Chem-
istry) and then saved as SMILES and SDF formats [31]. 
Then, they were imported and processed in R [12, 28].

R applications for cheminformatics and computational 
chemistry
Its flexibility and wide application fields have made the 
R programming environment a popular choice in a large 
number of areas.

In the field of cheminformatics, R offers several tools 
that are able to treat a large variety of issues related to the 
statistical modelling of chemical information. The rcdk 
package, version: 3.4.7.1, used in the present work, pro-
vides direct access from the R environment to the CDK 
(Chemistry Development Kit), a powerful Java frame-
work for cheminformatics [6, 47].

CDK is a collection of free Java libraries that supports 
a wide variety of cheminformatics functionality. This 
platform allows us to read different molecular formats, 
calculate molecular descriptors and evaluate molecular 
fingerprints.

The cluster package, version 2.1.0, can be used to find 
groups of molecules that share similar chemical proper-
ties [2, 23].

The packages can be installed using the function 
"install.packages()". The general syntax is listed below: 

install.packages("package_name")

To use a package, it must be loaded in the R environ-
ment using the function  library().

In addition to rcdk, some other packages were also 
needed: 

library(rcdk)
library(chemometrics)
library(rJava)
library(ChemmineR)
library(cluster)
library(rgl)
library(vegan)
library(factoextra)
library(fingerprint)
library(fmcsR)
library(NbClust )
library(iqspr)
library(ggplot2)
library(gridExtra)}

Importing and viewing the "drug candidate" molecules in R
In order to manipulate the chemical structures in R, we 
assigned them a code, starting with CMP1 for methotrex-
ate and ending with CMP24 for the last structure. The 
Methotrexate molecule (coded as "CMP1") was down-
loaded from ZINC1 5, a free database of commercially 
available compounds, in both SMILE and SDF file format.

In SDF format, the molecule of methotrexate can 
be imported and visualized in R using the code listed 
below: [13, 44] 

CMP1 <- load.molecules( c(’CMP1.sdf’) )
view.molecule.2d(CMP1[[1]])

The result is depicted in Fig. 1:
All the molecules were imported in SDF format and 

visualized in R as a grid. 

mols <- load.molecules
(c(’CMP1.sdf’, ’CMP2.sdf’, ’CMP3.sdf’,
’CMP4.sdf’, ’CMP5.sdf’, ’CMP6.sdf’,
’CMP7.sdf’, ’CMP8.sdf’, ’CMP9.sdf’,
’CMP10.sdf’, ’CMP11.sdf’, ’CMP12.sdf’,
’CMP13.sdf’, ’CMP14.sdf’, ’CMP15.sdf’,
’CMP16.sdf’, ’CMP17.sdf’,’CMP18.sdf’,
’CMP19.sdf’,’CMP20.sdf’,’CMP21.sdf’,
’CMP22.sdf’, ’CMP23.sdf’,’CMP24.sdf’))
view.molecule.2d
(mols, ncol = 4, width = 200,
height = 200, depictor = NULL,
type="isomeric")

view.molecule.2d(mols)

https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/
https://docs.chemaxon.com/display/docs/MarvinSketch+Downloads
http://zinc.docking.org/substances/home/
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The result is depicted in Fig. 2:

Computation of the molecular descriptors (physicochemical 
properties of the molecules)
The rcdk package can also be used to calculate a set of 
physicochemical properties of the molecules:

The number of atoms:

cat(’No. of atoms =’, length(atoms), ’\n’)
No. of atoms = 33

The number of chemical bonds:

cat(’No. of bonds =’, length(bonds), ’\n’)
No. of bonds = 35

The coordinates of the first atom:

cat(’No. of bonds =’, length(bonds), ’\n’)
No. of bonds = 35
[1] 2.1434 -4.5375

It is also possible to calculate the coordinates for all the 
atoms present in the molecule: 

coords <- do.call(’rbind’ ,
lapply(atoms, get.point2d))
coords

R can compute a set of molecular descriptors, grouped 
into 5 different categories: 

dc <- get.desc.categories()
dc
[1] "hybrid" "constitutional" "topological"
[4] "electronic" "geometrical"

Category 2 (constitutional), important in QSAR, contains 
15 descriptors, which are listed below: [14]. 

dn <- get.desc.names(dc[2])
dn

XlogP, Weight, RuleOfFiveDescriptor,
RotatableBondsCount, MannholdLogP,
LongestAliphaticChain, LargestPiSystem,
LargestChain, BondCount,
BasicGroupCount, AtomCount,
AromaticBondsCount, AromaticAtomsCount,
cdk.qsar.descriptors, ALOGP, AcidicGroup

Regarding drug design, the evaluation of AlogP is given 
a higher importance than that of other descriptors: 

aDesc <- eval.desc(meth, dn[14])
aDesc
ALogP ALogp2 AMR
1 -3.4898 12.1787 113.7535
allDescs <- eval.desc(mol, dn)
allDescs
XLogP MW LipinskiFailures
2.955 339.1219 0
nRotB MLogP nAtomLAC nAtomP
1 5 2.67 0 21
nAtomLC nB nBase nAtom
5 27 0 42
nAromBond naAromAtom ALogP
1 11 10 0.1535
AMR nAcid ALogp2
1 92.9528 0 0.02356225

Fig. 1 Methotrexate molecule visualisation in R

Fig. 2 Molecule set visualization
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Computation of the molecular fingerprints
Molecular fingerprints can be computed by several 
methods, but in the case of aromatic compounds the 
"extended" method is preferred. "Extended" fingerprints 
have a length (the number of bits ) of 1024, compared to 
166 for "maccs "type fingerprints [11, 24, 36]. 

fps <- get.fingerprint
(CMP1, type=’extended’)
fps
Fingerprint object
name =
length = 1024
folded = FALSE
source = CDK
bits on = 13 15 26 27 33 37 42 47 53 54 55
56 57 62 63 65 66 69 71 76 79 84 86 87 90
103 117 119 123 147 151 154 155 157 169 174
184 188 202 210 212 217 220 223 227 228 245
252 257 260 266 272 275 282 290 296 303 311
318 324 326 339 350 353 355 367 382 396 397
402 404 419 422 439 446 447 451 452 454 465
468 478 482 497 505 517 518 519 520 524 529
530 535 542 547 561 565 582 587 597 606 607
609 613 617 618 622 623 629 633 647 680 689
697 699 705 711 713 715 718 729 742 750 753
754 779 785 787 788 791 801 813 814 824 831
833 841 851 852 858 864 878 885 886 892 897
902 908 915 917 921 922 924 925 926 927 934
937 943 950 953 964 973 977 980 981 987 991
993 996 1010 1011 1012 1014 1015

Similarly we computed the molecular fingerprints for the 

entire set of molecules: 

fps <- lapply(mols, get.fingerprint,
type=’extended’)
fps

Computation of the intermolecular distances 
by the Tanimoto index
The Tanimoto coefficient can be expressed as:

where S is the similarity, a is the number of on bits in 
molecule A, b is number of on bits in molecule B, and c is 
the number of on bits in both molecules [49].

Based on molecular fingerprints calculated using the 
Tanimoto method, the molecular distances between the 
methotrexate molecule and the other 23 molecules in the 
group can be evaluated: [24, 30]. 

SA,B = c/[a+ b− c]

query.mol<-load.molecules( c(’meth.sdf’) )
target.mols<-mols
fp.sim<-fp.sim.matrix(fps,method=’tanimoto’)
fp.dist <- 1 - fp.sim
fp.dist

Using this method, a complete set of distances, in 
matrix form, between each of the 23 molecules of inter-
est was obtained. By analysing these results, it is possible 
to identify all the molecules located at a certain distance 
from the target molecule (0.5 in our example): [48]. 

query.fp<-get.fingerprint(CMP1[[1]]
type = ’maccs’)
target.mols <-mols
target.fps <- lapply(target.mols,
get.fingerprint, type=’maccs’)
target.fps
sims <- data.frame(sim=do.call
(rbind, lapply(target.fps,

fingerprint::distance,
fp2=query.fp, method=’tanimoto’)))

subset(sims, sim >= 0.5)
hits <- which(sims >= 0.5)
hits
[1] 0.3809524 0.4285714 0.5000000 0.3974359

0.5128205 0.4473684
[7] 0.5121951 0.4430380
> hits <- which(sims > 0.5)
> hits
[1] 5 7

From the data presented above we can conclude that 
only molecules 5 and 7 meet our criteria. This method is 
the basis for fingerprint-based clustering.

Results and Discussion
In the present study, we used a group of 23 newly syn-
thesized molecules. All of them share the following char-
acteristics: they are pyrazole derivatives, that have never 
been synthesized, there is no data about them in the liter-
ature or in chemical databases, and they have the poten-
tial to be drug candidates, such as purine derivatives. 
Our intention was to check whether the studied chemical 
compounds can be considered as possible lead molecules 
[26]. Because the costs of clinical trials are high, even in 
the preclinical phase, pre-sorting these candidates by 
computational chemistry and cheminformatics methods 
would be beneficial [2, 45]. According to the similar-
ity property principle (SPP), which says that drugs with 
similar molecular structures are likely to have the same 
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properties, a new drug candidate can be identified upon 
its similarity with another known drug, regardless of how 
the similarity is evaluated [5]. As a screening criterion, 
we used the comparison with the traditional methotrex-
ate molecule [32].

Methotrexate is a cytotoxic substance widely used in 
cancer therapy. It was one of the first purine-inhibiting 
antimetabolites on the market, and it interferes with the 
growth of different molecules present in human body, 
such as like highly reproductive cancer cells. Even though 
this molecule cannot be considered a "gold standard" for 
this compound class, the above arguments have contrib-
uted to this choice.

Clustering the dataset of molecules
Different types of methods can be used for clustering, 
including partitioning methods (K-means), hierarchical 
clustering, fuzzy clustering, density-based clustering and 
model-based clustering. The K-means and hierarchical 
clustering were chosen because they are suitable for our 
goal [29].

The number of clusters
The optimal number of clusters can be estimated using 
the NbClust package. The function fviz.nbclust is used 
for visualizing the result [1]. The R code for the elbow 
method is presented below: 

fviz_nbclust(fp.dist,kmeans, method = "wss")
+geom_vline(xintercept = 3, linetype = 2)

The result is depicted in Fig. 3:
The optimal number of clusters is 3.
All the considered molecules were then grouped into 

clusters by taking into account the calculated intermo-
lecular distances.

Hierarchical clustering with the hclust package
The hierarchical clustering algorithm creates clusters 
with sets of data that are similar internally but different 
from each other externally [30]. The most common and 
useful graphical representation of molecular clusters is 
hierarchical clustering (dendrogram). We performed 
hierarchical clusterization using Ward’s method [30, 
37].

Ward’s method is based on an ANOVA approach and 
its goal is to maximize the r2 value.

To obtain this dendogram, we used the following R 
code: 

d <- dist(fp.dist, method = "euclidean")
res.hc <- hclust(d, method = "ward.D2" )
grp <- cutree(res.hc, k = 3)
plot(res.hc, cex = 0.6) # plot tree
rect.hclust(res.hc, k = 3, border = 2:5)

The graphical representation of the dendrogram is 
depicted in Fig. 4.

K‑means Clustering
K-means clustering is one of the most commonly used 
clustering algorithms because it is easy to code and 
implement. Each cluster has a centre, which is called 
a centroid. The algorithm combines the distances 
between points and centroids [27]. The R code for 
K-means clustering is shown below. 

> fviz_nbclust(fp.dist,
method = "gap_stat")

> km.res <- kmeans
(fp.dist, 3, nstart = 10)

> km.res
K-means clustering
with 3 clusters of sizes
6, 7, 11

Clustering vector:
[1] 1 1 3 3 1 1 1 1

2 3 3 3 3 3 3 3
3 2 2 2
3 2 2 2

Within cluster sum of squares by cluster:
[1] 3.457616 1.402913 2.765955
(between_SS / total_SS = 70.3 %)

The result is presented in Fig. 5:
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The molecules included in cluster 1, containing metho-
trexate (CMP1), were visualized using the following R 
code: 

sdfset <- read.SDFset("mysdf.sdf")
sdfset
cid(sdfset)[1:6]
plot(sdfset[1:6], print=FALSE)
[1] "CMP1" "CMP2" "CMP3"

"CMP4" "CMP5" "CMP6"

The result are depicted in Fig. 6:

Clustering validation
Statistics for K-means clustering

The R code for the cluster statistics is listed below: 

silinfo <- km.res$silinfo
names(silinfo)
km_stats <- cluster.stats
(fp.dist, km.res$cluster)
km_stats

The most important information for the cluster anal-
ysis provided by this function can be considered the sil-
houette index and Dunn index: [7, 34]. 

$dunn
[1] 0.5443968
$sindex
[1] 0.4565217

The Dunn index is equal to the ratio of the smallest 
inter-cluster distance divided by the largest intra-clus-
ter distance [20].

It takes a value between zero and infinity, and a higher 
DI means that clusters are compact and well separated. 
A larger distance between clusters means a better sepa-
ration, and smaller cluster sizes lead to a higher Dunn 
Index [1, 21].

The Silhouette coefficient is a method of cluster vali-
dation that combines both cohesion and separation 
[35]. It measures, for each point Mi , the mean distance 
to each cluster, and the mean distance to the other 
points in its cluster. Silhouette values range between − 
1 and 1 [4]. A Silhouette coefficient with a value near 
+1 indicates that the point is far from its neighbour-
ing cluster and very close to the cluster to which it is 
assigned. These values are preferred.

The R code for visualizing a Silhouette plot for K-means 
clustering: 

library("cluster")
sil <- silhouette(km.res$cluster,
dist(fp.dist))
head(sil[, 1:3], 10)
plot(sil, main ="Silhouette plot - K-means")

The plot is visualized in Fig. 7:
The Silhouette plot for K-means clustering reveals a 

coefficient of 0.4 for the first cluster and a mean value of 
0.49 for all the other clusters. These values can be consid-
ered acceptable.

Conclusions
Cheminformatics is a dynamic and powerful field that 
is considered the heart of modern drug design [9, 15]. It 
plays an important role in collecting, storing and analys-
ing chemical data [18]. It is also an emerging interdisci-
plinary field that aims to discover new chemical entities 
that ultimately result in the design of a new active mol-
ecule (chemical data) [14, 22].

This work focused on cheminformatics and its applica-
tion in the discovery and testing of new active molecules. 
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In addition we focused on modern data mining tech-
niques that help chemists and medical researchers to 
discover, produce and test new active molecules for the 
treatment of certain diseases.

Our goal was to test in vitro a set of 23 newly synthe-
sized molecules, about which we do not have enough 
experimental data. The lack of information about the 
physicochemical properties of the respective molecules, 
especially those related to QSAR, was supplemented by 
the computational methods offered by the rcdk software 
package [12, 25].

Because we studied 23 compounds from the pyrazole 
class, we expected that at least some of them would 
behave similar to the like cytotoxic antimetabolite class 
(purine inhibitors). The clusters were obtained using 
hierarchical and K-means clustering methods. The 
results of clustering were confirmed using the Dunn 
index and Silhouette coefficient.

To avoid the additional costs that pre-clinical and 
clinical trials for all these compounds would have 
involved, we tried to reduce the number of "candidate 
drugs" by computational methods. This reduction was 
accomplished by calculating the molecular fingerprints 
of all the studied molecules and then comparing them 
with the molecular marker methotrexate, which still 
has a wide use. As a result of this comparison and after 
the clusterization of the molecules according to the 
Tanimoto distances, an optimal number of 3 clusters 
was obtained. In the cluster containing the methotrex-
ate molecule of, marked with a 1, we can also find the 
molecules marked with a 2, 5, 6 and 7. The remaining 
17 molecules are part of the other two clusters [30]. 
Therefore, starting from the assumption that "similar 
chemical structures have similar biological properties 
and actions", the number of compounds worth consid-
ering for further studies has been significantly reduced, 
from 23 to 4, which will lead to a significant decrease in 
all future costs [9].
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