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Abstract 

We present SMILES-embeddings derived from the internal encoder state of a Transformer [1] model trained to canonize 
SMILES as a Seq2Seq problem. Using a CharNN [2] architecture upon the embeddings results in higher quality inter-
pretable QSAR/QSPR models on diverse benchmark datasets including regression and classification tasks. The proposed 
Transformer-CNN method uses SMILES augmentation for training and inference, and thus the prognosis is based on an 
internal consensus. That both the augmentation and transfer learning are based on embeddings allows the method 
to provide good results for small datasets. We discuss the reasons for such effectiveness and draft future directions for 
the development of the method. The source code and the embeddings needed to train a QSAR model are available on 
https ://githu b.com/bigch em/trans forme r-cnn. The repository also has a standalone program for QSAR prognosis which 
calculates individual atoms contributions, thus interpreting the model’s result. OCHEM [3] environment (https ://ochem 
.eu) hosts the on-line implementation of the method proposed.
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Introduction
Quantitative Structure–Activity (Property) Relationship 
(QSAR/QSPR) approaches find a nonlinear function, often 
modelled as an artificial neural network (ANN), that esti-
mates the activity/property based on a chemical structure. 
In the past, most QSAR works heavily relied on descrip-
tors [4] that represent in a numerical way some features 
of a complex graph structure of a compound. Amongst 
numerous families of descriptors, the fragment descriptors 
that count occurrences of a subgraph in a molecule graph, 
hold a distinctive status due to simplicity in the calcula-
tion. Moreover, there is a theoretical proof that one can 
successfully build any QSAR model with them [5]. Even a 
small database of compounds contains thousands of frag-
mental descriptors and some feature selection algorithm 

has traditionally been used to find a proper subset of 
descriptors for better quality, and to speed up the whole 
modeling process. Thus, feature selection in conjunction 
with a suitable machine learning method was key to suc-
cess [6]. The rise of deep learning [7] allows us to bypass 
tiresome expert and domain-wise feature construction by 
delegating this task to a neural network that can extract 
the most valuable traits of the raw input data required for 
modeling the problem at hand [8, 9].

In this setting, the whole molecule as a SMILES-strings 
[10, 11] (Simplified Molecular Input Line Entry Sys-
tem) or a graph [12, 13] serves as the input to the neu-
ral network. SMILES notation allows for the writing of 
any complex formula of an organic compound in a string 
facilitating storage and retrieval information about mol-
ecules in databases [14]. It contains all information about 
the compound sufficient to derive the entire configuration 
(3D-structure) and has a direct connection to the nature 
of fragmental descriptors, Fig.  1, thus, making SMILES 
one of the best representation for QSAR studies.
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One of the first works exploiting direct SMILES input 
as descriptors used fragmentation of strings into groups 
of overlapping substrings forming a SMILES-like set or a 
hologram of a molecule [16]. Within this approach, there 
was no need to derive a 2D/3D configuration of the mol-
ecule with subsequent calculation of descriptors keeping 
the quality of the models at the same level as with classical 
descriptors or even better.

SMILES strings are sequences of characters; therefore, 
they can be analyzed by machine-learning methods suit-
able for text processing, namely with convolutional and 
recurrent neural networks. After the demonstration of 
text understanding from character-level inputs [17], this 
technique was adopted in chemoinformatics [11, 18–21]. 
Recently, we showed that the augmentation of SMILES 
(using canonical as well as non-canonical SMILES during 
model training and inference) increases the performance 
of convolutional models for regression and classification 
tasks [22].

Technically modern machine-learning models consist 
of two parts working together. The first part encodes the 
input data and extracts the most robust features by apply-
ing convolutional filters with different receptive fields 
(RF) or recurrent layers, whereas the second part directly 
builds the regular model based on these features using 
standard dense layers as building blocks (so called classi-
cal “MLP”), Fig. 2. Though powerful convolutional layers 
can effectively encode the input within its internal repre-
sentation, usually one needs a considerable training data-
set and computational resources to train the encoder part 
of a network.

The concept of embeddings mitigates the problem by 
using the pre-trained weights designed for image [23] 

or text processing [24] tasks. It allows transfer learning 
from previous data and speeds up the training process 
for building models with significantly smaller datasets 
inaccessible for training from scratch. Typically, QSAR 
datasets contain only several hundreds of molecules, and 
SMILES-embeddings could improve models by develop-
ing better features.

One way of separately obtaining SMILES embeddings 
is to use classical autoencoder [25] approach where the 
input is the same as the output. In the case of SMILES, 
however, it would be more desirable to explore a vari-
ety of SMILES belonging to the same molecule due to 
redundant SMILES grammar, Fig.  1. We hypothesized 
that it is possible to train a neural network to conduct a 
SMILES canonicalization task in a Sequence-to-Sequence 
(Seq2Seq) manner like a machine translation problem, 
where on the left side are non-canonical SMILES, and on 
the right side are their canonical equivalents. Recently, 
Seq2Seq was successfully applied to translation from 
InChi [26] codes to SMILES (Inchi2Sml) as well as from 
SMILES arbitrary to canonical SMILES (Sml2canSml), 
and to build QSAR models on extracted latent variables 
[27].

The state-of-the-art neural architecture for machine 
translation consists of stacked Long Short-Term Memory 
(LSTM) cells [28]. The training process for such networks 
inherently has all kinds of Recurrent Neural Networks 
difficulties, e.g., vanishing gradients, and the impossibil-
ity of parallelization. Recently, a Transformer model [1] 
was proposed where all recurrent units are replaced with 
convolutional and element-wise feed-forward layers. The 
whole architecture shows a significant speed-up dur-
ing training and inference with improved accuracy over 

Fig. 1 Benzylpenicillin canonical SMILES at the top, 2D and 3D structures derived from SMILES with OpenBabel [15] in the middle, and three 
non-canonical SMILES examples at the bottom. A substructure of the phenyl ring is written in bold font
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translation benchmarks. The Transformer model was 
applied for prediction of reaction outcomes [29] and for 
retrosynthesis [30].

Modern machine learning architectures although dem-
onstrating incredible performance still lack interpretabil-
ity. Explaining the reasons for a particular prediction of a 
model avoids “Clever Hans” predictors with spurious or 
non-relevant correlations [31] and foster trust and veri-
fiability. One of the promising methods to open a “black 
box” uses the Layer-wise Relevance Propagation (LRP) 
algorithm [32], which splits the overall predicted value 
to a sum of contributions of individual neurons. In this 
method, the sum of relevance of all neurons of a layer, 
including the bias neuron, is kept constant. Propagation of 
the relevance from the last layer to the input layer allows 
the evaluation of the contributions of particular input fea-
tures in to select the most relevant features for the whole 
training set [33] or to explain the individual neural net-
work prediction [32]. We apply the LRP method for an 

explanation of individual results, checking the model get 
results for the right reason.

Our contributions in the article are as follows:

Presenting a concept of dynamic SMILES embed-
dings that may be useful for a wide range of chemin-
formatics tasks;
Scrutinizing CharNN models based on these embed-
dings for regression and classification tasks and show 
that the method outperforms the state-of-the-art 
models;
Interpretation of the model based on LRP method;
Our implementation as well as source codes and 
SMILES-embeddings are available on https ://githu 
b.com/bigch em/trans forme r-cnn. We also provide 
ready-to-use implementation on https ://ochem .eu 
within the OCHEM [3] environment and a stan-
dalone program for calculating properties and 
explaining the results.

Fig. 2 Scheme of modern QSAR models based on ANN. The encoder part (left) extracts main features of the input data by means of RNN (top) 
or convolutional layers (bottom). Then the feature vector as usual descriptors feeds to the dense layer part consisting of residual and highway 
connections, normalization layers, and dropouts

https://github.com/bigchem/transformer-cnn
https://github.com/bigchem/transformer-cnn
https://ochem.eu
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Methods
SMILES canonicalization model
Dataset
To train the ANN to perform SMILES canonicalization, 
we used the ChEMBL database [34] with SMILES strings 
of length less than or equal 110 characters (> 93% of the 
entire database). The original dataset was augmented 
10 times up to 17,657,995 canonicalization pairs writ-
ten in reactions format separated by ‘ >> ’. Each pair con-
tained on the left side a non-canonical, and on the right 
side—a canonical SMILES for the same molecule. Such 
an arrangement of the training dataset allowed us to re-
use the previous Transformer code, which was originally 
applied for retrosynthetic tasks [30]. For completeness, we 
added for every compound a line where both left and right 
sides were identical, i.e. canonical SMILES, Fig.  3. Thus 
each molecule was present in the training set 11 times. 
If a molecule had tautomeric forms then all of them were 
accounted for as separate entries in the training data file.

Model input
Seq2Seq models use one-hot encoding vector for the 
input. Its values are zero everywhere except the position 
of the current token which is set to one. Many works on 
SMILES use tokenization procedure [35, 36] that com-
bines some characters, for example ‘B’ and ‘r’ to one token 
‘Br’. Other rules for handling most common two-letters 
elements, charges, and stereochemistry also are used for 
preparing the input for the neural network. According 
to our experience, the use of more complicated schemes 
instead of simple character-level tokenization did not 
increase the accuracy of models [30]. Therefore a sim-
ple character-level tokenization was used in this study. 
The vocabulary of our model consisted of all possible 
characters from ChEMBL dataset and has 66 symbols:  
^#%()+–./0123456789=@ABCDEFGHIKLMNOPRST-
VXYZ[\]abcdefgilmnoprstuy$

Thus, the model could handle the entire diversity of 
drug-like compounds including stereochemistry, differ-
ent charges, and inorganic ions. Two special characters 
were added to the vocabulary: ‘^’ to indicate the start of 
the sequence, and ‘$’ to inform the model of the end of 
data input.

Transformer model
The canonicalization model used in this work was based 
upon a Transformer architecture consisting of two sepa-
rate stacks of layers for the encoder and the decoder, 
respectively. Each layer incorporated some portion 
of knowledge written in its internal memory (V) with 
indexed access by keys (K). When new data arrived (Q), 
the layer calculated attention and modified the input 
accordingly (see the original work on Transformers [1]), 
thus, forming the output of the self-attention layer and 
weighting those parts that carry the essential information. 
Besides a self-attention mechanism, the layer also con-
tained several position-wise dense layers, a normalization 
layer, and residual connections [1, 37]. Our model utilized 
a three layer architecture of Transformer with 10 blocks 
of self-attention, i.e. the same one as used in our previ-
ous study [30]. After the encoding process was finished, 
the output of the top encoder layer contained a represen-
tation of a molecule suitable for decoding into canonical 
SMILES. In this study we used this representation as a 
well-prepared latent representation for QSAR modeling.

Tensorflow v1.12.02 [38] was used as machine-learn-
ing framework to develop all parts of the Transformer, 
whereas RDKit v.2018.09.2 [39] was used for SMILES 
canonicalization and augmentation.

QSAR model
We call the output of the Transformer’s encoder part 
a dynamic SMILES-embedding, Fig.  4. For a molecule 
with N-characters, the encoder produces the matrix with 
dimensions (N, EMBEDDINGS). Though technically this 

Fig. 3 Example of the data in the training file for canonicalization model of a small molecule CHEMBL351484. Every line contains a pair of 
non-canonical (left) and canonical (right) separated by “ >> ”. One line has identical SMILES on both sides, stressed with the red box
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matrix is not an embedding because equivalent char-
acters have different values depending on position and 
surroundings, it can be considered so due to its role: to 
convert an input one-hot raw vectors to real-value vec-
tors in some latent space. Because these embeddings have 
variable lengths, we used a series of 1D convolutional fil-
ters as implemented in DeepChem [40] TextCNN method 
(https ://githu b.com/deepc hem).

Each convolution had a kernel size from the list (1, 2, 3, 
4, 5, 6, 7, 8, 9, 10, 15, 20) and produced the following num-
ber of filters (100, 200, 200, 200, 200, 100, 100, 100, 100, 
100, 160, 160), respectively. After a GlobalMaxPool opera-
tion and the subsequent concatenation of the pooling 
results, the data went through Dropout [41] (rate = 0.25), 
Dense (N = 512), Highway [42] layers, and, finally, con-
verted to the output layer which consisted of only one 
neuron for regression and two neurons for classification 
tasks. The weights of the Transformer’s part were frozen 
in all experiments. All models used the Adam optimizer 
with Mean Squared Error or Binary Cross-Entropy loss 
depending on the problem at hand. A fixed learning rate 
λ = 10–4 was used. Early-stopping was used to prevent 
overfitting, to select a best model, and to reduce train-
ing time. OCHEM calculations were performed using 

canonical SMILES as well as ten-fold augmented SMILES 
during both training and prognosis. This number of 
SMILES augmentations was found to be an optimal one in 
our previous study [43]. An average value of the individual 
predictions for different representation of the same mol-
ecule was used as the final model prediction to calculate 
statistical parameters.

The same five-fold cross-validation procedure was used 
to compare the models with the results of our previous 
study [43]. The coefficients of determination [44]

where  SStot is total variance of data and  SSres is resid-
ual unexplained variance of data was used to compare 
regression models and Area Under the Curve (AUC) was 
used for classification tasks.

Validation datasets
We used the same datasets (9 for regression and 9 for clas-
sification) that were exploited in our previous studies [11, 
22]. Short information about these sets as well as links to 
original works are provided in Table  1. The datasets are 

(1)r2 = 1− SSres/SStot

Fig. 4 The architecture of the Transformer-CNN network

Table 1 Descriptions of datasets used in the work

Code Description Size Code Description Size

Regression tasks Classification tasks

MP Melting point [45] 19,104 HIV Inhibition of HIV replication [46] 41,127

BP Boiling point [47] 11,893 AMES Mutagenicity [48] 6542

BCF Bioconcentration factor [47] 378 BACE Human β-secretase 1 (BACE-1) inhibitors [46] 1513

FreeSolv Free solvation energy [46] 642 Clintox Clinical trial toxicity [46] 1478

LogS Solubility [49] 1311 Tox21 In-vitro toxicity [46] 7831

Lipo Lipophilicity [50] 4200 BBBP Blood–brain barrier [46] 2,039

BACE IC50 of human β-secretase 1 (BACE-1) 
inhibitors [46]

1513 JAK3 Janus kinase 3 inhibitor [51] 886

DHFR Dihydrofolate reductase inhibition [52] 739 BioDeg Biodegradability [53] 1737

LEL Lowest effect level [54] 483 RP AR Endocrine disruptors [55] 930

https://github.com/deepchem
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available on the OCHEM environment on https ://ochem 
.eu.

Results and discussion
SMILES canonicalization model
The Transformer model was trained for 10 epochs with 
the learning rate changing according to the formula:

where factor = 20, warmup = 16,000 steps, and if λ < 10–4 
then λ = 10−4. The settings for the learning rate were simi-
lar to those used in our retro-synthesis study. Each epoch 
contained 275,907 steps (batches). No early-stopping or 
weight-averaging was applied. Learning curves are shown 
in Fig. 5.

To validate the model, we sampled 500,000 ChEMBL-
like SMILES (only 8,617 (1.7%) of them were canonical) 
from a generator [56] and checked how accurately the 
model can restore canonical SMILES for these molecules. 
We intentionally selected the generated SMILES keeping 
in mind possible applications of the proposed method 
in artificial intelligence-driven pipelines of de-novo drug 
development. The model correctly canonicalized 83.6% of 
all samples, Table 2.

QSAR modeling
For the QSAR modelling the saved embedding was used. 
The training was done using a fixed learning rate λ = 0.001 
for n = 100 epochs. Early stopping with 10% randomly 
selected SMILES was used to identify the optimal model. 
Table  3, Fig.  6 compares results for regression datasets 

(2)
� = factor ∗min (1.0, step/warmup)/max (step,warmup)

while Table  4, Fig.  7 compares classification tasks. The 
standard mean errors of the values were calculated using 
a bootstrap procedure as explained elsewhere [53].   

With an exception of a few datasets, the proposed 
method provided similar or better results than those cal-
culated using descriptor-based approaches as well as the 
other SMILES-based approaches investigated in our pre-
vious study [43]. The data augmentation was critically 
important for the Transformer-CNN method to achieve 
its high performance. We used augmentation n = 10, i.e., 
10 SMILES were randomly generated and used for model 
development and application, which was found optimal in 
the aforementioned previous study.

Similar to Transformer-CNN the Sml2canSml used an 
internal representation, which was developed by mapping 
arbitrary SMILES to canonical SMILES. The difference 
was that Sml2canSml generated a fixed set of 512 latent 
variables (CDDD descriptors), while the Transformer-
CNN representation had about the same length as the 
initial SMILES. Sml2canSml CDDD could be used as 
descriptors for any traditional machine learning methods 
while Transformer-CNN required convolutional neural 
networks to process the variable length output and to cor-
relate it with the analysed properties. Sml2canSml was 
added as CDDD descriptors to OCHEM. These descrip-
tors were analysed by the same methods as used in the 
previous work, i.e., LibSVM [57], Random Forest [58], 
XGBoost [59] as well as by Associative Neural Networks 
(ASNN) [60] and Deep Neural Networks [61]. Exactly 
the same protocol, fivefold cross-validation, was used for 
all calculations. The best performance using the CDDD 
descriptors was obtained by ASNN and LibSVM meth-
ods, which contributed models with the highest accuracy 
for seven and five datasets respectively (LibSVM method 
provided the best performance in the original study). 
Transformer-CNN provided better or similar results 
compared to the CDDD descriptors for all datasets with 
an exception of Lipo and FreeSolv. It should be also men-
tioned that CDDD descriptors could only process mole-
cules which satisfy the following conditions:

logP ∈ (−5,7) and
mol_weight ∈ (12,600) and
num_heavy_atoms ∈ (3, 50) and
molecule is organic.

Fig. 5 Learning curves: 1) learning rate schedule (axes bottom and 
right), and 2) character-based accuracy (axes bottom and left) on the 
training dataset for the first four epochs

Table 2 Validation of canonicalization model

Strings All Correctly canonicalized

All 500,000 418,233 (83.6%)

Stereo (with @) 77,472 28,821 (37.2%)

Cis/trans (with / or \) 54,727 40,483 (73.9%)

https://ochem.eu
https://ochem.eu
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Table 3 Coefficient of determination,  r2, calculated for regression sets (higher values are better)

We omitted the standard mean errors, which are 0.01 or less, for the reported values
a Results from our previous study [22]. bBest performance calculated with CDDD descriptors obtained using autoencoder Sml2canSml from [27]

Dataset Descriptor based 
 methods2

SMILES based 
(augm = 10)a

Transformer-CNN, 
no augm

Transformer-CNN, 
augm = 10

CDDD  descriptorsb

MP 0.83 0.85 0.83 0.86 0.85

BP 0.98 0.98 0.97 0.98 0.98

BCF 0.85 0.85 0.71 ± 0.02 0.85 0.81

FreeSolv 0.94 0.93 0.72 ± 0.02 0.91 0.93

LogS 0.92 0.92 0.85 0.91 0.91

Lipo 0.7 0.72 0.6 0.73 0.74

BACE 0.73 0.72 0.66 0.76 0.75

DHFR 0.62 ± 0.03 0.63 ± 0.03 0.46 ± 0.03 0.67 ± 0.03 0.61 ± 0.03

LEL 0.19 ± 0.04 0.25 ± 0.03 0.2 ± 0.03 0.27 ± 0.04 0.23 ± 0.04

Fig. 6 Coefficient of determination,  r2, calculated for regression sets (higher values are better)

Table 4 AUC calculated for classification sets (higher values are better)

We omitted the standard mean errors, which are 0.01 or less, for the reported values
a Results from our previous study [22]. bBest performance calculated with CDDD descriptors obtained using Sml2canSml autoencoder from [27]

Dataset Descriptor based 
 methodsa

SMILES based 
(augm = 10)2

Transformer-CNN, 
no augm

Transformer-CNN, 
augm = 10

CDDD  descriptorsb

HIV 0.82 0.78 0.81 0.83 0.74

AMES 0.86 0.88 0.86 0.89 0.86

BACE 0.88 0.89 0.89 0.91 0.9

Clintox 0.77 ± 0.03 0.76 ± 0.03 0.71 ± 0.02 0.77 ± 0.02 0.73 ± 0.02

Tox21 0.79 0.83 0.81 0.82 0.82

BBBP 0.90 0.91 0.9 0.92 0.89

JAK3 0.79 ± 0.02 0.8 ± 0.02 0.70 ± 0.02 0.78 ± 0.02 0.76 ± 0.02

BioDeg 0.92 0.93 0.91 0.93 0.92

RP AR 0.85 0.87 0.83 0.87 0.86
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These limitations appeared due to the preparation of 
the training set to develop the Sml2canSml encoder. The 
limitations resulted in the exclusion of a number of mole-
cules, which failed one or several of the above conditions. 
Contrary to the Sml2canSml encoder, we trained Trans-
former-CNN with very diverse molecules from ChEMBL 
and thus the developed models could be applied to any 
molecule which can be processed by RDKiT. The exclu-
sion of molecules for which CDDD descriptors failed to 
be calculated did not significantly change the results of 
Transformer models: some models improved while oth-
ers decreased their accuracy for ~ 0.01 respective perfor-
mance values. For example, for Lipo and FreeSolv sets 
the accuracy of the Transformer-CNN model increased 
to  r2 = 0.92 and 0.75 respectively, while for BBB the AUC 
decreased to 0.91.

Interpretability of the model
Layer-wise relevance propagation was used to interpret 
the models. For gated connections (in HighWay block) we 
implemented the signal-take-all redistribution rule [62] 
while all other Dense and Convolutional layers were well 
fitted in the LRP framework [32] without any adaptation. 
In this work, we stopped the relevance propagation on the 
output of the Transformer’s encoder which is position-
wise. It should be noted that we froze the encoder part of 
the network during QSAR model training. Summing up 
all the individual features for each position in the SMILES 
string calculated its contribution to the final result. If the 
LRP indicated a reasonable explanation of the contribu-
tions of fragments then one can trust that the model 
made predictions based on detected fundamental struc-
ture–property relationships. For explanation we selected 

classification (AMES mutagenicity) and regression (water 
solubility) models.

AMES mutagenicity
The AMES test is a widely used qualitative test to deter-
mine the mutagenic potential of a molecule, from which 
extensive structural alerts collections were derived [63]. 
Examples of these alerts are aromatic nitros, N-oxides, 
aldehydes, monohaloalkenes, quinones, etc. A QSAR 
model for AMES had to pay special attention to these and 
similar groups to be interpretable and reliable. The Trans-
former-CNN model built on 6542 endpoints (3516 muta-
genic and 3026 nonmutagenic) results in AUC = 0.89, 
Table 4.

The structure of 1-Bromo-4-nitrobenzene gave the posi-
tive AMES test. The output of the LRP procedure for one 
of possible SMILES for this compound, namely 1c([N +]
([O-]) = O)ccc(c1)Br, is shown in Table 5.

According to the LRP, the relevance was constant dur-
ing the propagation:

Here (L) stood for a set of neurons in the last layer, 
(L−1)—in the layer before the last layer, and so on. Each 
layer in the Transformer-CNN network contained biases 
(B), and thus some relevance dissipated on them. There-
fore the above equation was corrected to:

(3)

y = R = f (x) =
∑

l∈(L)
Rl =

∑
l∈(L−1)

Rl

=

∑
l∈(L−2)

Rl =

∑
l∈(1)

Rl .

(4)
∑

l∈(L)
Rl =

∑
l∈(L−1)

Rl + B.

Fig.7 AUC calculated for classification sets (higher values are better)
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We calculated how much of the relevance was taken 
by biases and reported these values in the output of the 
ochem.py script. Table 5 clearly shows that 24.6% of the 
output signal was taken by biases and 75.4% were success-
fully propagated to position-wise layers, which we used to 
interpret the model. If less than 50% of the signal came to 
the input, it may indicate an applicability domain problem 
or technical issues with relevance propagation. In these 
cases the interpretation could be questioned.

Iterating through all non-hydrogen atoms, the interpre-
tation algorithm picked up an atom and drew a SMILES 
from it. Thus, every molecule had a corresponding set 
of SMILES equal to the number of atoms. The LRP was 
used for every SMILES, and then the individual predic-
tions were averaged for the final output. 1-Bromo-4-ni-
trobenzene was predicted as mutagenic with the score 
0.88. Impacts of the atoms on the property is depicted in 
Fig. 8. The model predicted this compound as mutagenic 
because of the presence of nitro and halogen benzene 
moieties. Both are known to be structural alerts for muta-
genicity [63]. Charged oxygen provided a bigger impact 
than the double bonded one in the nitro group because 
its presence contributed to the mutagenicity for nitro and 
also for N-oxide compounds.

Aqueous solubility
Solubility is a crucial property in drug-development. To 
have a fast, robust, and explainable tool for its prediction 
and interpretation is highly desirable by both academia 

and industry. The Transformer-CNN model built on 1311 
compounds had the following statistics: q2 = 0.92 and 
RMSEp = 0.57 [64]. For demonstration of its interpretabil-
ity we choose haloperidol—a well-known antipsychotic 
drug with 14 mg/l water solubility [65].

The Transformer model calculated the same solubil-
ity 14 ± 2  mg/L for this compound. The individual atom 
contributions are shown in Fig. 9. Hydroxyl, carbonyl, ali-
phatic nitrogen, and halogens contributed mostly to the 
solubility. These groups can form ionizable zones in the 
molecule thus helping water to dissolve the substance. 

Table 5 Local relevance conservation for c1c([N +]([O−]) = O)ccc(Br)c1

a All 0 values were all less than  10− 5

Layer Relevance, R (L + 1) Relevance, R (L) Delta, R (L + 1)-R (L) Bias, Delta / R 
(L + 1) *100%

Result 0.98119 – – –

HighWay Output 0.98119 0.9300 0.0512 5.21

HighWay Input 0.9300 0.7227 0.2073 22.3

DeMaxPool 0.7227 0.7371  − 0.0144  − 1.98

Conv1 0.0090 0.0117  − 0.00271  − 30.1

Conv2 0.1627 0.1627 0a 0

Conv3 − 0.0443  − 0.0443 0 0

Conv4 0.0191 0.0191 0 0

Conv5 − 0.0984  − 0.0984 0 0

Conv6 − 0.0136  − 0.0136 0 0

Conv7 0.0806 0.0806 0 0

Conv8 0.0957 0.0957 0 0

Conv9 0.1528 0.1528 0 0

Conv10 0.0845 0.0845 0 0

Conv15 0.1038 0.1038 0 0

Conv20 0.1851 0.1851 0 0

Total 0.98119 0.7398 0.2414 24.6

Fig. 8 Visualization of atom contributions, in the case of a mutagenic 
compound. The red color stands for mutagenic alerts, color green 
against it
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Several aromatic carbons had negative contributions, 
which was expected since aromatic compounds are poorly 
soluble in water. Thus the overall explanation made sense, 
and the model had an excellent statistics not because of 
spurious correlations, but because it found the right 
fragmental features responsible for modelled property. 
The standalone program contributed in this work has no 
dependencies on machine learning frameworks, it is easy 
to install, to use, and to interpret the modelling results. 
This will make it an indispensable work-horse for drug-
development projects world-wide.

Conclusions and outlook
For the first time we proposed a SMILES canonicaliza-
tion method based on Transformer architecture that 
extracts information-rich real-value embeddings during 
the encoding process and exposes them for further QSAR 
studies. Also, for the first time we developed a framework 
for the interpretation of models based on the Transformer 
architecture using a layer-wise relevance propagation 
(LPR) approach.

TextCNN approaches efficiently worked with embed-
dings generated by Transformer, and the final quality of 
the QSAR models was higher compared to the models 
obtained with the state-of-the-art methods on the major-
ity of diverse benchmark datasets. The Transformer-CNN 
architecture required less than a hundred iterations to 
converge for QSAR tasks to model various biological 
activity or physico-chemical properties. It can be easily 
embedded into de-novo drug development pipelines. The 
model predictions interpreted in a fragment contribu-
tion manner using the LPR could be useful to design new 
molecules with desired biological activity and ADMETox 
properties. The source code is available on https ://githu 

b.com/bigch em/trans forme r-cnn as well as an on-line 
version on https ://ochem .eu. For solubility and AMES 
mutagenicity we also deposited standalone models in the 
GitHub repository, which not only predict the respective 
properties but also provide interpretations of predictions.

The Transformer-CNN predicts the endpoint based 
on an average of individual prognosis for a batch of aug-
mented SMILES belonging to the same molecule. The 
deviation within the batch can serve as a measure of a 
confidence interval of the prognosis. Dissipation of rel-
evance on biases as well as analysis of restored SMILES 
can be used to derive the applicability domains of mod-
els. These questions will be addressed in the upcoming 
studies.

Also, as a comment, we do not think that the authors 
benchmarking their methods are impassioned about their 
work. Such benchmarking could be properly done by 
other users, and we do hope to see the proposed method 
used soon in future publications. But indeed, remark-
ably, in this work we saw an outstanding performance of 
the proposed architecture, which provided systemati-
cally better or at least similar results compared to the best 
descriptor-based approaches as well as several analysed 
deep neural network architectures. Even more remark-
ably, the Transformer CNN has practically no adjustable 
meta parameters and thus does not require spending time 
to tune hyperparameters of neural architectures, use the 
grid search to optimise Support Vector Machines, opti-
mise multiple parameters of XGBoost, apply various 
descriptors filtering and preprocessing, which could easily 
contribute to the overfitting of models. This as well as the 
possibility to interpret models makes Transformer CNN a 
Swiss-knife for QSAR modeling and interpretation, which 
will help to make the QSAR great again!
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