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Abstract 

For kinase inhibitors, X‑ray crystallography has revealed different types of binding modes. Currently, more than 2000 
kinase inhibitors with known binding modes are available, which makes it possible to derive and test machine learn‑
ing models for the prediction of inhibitors with different binding modes. We have addressed this prediction task 
to evaluate and compare the information content of distinct molecular representations including protein–ligand 
interaction fingerprints (IFPs) and compound structure‑based structural fingerprints (i.e., atom environment/fragment 
fingerprints). IFPs were designed to capture binding mode‑specific interaction patterns at different resolution levels. 
Accurate predictions of kinase inhibitor binding modes were achieved with random forests using both representa‑
tions. The performance of IFPs was consistently superior to atom environment fingerprints, albeit only by less than 
10%. An active learning strategy applying information entropy‑based selection of training instances was applied as a 
diagnostic approach to assess the relative information content of distinct representations. IFPs were found to capture 
more binding mode‑relevant information than atom environment fingerprints, leading to highly predictive models 
even when training instances were randomly selected. By contrast, for atom environment fingerprints, the derivation 
of accurate models via active learning depended on entropy‑based selection of informative training compounds. 
Notably, higher information content of IFPs confirmed by active learning only resulted in small improvements in 
global prediction accuracy compared to models derived using atom environment fingerprints. For practical applica‑
tions, prediction of binding modes of new kinase inhibitors on the basis of chemical structure is highly attractive.
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Introduction
Volumes of publicly available kinase inhibitor data have 
dramatically increased in recent years, enabling system-
atic computer-aided investigations of activity profiles, 
structure–activity relationships (SARs), and promiscuity 
versus selectivity trends [1–4]. In addition to activity data 
analysis, computational approaches have also been used 
for predictive modeling of kinase inhibitor activity, for 
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example, to distinguish between kinase inhibitors hav-
ing high and low potency [5]. Large amounts of inhibitor 
data are complemented by increasing numbers of three-
dimensional (3D) structures of kinase-inhibitor com-
plexes that become available [6, 7] and enable a thorough 
exploration of compound binding modes and structure-
assisted SAR exploration. In addition, these complexes 
provide templates for structure-based ligand design [8].

Distinct inhibitor binding modes revealed by X-ray 
crystallography depend on structural differences between 
the active and inactive form of kinases [9, 10]. 3D struc-
tures of kinases and inhibitor complexes revealed dif-
ferent activation states involving the activation loop 
containing the characteristic DFG tripeptide motif as 
well as the αC-helix in the active site region. In the active 
form, the activation loop is closed adopting the so-called 
“DFG in” conformation and the αC-helix forms a K-E salt 
bridge between the β3 strand and the αC-helix (“αC-helix 
in” conformation) [10]. The so-called type I binding mode 
is observed for the majority of kinase inhibitors. These 
compounds represent ATP site directed inhibitors and 
bind to the active (“DFG in/αC-helix in”) form of kinases. 
In addition, type II inhibitors bind to the inactive form, 
which is characterized by the “DFG out” and “αC-helix 
out” conformations. These inhibitors occupy a hydro-
phobic pocket adjacent to the ATP site that opens when 
the DFG motif adopts the “out” conformation. Another 
type of inhibitors targets a conformational state falling in 
between the active and inactive forms. These designated 
type I½ inhibitors bind to kinases with closed activa-
tion segment and the αC-helix out conformation (“DFG 
in”/“αC-helix out”). Furthermore, there are allosteric type 
III or IV inhibitors that bind to other regions in kinases 
outside their active site. Finally, bivalent and covalent 
inhibitors represent type V and VI, respectively [9].

Computationally, protein–ligand interactions can be 
accounted for by interaction fingerprints (IFPs) that are 
one-dimensional (1D) binary representations, in anal-
ogy to fragment fingerprints, designed to capture inter-
molecular interactions in complex structures [11, 12]. 
Accordingly, IFPs represent a “structural interaction 
profile” of a protein–ligand complex that can be used 
for organizing and visualizing interaction information 
as well as for similarity searching [11–13]. Application 
of IFPs is not limited to experimental structures as they 
can also be used to capture interactions in predicted 
ligand-target complexes, for example, complexes from 
docking. IFPs can then be used to rank docking poses of 
test compounds based on interaction similarity to refer-
ence structures [14, 15]. In some instances, compound 
ranking performance of residue- and atom-based 
IFPs was found to be superior to conventional force 
field-based scoring functions [13, 16]. However, IFPs 

might fail to detect key interactions or equally weight 
protein–ligand contacts that are critical or largely 
irrelevant for binding, which introduces noise in IFP 
comparisons. Moreover, IFP generation also depends 
on specific features of binding sites, which may restrict 
their general use across targets with different binding 
site architectures. These issues have limited widespread 
use of IFPs in drug design. Taking such potential limi-
tations into consideration, a previous study attempted 
to predict IFPs for three target proteins on the basis of 
compound structures [17]. To these ends, IFPs were 
first calculated for complex structures. Then, neural 
networks were trained to predict IFPs on the basis of 
ligand descriptors. While these calculations supported 
proof-of-concept their accuracy remained limited. For 
the training set, an average Tanimoto coefficient (Tc) 
of 0.7 for original and predicted IFPs was obtained, 
with a rather widespread distribution. For ~ 70% of the 
test compounds, corresponding Tc values were at least 
0.6 [17]. In general, IFPs provide a valuable format for 
effectively encoding protein–ligand interaction infor-
mation that can be used for similarity searching or 
machine learning.

Recently, prediction of kinase inhibitors adopting dif-
ferent binding modes using machine learning on the 
basis of chemical structure yielded surprisingly accurate 
results [18]. Predictive modeling was performed for more 
than 2000 crystallographically characterized inhibitors 
that were represented using atom environment/struc-
tural fingerprints [18]. The results indicated that kinase 
inhibitors exhibited structural patterns that correlated 
with different binding modes such that accurate predic-
tions were possible without taking target structure or 
ligand-target interaction information into account. While 
one would expect that inhibitors contain specific struc-
tural features that lead to distinct binding modes, only 
few such features distinguishing different types of kinase 
inhibitors have been elucidated so far [19]. Thus, the 
ability of machine learning to systematically distinguish 
between different types of inhibitors is thought to result 
from detecting structural characteristics that are difficult 
to recognize on the basis of expert knowledge.

Distinguishing between inhibitors with different bind-
ing modes also represents a prime application for IFPs. 
By design, IFPs should capture binding mode-specific 
interaction patterns. Since binding modes of kinase 
inhibitors can also be accurately predicted from chemical 
structure, without taking interactions into account [18], 
this prediction task represents an excellent test case for 
comparing the relevance of compound structure and tar-
get-ligand interaction information via machine learning. 
Moreover, with more than 2000 currently available kinase 
inhibitors with structurally confirmed binding modes, a 
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much larger knowledge base can be utilized for this com-
parison than has been the case for many previous IFP 
applications using X-ray data.

In this work, the information content of compound 
structure and protein–ligand interaction representa-
tions has been evaluated through machine learning 
approaches. In addition, active learning strategies were 
applied as a diagnostic approach to further compare 
these representations and determine the number of 
training instances required for successful classification of 
kinase inhibitors with different binding modes.

Results and discussion
Kinase inhibitors with different binding modes
Type I, I½, and II kinase inhibitors were extracted from 
X-ray structures of kinase-inhibitor complexes contained 
in the KLIFS database [6, 7], a specialized repository for 
kinase structures and associated activity data, as detailed 
in “Methods” section. The composition of the kinase 
inhibitor data set is reported in Table 1.

Study design
We have aimed to compare distinct molecular and inter-
action representations for machine learning using dif-
ferent modeling strategies. For this purpose, kinase 
inhibitors with different binding modes were classified. 
This investigation was inspired by previous findings that 
such inhibitors could be predicted with high accuracy on 
the basis of chemical structure using standard machine 
learning approaches such as random forest (RF) [18]. 
These observations and the availability of large numbers 
of kinase inhibitors with experimentally determined 
binding modes provided a sound basis for a comparative 
study including active learning strategies to assess the 
information content of structural and interaction repre-
sentations on a relative scale.

First, conventional RF models were derived using 
90% of available inhibitors and applied to classify the 
test set containing the remaining 10% of the inhibitors. 
Moreover, an active learning strategy was implemented, 
which iteratively selects informative training instances 
in order to reduce training data to a required minimum. 

Hence, if successful, active learning reveals information 
that is essential for predictive modeling. Active learn-
ing employed a multi-class RF model starting with a 
corresponding data split for iterative sample selection 
and class label prediction, as illustrated in Fig. 1. Train-
ing instances were selected on the basis of information 
entropy from the compound pool, which initially corre-
sponded to a 90% of the data set. The model trained with 
selected instances was then used to predict the test set 
(10%). Further details and calculation protocols are pro-
vided in the Methods section.

Random forest predictions
Binding mode predictions were attempted with funda-
mentally different representations including IFPs and 
molecular graph-based fingerprints (see “Methods” sec-
tion for details). IFPs included an 85-bit version account-
ing for the presence or absence of ligand interactions 

Table 1 Kinase inhibitors with different binding modes

The composition of the compound data set assembled from X‑ray structures of 
kinase‑inhibitor complexes is summarized

Type # Inhibitors (%)

I 1424 (70.9%)

I½ 394 (19.6%)

II 190 (9.5%)

Total 2008

N predic�ons with
largest entropy

Compound pool
(Ini�ally 90%)

Test set
(10%)

Mul�-class RF model

Training set

Predict

Build

Select

Add

Predict

# Itera�ons

Fig. 1 Active learning strategy. Training instances are selected 
randomly (first iteration) or based on an entropy criterion 
(subsequent iterations) after predicting pool compounds. For 
performance evaluation, the multi‑class RF model is then used to 
predict the external test set
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with 85 residue positions forming the binding site region 
in kinases (IFP_85), and a further expanded 595-bit ver-
sion distinguishing between seven different types of 
interactions for inhibitors and each residue position 
(85 × 7; IFP_595). The 85 residues represent the com-
plete active site region in kinases defined on the basis of 
many X-ray structures [6, 7]. Others have previously used 
smaller subsets of these residues focusing on the ATP 
site, which were predicted to be important for conferring 
kinase selectivity [20, 21]. However, in our analysis, the 
comprehensive representation of the binding site region 
was used because different inhibitor binding modes were 

predicted. As a representation of chemical structures, 
the folded (1024-bit) and unfolded (variably sized fea-
ture set) version of the extended connectivity fingerprint 
with bond diameter 4 (ECFP4) were generated for each 
inhibitor (termed ECFP4_folded and ECFP4_unfolded, 
respectively). ECFP4 is a topological fingerprint encoding 
layered atom environments.

For classification, multi-class RF models were derived 
to distinguish between type I, I½, and II inhibitors. 
Figure  2 reports the Matthew’s correlation coefficient 
(MCC) and balanced accuracy (BA) values for RF 
models trained with both IFPs, ECFP4, and combined 

Fig. 2 Predictive performance of random forest models on test sets. MCC and BA value distributions are reported for RF models using different 
representations
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representations over 20 independent trials. Overall, 
RF models on the basis of ECFP4 yielded accurate pre-
dictions, consistent with our previous observations. 
This was the case for the folded and unfolded ECFP4 
version, with median BA and MCC values greater 
than 0.70 and 0.65, respectively. However, application 
of IFPs further increased global prediction accuracy. 
IFP_85 yielded median BA and MCC values of 0.85 and 
0.76, respectively. In addition, IFP_595 with further 
refined interaction information produced comparable 
BA but further increased MCC values, with a median 
MCC of 0.81. Compared to IFPs, model performance 
essentially remained constant when IFP and ECFP4 
representations were combined (i.e., when fingerprints 
of different design were concatenated). Only very 
minor changes were observed that were not significant. 
Hence, IFP contributions mostly determined predic-
tion accuracy and the minor fluctuations or reductions 

were likely due to ECFP4 feature noise in combined 
representations.

As a control, permutation tests were carried out (see 
Methods section) to confirm that RF models indeed 
detected inhibitor type-specific patterns. Figure 3 shows 
the results of permutation tests, i.e., the distribution of 
MCC values for 1000 RF models trained on data with 
randomized (shuffled) class labels using different repre-
sentations. The results show that control models had only 
very little predictive capacity. None of the control mod-
els approached the accuracy levels of models with non-
permuted labels, which supported the significance of the 
results.

Figure  4 reports the per-class performance for differ-
ent types of kinase inhibitor with RF models using basic 
fingerprint versions. Type II inhibitors were most accu-
rately predicted especially using interaction information, 
with a median MCC of 0.95. Furthermore, prediction 
accuracy was higher for type I than type I½ inhibitors, 

Fig. 3 Permutation tests. For predictions on test sets, MCC value distributions are shown for RF models trained with randomized class labels using 
different representations. The vertical dashed line indicates MCC = 0 and the solid colored lines mark model performance for the same individual 
trial
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which yielded median MCC values of 0.67 (IFP_85) 
and 0.63 (EFCP_folded). Thus, inhibitors with binding 
modes combining binding characteristics of type I and II 
inhibitors were most challenging to predict, as one might 
expect. The more accurate predictions of type II com-
pared to type I inhibitors were likely due to the presence 
of unique hydrogen bonding groups present in many type 
II inhibitors that distinguish them from type I inhibitors 
[22, 23]. These signature groups or substructures and 
their interactions are accounted for by atom environ-
ment/fragment fingerprints and IFPs, respectively.

Unsupervised learning for visualization
The unsupervised machine learning method t-distributed 
stochastic neighbor embedding (t-SNE) was applied for 
further comparison of representations and data visu-
alization. Using this non-linear dimension reduction 
approach, a two-dimensional (2D) embedding was con-
structed from a multi-dimensional feature space on the 
basis of Tanimoto distances to preserve local similari-
ties (see “Methods” section). Figure 5 shows t-SNE visu-
alizations for IFP_85 and ECFP4_folded feature spaces 
containing all kinase inhibitors. The 2D t-SNE represen-
tations reveal much clearer clustering of inhibitors by 
type for IFP_85 than ECFP4_folded, which further pri-
oritized IFPs for modeling. For example, t-SNE map for 
IFP_85 clearly separated the majority of type II inhibitors 
from those with other binding modes. In addition, a sepa-
rate cluster of type I inhibitors of a group of phosphatidyl 
inositol kinases (p110a, p110d, p110g, PIK3C3, PI4KA, 

and PI4KB) and serine/threonine-protein kinase mTOR 
emerged. These kinases differ structurally from many 
others in the human kinome, which is also reflected by 
different interactions with co-crystalized inhibitors that 
were accounted for by IFPs. In both maps, however, type 
I½ inhibitors often co-localized with type I inhibitors, 
which also illustrated why type I½ inhibitors were overall 
most challenging to predict.

Active learning
To further compare the information content of structural 
and interaction representations, an active learning strat-
egy was applied combining multi-class RF modeling and 
entropy-based selection of training instances. RF models 
were iteratively built with increasing numbers of train-
ing instances for the prediction of an external test set 
and the remaining compound pool. While test set pre-
dictions enable the estimation of model performance, 
predictions of the compound pool determine the choice 
of instances for addition to the training set. Initially, 
only three compounds were randomly selected from the 
pool for training the first RF model (one of each inhibi-
tor type). At subsequent iterations, 10 compounds from 
the pool were chosen and added for retraining the model. 
Compounds from the pool with the highest uncertainty 
in their predictions, quantified as information entropy, 
were selected. The information entropy concept can be 
applied to the predicted probabilities of three possible 
states: type I, I½, and II. Therefore, entropy can also be 
interpreted as the expected amount of information that 

Fig. 4 Per‑class performance. MCC value distributions are separately shown for test set predictions of type I (blue), I½ (orange), and II (green) kinase 
inhibitors, respectively, with RF models using IFP_85 and ECFP4_folded, respectively
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an instance would add to the model. The model was itera-
tively refined and tested to optimize prediction accuracy.

Three independent trials with two-fold external cross-
validation of active learning were performed. Figure  6 
shows average MCC values at increasing numbers of 
training samples using different representations. As a 
control, entropy-based active learning was compared 
to random sample selection from the compound pool. 
In Fig. 6a, MCC values reported for the complete com-
pound pool and training set. Since compound instances 
were iteratively added to the training set, the model pre-
dicts more instances from the training set and less from 
the compound pool at each interaction. At the end of this 
procedure, RF models were built to predict the complete 
training set (i.e. 90% of the total data set). These models 
displayed nearly perfect accuracy. The results for com-
pound pool predictions using different representations 
are shown in Fig.  6a. Entropy-based selection yielded 
earlier optimization of MCC performance compared 
to random selection. Figure  6b reports MCC values for 
classifying the external test set. When using ~ 500 train-
ing instances, prediction performance reached a plateau 
with MCC values ~ 0.8 and remained constant for fur-
ther increasing numbers of training samples ultimately 
including all pool compounds  (~ 1800). Prediction accu-
racy was higher for IFPs than ECFP4. For IFPs, there was 
a confined early improvement in MCC performance for 
entropy-based over random selection. By contrast, for 
ECFP4, the active learning entropy selection of train-
ing instances provided a significant advantage. Taken 

together, the results in Fig. 6 reveal that IFPs are informa-
tion-rich representations with high redundancy. A high 
level of interaction redundancy captured by IFPs was 
indicated by early saturation of prediction performance 
using only limited numbers of training instances, even 
if randomly selected. Hence, small training sets already 
yielded sufficient IFP information for discriminating 
between different types of kinase inhibitors. Furthermore, 
high redundancy was indicated by the observation that 
IFP_595 only yielded a minor improvement in prediction 
accuracy compared to the basic IFP_85 version with no 
further specified interactions. Both ECFP4_unfolded and 
ECFP4_folded had lower information content than IFPs 
but higher dimensionality. For compound pool predic-
tions with ECFP4, many more training examples than 
for IFPs were required for successful model building. 
Interestingly, for test set predictions, selection of train-
ing instances based on entropy also resulted in an early 
optimization of prediction performance, albeit at a lower 
level than IFPs. ECFP4 predictions with entropy-based 
selection reached a plateau at MCC values ~ 0.6.

Figure 7 monitors the difference between MCC values 
for entropy-based and random selection and increas-
ing numbers of training instances. For each fingerprint, 
a performance difference peak is observed. For ECFP4_
folded, the largest difference corresponded to 0.28 MCC 
units and occurred for ~ 140 examples. By contrast, for 
ECFP4_unfolded, the largest difference was 0.4 MCC 
units for ~ 120 training samples. For IFPs, the maximum 
MCC difference was ~ 0.2 for small numbers of training 

Fig. 5 Visualization of feature spaces. Scatter plots show 2D T‑SNE representations of the IFP_85 (left) and ECFP4_folded (right) fingerprint spaces 
on the basis of Tanimoto distances. Inhibitors (dots) are color‑coded according to binding modes: type I (blue), I½ (orange), and II (green)
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instances including ~ 30 (IFP_85) and ~ 60 compounds 
(IFP_595). These findings confirmed that selection based 
on entropy yielded informative training instances espe-
cially for atom environment fingerprints. For the infor-
mation-rich IFPs, even random selection led to early 
increases in predictive performance, resulting in a small 
peak difference between entropy-based and random 
selection for small numbers of training instances.

Although IFPs capture more information about com-
pound binding modes than atom environment finger-
prints, predicting kinase inhibitor binding modes from 
chemical structure also produces overall accurate pre-
dictions and remains attractive for practical applications. 
This is the case because X-ray structures are required 
to generate IFPs for predicting new compound binding 
modes. However, once a structure with a new inhibitor is 
obtained, the binding mode can be directly determined, 

without the need to translate interactions into an IFP for 
machine learning. By contrast, once a compound struc-
ture-based model is trained and validated it can be read-
ily used to predict binding modes of new inhibitors.

The results in Fig. 8 indicate that on the order of 500 
experimentally determined structures of inhibitor bind-
ing modes were required to maximize the accuracy of 
predictions using the folded as well as unfolded ECFP4 
versions. For these ECFP4-based predictions, entropy-
based instance selection was essential for effective 
active learning. The results reveal promising predic-
tions of binding modes of test inhibitors on the basis 
of entropy-guided selection of training samples, with 
an accuracy approaching 80% for ~ 500 training com-
pounds. Prediction performance essentially remained 
constant for large numbers of training instances. Hence, 
the number of currently available kinase inhibitors with 

Fig. 6 Active learning performance. The MCC values for a compound pool and b test set predictions are reported for different representations 
using entropy‑based (left) and random (right) selection of training samples. In b, shaded areas of each curve indicate standard deviations of 
different prediction trials
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experimentally determined binding modes by far exceeds 
(approx. 4-fold) the numbers of informative train-
ing instances required for overall accurate multi-class 

prediction of inhibitor binding modes on the basis of 
chemical structure.

Feature analysis
The importance of individual IFP and ECFP4 features for 
the prediction of kinase inhibitor binding modes was also 
assessed (see Methods section). For each active learn-
ing step, a multi-class RF model was built and its fea-
ture importance values were estimated. Figure  9 shows 
the change in feature importance over different active 
learning iterations, i.e., different numbers of training set 
samples.

The median importance value of each feature was 
calculated over all iterations. In Fig.  9, features with a 
median importance value of at least 20% and 10% of the 
maximum are shown for ECFP4 and IFP, respectively. 
Overall, very similar feature sets were consistently prior-
itized when re-training the classification models. As indi-
cated by the observed model performance, large training 
sets were not required to accurately predict kinase inhibi-
tor binding modes. However, the RF algorithm detected 
discriminative feature patterns early on. The analysis 
showed that the important features detected with 90% 
of the data were very similar to those prioritized using 
smaller training sets.

Feature importance values were also assessed for RF 
models built with concatenated fingerprints, which 
included both atom environments and IFP features. In 
this case, features found to be most relevant for the pre-
dictions were the same IFP features as observed before. 
Thus, these findings revealed that the inclusion of ECFP4 
features essentially retained prioritized IFP features, 
yielding very similar results.

Conclusion
In this work, classical random forest models as well as 
active learning variants enabled the assessment of the 
information content of two conceptually different molec-
ular representations for predicting compound binding 
modes. The predictive ability of alternative feature rep-
resentations as well as their redundancy was evaluated. 
Ultimately, one would like to predict different binding 
modes on the basis of ligand structure, which is of high 
relevance for practical applications. However, IFP-based 
models were generated to put the performance of ligand-
based representations into perspective and evaluate the 
relative information content for predictions. Successful 
predictions were obtained with both ECFP4 and IFPs. 
Moreover, the performance on the basis of both rep-
resentations was significantly better than expected by 
chance as assessed with a random classifier. IFPs showed 
consistently superior predictive performance than chem-
ical fingerprints, which reflected larger information 

Fig. 7 Entropy‑based versus random selection. For varying training 
set size, the MCC value difference between entropy‑based and 
random selection is reported for test set predictions using different 
representations. Shaded areas of each curve indicate standard 
deviations of difference calculations between corresponding 
predictions

Fig. 8 Active learning on the basis of chemical structure. Test set 
MCC (purple) and BA (blue) performance is shown for increasing 
numbers of training instances, with entropy‑based (solid line) 
and random (dashed line) selection of compounds from the pool. 
Shaded areas of each curve indicate standard deviations of different 
prediction trials
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Fig. 9 Feature importance analysis. Importance values for a ECFP4 and b 85‑bit IFP features are reported for different numbers of training set 
samples (i.e. active learning iterations). In a and b, only features with a median importance of at least 20% and 10% of the maximum are shown, 
respectively. Importance values are color‑coded as indicated. In a, the five features with largest median values across all iterations are shown in the 
insert at the bottom
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content of IFPs, especially for the high-resolution version 
IFP_595. Nonetheless, ECFP4 yielded successful predic-
tions that generally differed by less than 0.2 MCC units. 
An active learning strategy based on multi-class RF and 
entropy-based instance selection was introduced and the 
results indicated the suitability of this approach for limit-
ing the data required to accurately predict binding modes 
of kinase inhibitors. Entropy-based selection of training 
compounds strongly influenced predictions on the basis 
of ECFP4, having lower intrinsic information content. 
Active learning revealed that ~ 25% of the available train-
ing samples were sufficient to reach near maximal MCC 
values. For practical applications, predicting binding 
modes of newly discovered kinase inhibitors from chemi-
cal structure is particularly attractive.

Methods
Data set
Kinase inhibitors with different binding modes were 
extracted from the KLIFS database [6, 7] as described 
[18], which organizes these inhibitors on the basis of 
structural information from kinase-inhibitor complexes. 
Binding modes were assigned on the basis of conforma-
tional states observed for the DFG motif and αC-helix in 
each kinase-ligand complex structure. Conformational 
state information was obtained from KLIFS using the 
open source virtual machine 3D-e-Chem-VM. Inhibi-
tors with different binding modes were assembled, except 
allosteric and covalent inhibitors, which were only avail-
able in small numbers and for which IFPs could not be 
computed in a consistent manner. In addition, small 
numbers of kinase inhibitors capable of adopting mul-
tiple binding modes were not selected. A total of 2008 
kinase inhibitors were obtained including 1424 type I, 
394 type I½, and 190 type II inhibitors (Table 1), which 
originated from 2288 X-ray structures (representing a 
subset of inhibitors previously reported inhibitors [18]).

Feature representations
Interaction fingerprints
The KLIFS database defines a set of 85 sequence-dis-
continuous residue positions forming the kinase bind-
ing site region where kinase-ligand interactions with 
type I½, II, and III inhibitors take place. A bit vec-
tor recording the presence or absence (“on” or “off”) 
of ligand interactions with each of these 85 positions 
(where residues might differ) was used as a basic IFP 
representation (IFP_85). The frequency or occur-
rence of amino acid residues at each position across 
all 2288 X-ray structures used in the analysis is pro-
vided in Fig.  10a. The basic 85-bit vector was further 
extended by generating a 595-feature IFP by assigning 
interactions involving each residue to seven different 

categories according to Fig.  10b, permitting multiple 
interactions per residue (IFP_595). For inhibitors with 
IFPs for different X-ray structures, a consensus IFP was 
calculated by determining the majority of “on” or “off” 
records. In case of a tie, the interaction was set “on”. 
Following these procedures, for each inhibitor, a final 
(unique or consensus) 85-bit and 595-bit IFP were gen-
erated using KLIFS.

Atom environment/fragment fingerprints
For each inhibitor, ECFP4 [23] was calculated using an 
in-house Python script based on OEChem [24]. ECFP4 
enumerates layered atom environments up to the given 
diameter and encodes them as integers using a hash-
ing function [23]. These atom environments consti-
tute a feature set of variable size that can be folded to a 
fixed length (1024 bits) through modulo mapping. Both 
ECFP4_folded and ECFP4_unfolded were investigated.

Random forest algorithm
RF is a machine learning algorithm that consists of an 
ensemble of decision trees [25]. Each tree applies recur-
sive partitioning and represents a sequence of binary 
decisions on the basis of feature values. To avoid the 
generation of correlated trees, individual trees were built 
using bootstrap aggregating and feature bagging [26]. For 
a given test compound, feature values indicate the deci-
sion path in a tree until reaching a leaf node. Each leaf 
node is characterized by a number of training instances 
sharing the same feature decision path. The majority 
class is selected as prediction outcome for a test instance. 
Next, final predictions are determined by the consensus 
decision across trees in the ensemble. A multi-class RF 
was implemented to distinguish between type I, I½, and 
II inhibitors. For this prediction task, RF assigns each 
compound to a single class or binding mode. The pre-
dicted class corresponds to the binding mode with larg-
est proportion of training instances at a given leaf node. 
For RF generation, scikit-learn was used [27]. The num-
ber of trees was set to 100, class weights were applied to 
account for class imbalance, and default settings were 
considered for other hyper-parameters. Feature impor-
tance was calculated for RF models.

The estimated importance of a feature for a node split 
is the improvement in the split criterion, which needs to 
be separately accumulated for each feature over all deci-
sion trees comprising the RF [28]. The implemented RF 
classifier was based on the Gini impurity criterion. Thus, 
feature importance values were calculated as the mean 
decrease in node impurity weighted by the probability of 
reaching a given node [28].
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Active learning strategy
Active learning combines a machine learning model such 
as RF with the iterative selection of informative training 
instances to retrain and further improve the predictive 
model [29]. In the context of binding mode prediction, 
active learning classifies kinase inhibitors according to 
their type and decides which training instance(s) to select 
next. In this study, training instances were selected from a 
compound pool that representing different experimental 

outcomes. To select informative training instances, it 
was simulated that binding modes inhibitors from the 
pool were unknown until they were predicted and incor-
porated to the evolving training set. The active learning 
strategy applied here consisted of a multi-class RF model 
and entropy-based data selection.

Shannon entropy is a concept from information theory 
[30]. Information entropy quantifies uncertainty and is 
defined by the following expression.

Fig. 10 Kinase binding site representation and IFPs. a For 85 residues positions comprising the kinase binding site region (horizontal axis), the 
amino acid ratios across all kinase structures (vertical axis) is reported as a frequency‑based color gradient heatmap. Key structural elements are 
indicated. b The expansion of the 85‑bit vector to the 595‑bit IFP through specification of seven different types of interactions is illustrated
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where pi is the probability of the state i (or a given bind-
ing mode). Here, possible states include type I, type I½ 
and type II inhibitors. Accordingly, instance selection 
is based on the uncertainty of the current RF model to 
predict the binding mode of kinase inhibitors in the pool. 
Therefore, H is calculated for individual predictions of 
the ensemble classifier.

Calculation protocols
The calculation set-up for active learning is illustrated in 
Fig. 1 and begins with stratified data splitting into a com-
pound pool (90%) and test set (10%). The split was carried 
out per activity class to ensure the presence of same class 
distribution in the training and test sets. In the first itera-
tion, three instances (one per class) are randomly selected 
and used to train the initial RF model. In subsequent itera-
tions, a number of compounds (N) from the compound 
pool are selected based on information entropy from RF 
predictions. N cases with largest entropy across their pre-
dictions, reflecting high model uncertainty, are added to 
the training set. Small N values increase computational 
costs due to more required cycles of model retraining while 
large N values may lead to information redundancy. As a 
desirable trade-off between model retraining and batch 
size, N was set to 10 for all active learning trials. Results 
were averaged across six independent trials, resulting from 
two independent compound pool/test set splits with three 
executions each with random selection of the first three 
instances. Standard RF models were also built with distinct 
feature representations. In this case, 20 independent trials 
were performed with 90% of the data for training and 10% 
for testing.

The 90%/10% data splits were applied to generate a large 
compound pool for active learning. The potential influ-
ence of overfitting of individual models was minimized by 
estimating performance on the basis of cross-validation. 
As a control, the calculations were repeated on the basis of 
70%/30% data splits and the results were found to closely 
correspond to those reported above.

Performance assessment
Model performance was assessed using MCC [31] and BA 
[32], as defined below:

H = −
∑

i

pi log2 pi

MCC =
TP× TN− FP× FN

√
(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)

BA =
1

2

(

TP

TP+ FN
+

TN

TN+ FP

)

where TP, TN, FP, FN refer to true positives, true nega-
tives, false positives and false negatives, respectively.

In addition, permutation-based p-values were calcu-
lated to assess performance significance [33]. Permuta-
tion tests were performed for one individual trial, i.e. a 
single 90% and 10% data split. Therefore, 1000 RF models 
were trained on the 90% of the data with randomly shuf-
fled labels and the performance was estimated on the 
test set (10%). p-values account for the number of mod-
els with shuffled labels that yield at least the same per-
formance as the RF derived from training instances with 
original labels. Thus, in this case, the smallest achievable 
p-value is 1/1000.

T‑distributed stochastic neighbor embedding
For data exploration and visualization, t-SNE was used 
[27, 34]. T-SNE is a non-linear dimension reduction 
method that generates low-dimensional representations 
preserving the local similarity between data points in the 
original space. Pairwise distances between compounds 
are calculated first and then converted to conditional 
probabilities. Therefore, a normal distribution centered 
at each point is assumed and the density of points is 
determined to account for probability-based local simi-
larity. Accordingly, conditional probabilities are large for 
instances that are close to each other and small for dis-
tant instances. The resulting structure is replicated in 
lower-dimensional space by minimizing the Kullback–
Leibler divergence [35] between joint probabilities in 
higher- and lower-dimensional space. In this study, Tani-
moto distance [36] was used as a distance measure and a 
2D embedded space as the low-dimensional representa-
tion. Different perplexity values were examined revealing 
very little influence on the visualizations, and perplexity 
was constantly set to 30.
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