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Abstract 

Activity landscapes (ALs) are graphical representations that combine compound similarity and activity data. ALs are 
constructed for visualizing local and global structure–activity relationships (SARs) contained in compound data sets. 
Three-dimensional (3D) ALs are reminiscent of geographical maps where differences in landscape topology mirror 
different SAR characteristics. 3D AL models can be stored as differently formatted images and are thus amenable to 
image analysis approaches, which have thus far not been considered in the context of graphical SAR analysis. In this 
proof-of-concept study, 3D ALs were constructed for a variety of compound activity classes and 3D AL image vari-
ants of varying topology and information content were generated and classified. To these ends, convolutional neural 
networks (CNNs) were initially applied to images of original 3D AL models with color-coding reflecting compound 
potency information that were taken from different viewpoints. Images of 3D AL models were transformed into vari-
ants from which one-dimensional features were extracted. Other machine learning approaches including support 
vector machine (SVM) and random forest (RF) algorithms were applied to derive models on the basis of such features. 
In addition, SVM and RF models were trained using other features obtained from images through edge filtering. 
Machine learning was able to accurately distinguish between 3D AL image variants with different topology and infor-
mation content. Overall, CNNs which directly learned feature representations from 3D AL images achieved highest 
classification accuracy. Predictive performance for CNN, SVM, and RF models was highest for image variants empha-
sizing topological elevation. In addition, SVM models trained on rudimentary images from edge filtering classified 
such images with high accuracy, which further supported the critical role of altitude-dependent topological features 
for image analysis and predictions. Taken together, the findings of our proof-of-concept investigation indicate that 
image analysis has considerable potential for graphical SAR exploration to systematically infer different SAR character-
istics from topological features of 3D ALs.
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Introduction
Activity landscapes (ALs) are defined as graphical rep-
resentations that integrate compound similarity and 
activity relationships [1, 2]. ALs graphically represent 
active compounds in biologically relevant chemical 
space, making it possible to visualize structure–activity 

relationships (SARs) and identify key compounds and 
SAR determinants [1–8]. A variety of AL representa-
tions of different design and complexity have been 
introduced to visualize SARs. These include struc-
ture–activity similarity maps, other two-dimensional 
(2D) ALs, three-dimensional (3D) AL models, and 
molecular network representations [1–8]. 3D ALs can 
be rationalized to result from a two-dimensional (2D) 
projection of chemical feature space, producing a 
plane where compounds are separated by varying dis-
tances, to which compound potency is added as a third 
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dimension. From sparsely distributed potency meas-
urements, an activity hyper-surface is interpolated 
[3, 8]. Compounds that are similar to each other and 
neighbors in chemical space but have large differences 
in potency form activity cliffs (ACs) [1–3], which are 
prominent features of 3D AL models. Such 3D ALs are 
reminiscent of geographical maps with varying land-
scape topologies [3, 8]. In 3D ALs, the activity hyper-
surface can be color-coded by compound potency using 
a color gradient, which further emphasizes different 
topologies. In gently sloped or smooth regions, grad-
ual changes in chemical structure are accompanied by 
moderated changes in potency, which corresponds to 
SAR continuity [1–3]. By contrast, in rugged regions, 
small chemical changes lead to significant potency vari-
ations, corresponding to SAR discontinuity [1–3]. Here, 
ACs represent the apex of SAR discontinuity. By design, 
3D ALs are descriptive in nature and are typically quali-
tatively analyzed. Only very few studies have thus far 
attempted to use AL models for compound potency 
predictions [4, 8].

3D AL models can be visualized and analyzed from dif-
ferent viewpoints and perspectives. Hence, visualization 
yields images with different characteristics that can be 
subjected to image processing methods. Thus far, how-
ever, AL visualizations have not been analyzed and com-
pared using such approaches. Therefore, we have asked 
the question if 3D ALs with different topological features 
representing different SAR characteristics could be dis-
tinguished from each other and classified through image 
processing; the major topic of this study.

In recent years, deep learning has made a large 
impact on image processing. In particular, convolu-
tional neural networks (CNNs) have become one of 
the preferred machine learning approaches for image 
analysis due to their ability to extract patterns from 
low-resolution data representations in so-called convo-
lutional layers [9, 10]. CNNs are deep neural networks 
with one or more convolutional layers encoding locality 
information in the network structure [9, 10]. The design 
of CNNs renders them well-suited for processing of 
spatial and temporal data such as images, audio, or 
video signals. CNNs achieved higher performance level 
than other computational approaches in recognizing 
histopathological [11], magnetic resonance [12], medi-
cal X-ray [13], computer tomography, [14] and fundus 
images [15]. CNNs are also gaining increasing atten-
tion in chemical informatics and drug discovery, albeit 
in different contexts. For example, CNNs and random 
forest (RF) [16] models have been applied to predict 
cancer cell line sensitivity and compound potency 
[17] or compound toxicity [18] using 2D structural 

representations in image formats. CNNs have also 
been employed to model bioactivity profiles using 2D 
images [19, 20]. Other studies investigated molecular 
mechanism of action based on bioactivity profiles using 
images from high-content screening [21–23].

In addition to CNNs, various studies have shown that 
other machine learning approaches like support vector 
machine (SVM) [24] modeling can also classify images 
using raw pixel intensities or extracted image features 
[25–30]. In addition, RF can also accurately classify 
high-dimensional image data [31, 32].

However, the application of CNNs or other machine 
learning-based image processing methods to ALs for 
SAR visualization and analysis has thus far not been 
investigated. For machine learning methods, suitable 
representations are required to represent data sets 
of varying size in a unified and standardized format 
to enable direct comparison. Images generated from 
3D ALs are well suited because they retain the pair-
wise similarity relationships between compounds and 
account for potency values as topographical features 
and/or using color gradients. Images can be generated 
from different viewpoints ranging from top-down views 
of ALs to elevated or profile views where SARs become 
visible as peaks and valleys. Top-down views essentially 
yield heatmap representations if color gradients are 
used, as further discussed below.

In our current study, 3D AL images have been ana-
lyzed and classified using CNNs, RF, and SVM. Differ-
ent projection methods and image encodings of varying 
resolution and information content have been gener-
ated to capture 3D AL topology in different ways and 
determine which factors are responsible for accurate 
image classification. Therefore, image variants with 
successively reduced information content have also 
been generated and investigated.

CNN, RF, and SVM models were found to be capable 
of correctly classifying AL image variants with different 
topology on the basis of structure and pixel intensity 
information. CNNs learning feature representations 
yielded overall most accurate predictions. However, RF 
and SVM models trained on pre-defined lower-level 
feature representations were also predictive. The analy-
sis identified topological features that were of critical 
relevance for image classification. Taken together, our 
findings revealed that images of 3D ALs for SAR visu-
alization can be distinguished through machine learn-
ing on the basis of characteristic topological features, 
which provides a new methodological framework for 
direct comparison of AL models of compound data sets 
of different composition and comparative SAR analysis 
of large data sets.
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Concepts and methods
Compound activity classes
For 3D AL image analysis, 38 compound activity classes 
were selected from ChEMBL version 23 [33]. For each 
class, more than 500 compounds with  pKi potency 
measurements were available. Intra-class potency 
variations spanned several orders of magnitude. In 

addition, the potency value distribution of each class 
had an interquartile range covering at least one order 
of magnitude [34]. Table 1 summarizes the composition 
of each activity class and provides potency range statis-
tics. Reported are final compound numbers after simi-
larity filtering, as further described below.

Table 1 Activity classes

The table summarizes the composition of 38 activity classes used for 3D AL modeling. IQR represents the interquartile range of the potency value distribution of each 
data set

ChEMBL target ID Target name No. compounds Potency  [pKi] IQR (Q1–Q3)

Min Max

CHEMBL204 Coagulation factor II 1099 1.00 12.19 5.30–7.47

CHEMBL205 Carbonic anhydrase 2 2701 0.60 11.10 6.24–8.04

CHEMBL214 Serotonin receptor 1A 1936 0.36 10.85 6.74–8.29

CHEMBL217 Dopamine D2 receptor 3427 2.85 10.57 6.29–7.49

CHEMBL218 Cannabinoid receptor 1 1938 3.79 10.10 5.95–7.62

CHEMBL219 Dopamine D4 receptor 1086 4.74 10.52 6.43–7.87

CHEMBL222 Sodium-dependent noradrenaline transporter 1000 2.26 9.52 5.86–7.54

CHEMBL224 Serotonin receptor 2A 1967 3.51 11.00 6.56–8.12

CHEMBL225 Serotonin receptor 2C 1085 3.51 9.70 6.23–7.70

CHEMBL226 Adenosine receptor A1 2829 4.12 12.23 5.87–7.14

CHEMBL229 Alpha-1A adrenergic receptor 594 4.04 10.44 6.90–8.40

CHEMBL233 Mu-type opioid receptor 2009 4.20 11.80 6.37–8.33

CHEMBL234 Dopamine D3 receptor 2518 4.17 10.00 6.79–8.40

CHEMBL236 Delta-type opioid receptor 1604 3.72 10.68 6.00–8.08

CHEMBL237 Kappa-type opioid receptor 1853 4.09 11.52 6.45–8.49

CHEMBL238 Sodium-dependent dopamine transporter 850 2.14 9.40 5.60–7.37

CHEMBL240 Potassium voltage-gated channel subfamily H_2 1053 3.89 9.55 5.29–6.44

CHEMBL245 Muscarinic acetylcholine receptor M3 609 4.11 10.30 6.70–9.10

CHEMBL251 Adenosine receptor A2a 3305 3.92 11.38 6.05–7.67

CHEMBL253 Cannabinoid receptor 2 2605 0.63 10.72 6.24–7.99

CHEMBL255 Adenosine receptor A2b 1265 3.37 9.80 6.30–7.82

CHEMBL256 Adenosine receptor A3 2567 1.32 11.00 6.16–7.84

CHEMBL261 Carbonic anhydrase 1 2657 0.56 11.00 5.34–7.09

CHEMBL264 Histamine H3 receptor 2323 4.07 10.60 7.21–8.70

CHEMBL344 Melanin-concentrating hormone receptor 1 1187 3.57 9.77 6.90–8.01

CHEMBL1800 Corticotropin-releasing factor receptor 1 673 4.26 9.66 6.58–8.14

CHEMBL1833 5-hydroxytryptamine receptor 2B 695 5.00 9.96 6.13–7.40

CHEMBL2014 Nociceptin receptor 839 4.40 10.70 7.09–8.52

CHEMBL3155 5-hydroxytryptamine receptor 7 1111 3.30 10.00 6.53–7.95

CHEMBL3242 Carbonic anhydrase 12 2008 3.08 9.62 6.92–8.23

CHEMBL3371 5-hydroxytryptamine receptor 6 2134 1.38 10.40 7.03–8.52

CHEMBL3594 Carbonic anhydrase 9 2347 1.34 9.92 6.61–8.04

CHEMBL3759 Histamine H4 receptor 887 2.85 10.40 5.98–7.59

CHEMBL4005 Serine/threonine protein kinase PIK3CA 882 4.65 10.52 7.01–8.46

CHEMBL4550 Arachidonate 5-lipoxygenase-activating protein 1318 5.60 9.40 6.75–8.21

CHEMBL4792 Orexin receptor type 2 1444 4.96 10.15 6.13–7.57

CHEMBL5071 Prostaglandin D2 receptor 2 794 4.48 10.00 6.49–8.41

CHEMBL5113 Orexin receptor type 1 1249 4.19 9.80 5.47–7.19
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Molecular representation and similarity assessment
For similarity assessment, the extended-connectivity 
fingerprint with bond diameter 4 (ECFP4) [35] was 
calculated for each compound. ECFP4 is a topological 
feature set fingerprint comprising layered atom envi-
ronments and represents a gold standard in the field. 
ECFP4 feature sets were folded into a fixed-length 
1024-bit representation [35]. As a similarity metric, the 
Tanimoto coefficient (Tc) was used to quantify pairwise 
compound similarity [36]. The Tc is defined as:

where A , B are fingerprints of compounds A and B, 
respectively. Corresponding Tanimoto distance was 
obtained by calculating the complement 1− Tc(A,B).

Initially assembled activity classes were subjected to 
similarity filtering and only compounds were retained 
that possessed an ECFP4 Tc similarity of at least 0.4 
to at least one other compound from the same activity 
class. Filtering was applied to eliminate singletons from 
the data sets that had no or only very weak structural 
relationships with other compounds (and hence did not 
contribute to SARs). Fingerprint and similarity calcu-
lations were performed using in-house Python scripts 
and the OpenEye chemistry toolkit [37].

3D activity landscapes
For generating 3D AL models, ECFP4 space was pro-
jected on a 2D plane, compound potency values were 
added as the third dimension and from these values, 
a coherent potency hyper-surface was interpolated. 
Different projection methods for 3D AL design have 
previously been investigated [8] and two methods, 
multi-dimensional scaling (MDS) [38] and Neuroscale 
[39], were found to be preferred for retaining original 
similarity relationships for SAR visualization. There-
fore, these approaches were used herein. For projec-
tion, both MDS and Neuroscale apply stress functions 
based on pairwise Tanimoto distances between com-
pounds. Neuroscale projects compounds using a radial 
basis function (RBF) neural network. For each Neuro-
scale model, the number of RBFs was optimized using 
sevenfold cross validation.

Hyper-surface interpolation was carried out using 
Gaussian process regression (GPR) [40, 41]. The resulting 
surface was colored according to the compound potency 
using a color gradient from green over yellow to red. For 
all images, the same color gradient was applied according 
to which a  pKi value of 5.75 (and below) corresponded to 
green, the  pKi range 5.76–8.74  pKi to yellow, and a  pKi of 
8.75 (or above) to red.

Tc(A,B) =
|A ∩ B|

|A| + |B| − |A ∩ B|

Reference landscapes
Smooth and rugged regions represent major topologi-
cal features of 3D ALs that correspond to different SAR 
phenotypes [3]. In smooth regions, gradual changes 
in molecular structure are accompanied by moderate 
changes in potency, which represents SAR continuity. 
By contrast, in rugged regions, small structural changes 
lead to large potency variations. This corresponds to 
SAR discontinuity and leads to the formation of ACs. In 
many activity classes, continuous and discontinuous SAR 
components co-exist and are combined in different ways, 
giving rise to globally heterogeneous SARs [42, 43]. Such 
SAR heterogeneity is quantitatively accounted for using 
numerical SAR analysis functions such as the SAR Index 
[42]. In 3D AL models, SAR heterogeneity is represented 
by co-occurrence of smooth and rugged regions in differ-
ent topological constellations.

To establish proof-of-concept for image classification, 
two reference AL models were generated for the 3D AL 
of each activity class in which SAR continuity/smooth-
ness and discontinuity/ruggedness were increased, 
respectively, relative to the original 3D AL. Accordingly, 
these 3D AL variants were termed smooth and rugged 
reference (Ref-)ALs, respectively.

Smooth Ref-ALs were generated by selecting com-
pounds that fell into the 2nd and 3rd quartile, i.e. the 
interquartile range, of the potency distribution of each 
activity class. Rugged Ref-ALs were obtained by consid-
ering septiles of the potency distribution and selecting 
compounds falling into the 1st, 3rd, 5th, and 7th septile. 
The resulting Ref-ALs contained about half and 4/7th 
the original number of compounds per class, respec-
tively, which consistently amounted to more than 250 
compounds per Ref-AL. Rugged Ref-ALs retained the 
potency range of the original ALs, whereas the potency of 
smooth Ref-ALs was reduced to the interquartile range, 
as reported in Table  1. It varied from ten- to 100-fold 
differences for most data sets while five sets had a larger 
than 100-fold interquartile range. As further discussed 
below, original 3D ALs of all 38 activity classes were 
generally heterogeneous in nature and were designated 
accordingly. Hence, for the generation of classification 
models, smooth and rugged Ref-ALs were distinguished 
from heterogeneous 3D ALs of original compound data 
sets, hence yielding three categories of 3D AL models for 
image generation.

Activity landscape images
For each original 3D AL and Ref-AL, images providing 
different views were generated by systematically vary-
ing azimuth (0°, 90°, 180° 270°) and elevation angles (0°, 
35°, 65°,90°), as illustrated in Fig.  1. For the elevation 
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angle of 0°, most of the 2D projection information is 
lost but altitude is accounted for as a topological fea-
ture. By contrast, for the elevation angle of 90°, eleva-
tion information is only retained through potency 
coloring. Furthermore, original color images were con-
verted into image variants with reduced information 
content including grayscale and black and white (b/w) 
versions as well as images generated from edge detec-
tion filters (see below). Exemplary images are shown in 
Fig. 2.

Convolutional neural networks
CNNs are deep neural networks characterized by one 
or more initial convolutional layers. CNNs are popu-
lar for image-based analysis tasks [10]. Convolutional 
layers only connect local neighborhoods of input neu-
rons and perform learnable convolutions on the input 
data that are identical for each neuron. The output 
of the convolution layer is passed through a stand-
ard rectified linear unit activation (ReLU) layer. This 
is followed by pooling that combines outputs from 
local neuron clusters and reduces the dimensions and 
computational complexity [44]. Multiple convolutional 
layers can be connected to each other leading to suc-
cessive reduction of layer sizes. The output of the final 
convolutional layer is followed by one or more fully 
connected neuron layers. Dropout layers that ran-
domly deactivate a proportion of neurons are inserted 
between layers in order to avoid overfitting [45]. A 
schematic of a CNN is shown in Fig. 3.

Network architecture
The CNN architecture used herein consisted of con-
volutional, rectified linear unit (ReLU), max-pooling, 
dropout, and dense layers, as illustrated in Fig. 3. Three 
convolutional layers with filter size of 3 × 3 with respect 
to kernel sizes of 32, 64 and 128 were added to extract 
image features. Each convolution layer was followed by a 
rectified linear unit (ReLU), a max-pooling, and a drop-
out layer. After “flattening” the weights, two intermedi-
ate dense layers were added followed by dropout layers. 
As output, a softmax layer was used to normalize learned 
weights as a probability distribution. CNN layers were 
implemented using TensorFlow (version 1.4.1) and Keras 
(version 2.2.4) [46, 47]. Training data were assembled 
from 19 randomly selected activity classes. As test sets, 
all images from the remaining 19 classes were used. CNN 
hyper-parameters were optimized using internal valida-
tion on the basis of an 80% versus 20% split of the train-
ing data. Parameter optimization included ReLU alpha 
over the range 0.0–0.5, dropout rates with values 0.0, 0.1, 
0.3, intermediate dense layer sizes of 16, 32, 64, and 128 
output neurons, and Adam optimizer learning rates of 
100, 10, 1, 0.1, 0.01, 0.001, 0.005, 0.00005, and 0.000005. 
Each CNN model was trained until convergence was 
reached, which typically required ~ 20 epochs.

Alternative machine learning approaches
Support Vector Machine
Support vector machine (SVM) is a supervised machine 
learning algorithm that constructs a hyper-plane H in a 

Fig. 1 Different activity landscape views. For all activity classes, multiple 3D AL images were generated with varying azimuth and elevations 
settings. As an example, images with different views of a 3D AL are shown for activity class ChEMBL204 on the basis of Neuroscale projection. a 
illustrates that modification of the azimuth and elevation angle provide different views of a 3D AL. b shows 3D AL images with elevation angles of 
0°, 35°, 65° and 90° and c images with azimuth angles of 0°, 90°, 180° and 270°
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given feature space to best separate different classes of 
objects by maximizing the distance (margin of the hyper-
plane) between objects having different class labels [24]. 
The hyper-plane for an n-dimensional feature space is 
defined as:

Here, w ∈ R
n w is the weight vector and b ∈ R

n is the 
bias. If linear separation of objects with different class 
labels is not possible in a given feature space, the data 

H = {x ∈ R
n|w, x + b = 0}

Fig. 2 Image variants. From original color-coded 3D ALs, image variants with reduced information content were generated. Shown are examples 
for activity class ChEMBL2014. Rectangles in the original images delineate cropped images
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are projected into a higher dimensional space variant 
where linear separation might become feasible. There-
fore, the scalar product w, x is replaced by a non-linear 
kernel function, thereby circumventing explicit map-
ping to higher dimensional space. SVM classifiers are 
trained using a regularization parameter that permits 
certain misclassification events and penalizes them with 
a cost factor C , which supports model generalization. 
For multi-class image analysis, multiple one-against-one 
binary SVM models were trained and the results were 
combined to yield a final classifier. SVM meta-parame-
ters were optimized using tenfold cross validation includ-
ing cost factor C with values of 0.01, 0.1, 1 and the kernel 
(linear, polynomial, or RBF). For SVM training, a total of 
79,200 features extracted from images were used.

Random forest
RF is a decision tree ensemble classifier that is trained 
using randomized feature subsets on sub-sampled train-
ing data [16]. Herein, RF models were constructed from 
the subset of 79,200 image features. RF meta-param-
eters including the number of trees (50 or 100), mini-
mum number of samples (2 or 5), and minimum sample 
leaf nodes (1 or 3) were optimized using tenfold cross 
validation.

Image pre‑processing and feature extraction
Original 3D AL images were generated with a resolu-
tion of 1200 × 800 pixels. Images were cropped to reduce 
non-colored areas and outer boundary regions. Cropped 
images were resized to a resolution of 360 × 220. Gray-
scale images were obtained as the weighted sum of the 
red, green and blue channels using weights of 0.299, 
0.587, and 0.114, respectively. These calculations were 
performed using the openCV library version 3 [48–51]. 
In addition, grayscale images were converted into b/w 
images by applying binary Otsu’s thresholding [52]. The 

pixel values of all image matrices were converted into 
32-bit floating point format and normalized.

Convolution layers of neural networks can detect fea-
ture representations from given image pixel values. How-
ever, machine learning approaches such as SVM and RF 
are not capable of doing so. Therefore, image filters for 
feature extraction were applied to generate feature sets 
for SVM and RF calculations.

The Sobel edge operator is a convolution filter for edge 
detection given by the two convolution matrices:

It introduces an average factor for smoothing ran-
dom noise of an image and extracts enhanced (thick and 
bright) edges [53]. Herein, the vertical improved Sobel 
filter Gy of Gao et  al. [53] was used. In addition, the 
Canny edge detector was applied, representing a widely 
used method for edge detection [54]. The openCV imple-
mentation of the Canny edge filter was applied to obtain 
Canny edges [49]. The resulting row-wise flattened pixel 
values of edge filters were used as a feature vector. Fig-
ure 2 illustrates image variants obtained using the Sobel 
edge and Canny edge filters. Furthermore, two other fil-
ters were used including ORB [55] and Harris boundary 
features [56] that are less frequently considered for topo-
logical features.

Deriving and evaluating models on image collections
Machine learning models were trained and tested on 
images viewed from different angles and image variants 
with different information content generated on the basis 
of MDS or Neuroscale projections. Images were grouped 
into different collections, as reported in Table 2. Collec-
tions 1–3 included all viewpoints and were distinguished 
only by the projection method. Collection 1 combined 
MDS and Neuroscale images while collection 2 and 3 

Gx =





−1 0 1
−2 0 2
−1 0 1



, Gy =





−1 −2 −1
0 0 0
1 2 1





Fig. 3 Convolutional neural network architecture. CNN design 
combining convolution, rectified linear unit, max-pooling, dropout, 
and dense layers is schematically illustrated

Table 2 Image collections

Different image collections were generated to provide alternative conditions for 
training and testing of classification models

No. Projection Elevation Azimuth Number 
of images

1 MDS, Neuroscale 0°, 35°, 65°, 90° 0°, 90°, 180°, 270° 3648

2 MDS 0°, 35°, 65°, 90° 0°, 90°, 180°, 270° 1824

3 Neuroscale 0°, 35°, 65°, 90° 0°, 90°, 180°, 270° 1824

4 MDS, Neuroscale 90° 0°, 90°, 180°, 270° 912

5 MDS, Neuroscale 65° 0°, 90°, 180°, 270° 912

6 MDS, Neuroscale 35° 0°, 90°, 180°, 270° 912

7 MDS, Neuroscale 0° 0°, 90°, 180°, 270° 912
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only included MDS and Neuroscale images, respectively. 
Collections 4–7 focused on different elevation viewpoints 
combining MDS and Neuroscale projections. As train-
ing data, the heterogeneous (original 3D AL), smooth 
(Ref-AL), and rugged (Ref-AL) variants for all 38 activity 
classes were used yielding 114 images for each for spe-
cific viewpoint and projection. Training was performed 
on cropped full color, grayscale, and b/w images. Addi-
tionally, image variants from Sobel edge or Canny edge 
filters were used in some settings. For each elevation, four 
images were generated for azimuth angle of 0°, 90°, 180° 
and 270°. Depending on the collection, eight to 32 image 
variants per target were used for model derivation. Train-
ing data for all models were extracted features with nor-
malized values obtained from pre-processed images. For 
training SVM and RF models, pre-processed images were 
represented as one-dimensional feature vectors without 
locality information, which was retained in CNNs via the 
convolutional layers. Training data were assembled from 
19 of 38 randomly selected activity classes. As test sets, 
all images from the remaining 19 activity classes were 
used.

Performance evaluation
Classification performance was evaluated based on 
receiver-operator characteristic (ROC) curves, the area 
under the ROC curve (AUC), and the confusion matrix. 
Three standard performance measures were applied 
including the subset accuracy [57], Matthew’s correlation 
coefficient (MCC) [58], and the weighted mean F1 score 
[59]. Subset accuracy is defined as:

where n denotes the number of samples in the test set, Zi 
is the predicted and Yi is the true label for sample i and 
[[·]] is the Iverson bracket taking the value of 1 for a true 
and 0 for a false predicate [57].

Results and discussion
Analysis concept
Our study was designed to investigate image analysis 
for distinguishing between 3D AL models with different 
topological features reflecting different SAR character-
istics. Graphical SAR analysis has thus far mostly been 
qualitative and subjective in nature. Therefore, we rea-
soned that successful classification of 3D AL images 
according to different topological features via ML would 
provide a sound foundation for systematically compar-
ing 3D ALs going beyond subjective interpretation of 
AL models and qualitative analysis of SAR characteris-
tics. We emphasize that AL images do not only provide 

Accuracy =
1

n

n
∑

i

�Zi = Yi�

an attractive representation for SAR visualization, but 
also a preferred data format for ML-based image classi-
fication. AL images are preferred because the underlying 
AL data matrices are difficult, if not infeasible to use for 
ML directly. This is the case because the AL data struc-
ture consists of an exhaustive pairwise compound simi-
larity matrix and an array of compound potency values 
that must be combined. For ML, a potency-augmented 
similarity data matrix would need to be transformed into 
a fixed-format feature vector or an equivalent represen-
tation to enable direct comparison of different AL data 
matrices for model derivation. This is intrinsically dif-
ficult to accomplish for compound data sets of different 
composition and size for which ALs are usually gener-
ated. Challenging data transformations can be circum-
vented by using standardized images of ALs directly for 
ML, which also motivated ML image classification from a 
methodological perspective, in addition to its attractive-
ness for graphical SAR exploration. Standardizing images 
inevitably involves investigating different orientations 
and image views.

In order to assess how different AL features influence 
the classification performance of ML methods, we did 
not only study model performance based on different 
image viewpoints, but also applied two defined image 
processing strategies. First, for each AL, we generated 
reference models with increased SAR continuity/smooth-
ness and discontinuity/ruggedness, respectively. This 
made it possible to determine which topological char-
acteristics were primarily responsible for accurate image 
classification. Second, for each AL image, variants with 
successively reduced information content were generated 
including grayscale, b/w, and edge-filtered image vari-
ants, which were also used for training and model build-
ing. This made it possible to determine how different 
image encodings of topological features affect classifica-
tion performance, in which form distinguishing features 
were detected by ML models, and which level of image 
information content was minimally required for classifi-
cation of images capturing different AL topologies. Using 
images as direct encodings of ALs for classification and 
investigating the two image pre-processing strategies via 
ML represented key components of our proof-of-concept 
study.

Activity landscape topology
The top right image in Fig. 2 shows a representative 3D 
AL. For all 38 activity classes, heterogeneous ALs were 
obtained that combined smooth and rugged sections in 
different ways (further examples are provided below). 
Therefore, to provide topological reference states for 
assessing the suitability of 3D AL classification, the con-
cept of smooth and rugged Ref-ALs was introduced. For 
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each original 3D AL, Ref-ALs were generated to increase 
either smooth or rugged AL character through consist-
ently applied potency-based data set modification, as 
detailed above. For an exemplary 3D AL, the smooth and 
rugged Ref-AL is shown in Fig. 2 (top). The generation of 

these 3D AL variants made it possible to formulate well-
defined classification tasks to distinguish heterogeneous 
3D ALs from smooth and rugged AL reference states and 
explore features driving machine learning. Feature rele-
vance was further assessed using other AL variants with 
reduced information content, as also illustrated in Fig. 2.

Classification of color‑coded activity landscape images
First, 3D AL images of 38 activity classes with differ-
ent combinations of projection and elevation angles and 
color gradients accounting for compound potency infor-
mation were investigated. CNN classification models 
were built for all image collections according to Table 2. 
SVM and RF modeling were not applicable for this pre-
diction task due to difficulties in algorithmically handling 
3D color features. By contrast, CNN models preserved 
the dimensionality of color gradients. CNN classification 
performance is summarized in Table 3. CNNs reached a 
mean accuracy of 0.74 ± 0.1 (mean ± standard deviation) 
for combined projections and elevations. In addition, 
MCC values of ~ 0.6 or greater were obtained indicating 
globally accurate predictions.

When classification performance was separately con-
sidered for the different image classes, smooth Ref-ALs, 
rugged Ref-ALs, and heterogeneous 3D ALs from collec-
tion 1 achieved ROC AUC values of 1.00, 0.86, and 0.86, 
respectively, as shown in Fig.  4. In addition, the confu-
sion matrix for all images revealed that CNNs were able 
to classify images of smooth, rugged and heterogene-
ous 3D AL variants with a true positive rate of 96%, 60% 
and 73%, respectively (Fig. 4), reflecting overall accurate 
predictions.

Probabilities for class predictions using the best per-
forming CNN model for collection 1 with images taken 

Table 3 Classification of  color-coded images using 
convolutional neural networks

The table reports classification results for CNN models trained and tested on 
color-coded images. All values reported are averages ± standard deviations over 
10 independent trials

Collection CNN Metric

1 0.74 ± 0.01 Accuracy

0.74 ± 0.01 F1

0.61 ± 0.01 MCC

2 0.72 ± 0.02 Accuracy

0.72 ± 0.02 F1

0.58 ± 0.03 MCC

3 0.71 ± 0.02 Accuracy

0.71 ± 0.03 F1

0.56 ± 0.04 MCC

4 0.73 ± 0.04 Accuracy

0.73 ± 0.04 F1

0.60 ± 0.06 MCC

5 0.70 ± 0.04 Accuracy

0.70 ± 0.04 F1

0.55 ± 0.06 MCC

6 0.72 ± 0.03 Accuracy

0.72 ± 0.03 F1

0.58 ± 0.04 MCC

7 0.75 ± 0.03 Accuracy

0.75 ± 0.03 F1

0.62 ± 0.04 MCC

Fig. 4 ROC AUC results and confusion matrix for CNN models and image collection 1. On the left, ROC curves for predictions of one versus other 
classes are shown (yielding a micro average value of 0.93 for all classes). On the right, the confusion matrix is shown for collection 1 color-coded by 
true positive rates
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from the 90° azimuth and 65° elevation angles are shown 
in Fig. 5.

Predicted class probabilities displayed the general 
trend that smooth Ref-ALs were consistently predicted 
with high accuracy, whereas distinguishing between 

heterogeneous 3D ALs and rugged Ref-ALs often rep-
resented a more challenging prediction tasks, resulting 
in at least slightly reduced accuracy. These observations 
indicated that the absence of cliffs and associated features 
in smooth Ref-ALs was a major determinant for correctly 

Fig. 5 Top CNN prediction probabilities for image collection 1. Results are shown for color-coded images on the basis of Neuroscale projection with 
azimuth and elevation angle of 90° and 65°, respectively, and three representative activity classes. Correct class labels are shown in green. “Hetero” 
stands for heterogeneous
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distinguishing them from rugged Ref-ALs and heteroge-
neous 3D ALs.

When comparing different projection methods (collec-
tions 1–3), only small differences in performance were 
observed with only a slight decrease average accuracy of 
0.01–0.02 for the individual projections (collection 2 and 
3) compared to the collection with combined projections 
(collection 1). Hence, MDS and Neuroscale projections 
were readily comparable for classification. CNN models 
trained separately on different elevations (collection 4–7) 
performed consistently well. Interestingly, the perfor-
mance was overall best using 0° elevation angle images 
(collection 7), with an average accuracy of 0.75 ± 0.03. 
These projections only visualized altitude profiles of the 
3D ALs. These findings also indicated that features asso-
ciated with cliffs and their absence in smooth Ref-ALs 
had a major influence on the classifications. By contrast, 
varying image viewpoints originating from different azi-
muth and elevation angle combinations were not signifi-
cantly affecting prediction accuracy, which alleviated the 
need to establish constant reference frames for 3D AL 
comparisons.

Collection 4 consisted of top-down views of ALs where 
potency differences were only distinguished by the color 
gradient. These views corresponded to 2D heatmap rep-
resentations of ALs given in four different rotations. In 
this case, the accuracy of the CNN model was 0.73 ± 0.04 
and thus only slightly reduced compared to the profile 
views of collection 7. This observation was of interest 
since heatmap views contained the complete information 
of the AL captured by the color gradient while profile 
views provided color information and topology. How-
ever, in contrast to lower elevation views where some 
topographical details might be hidden, in heatmaps, no 
AL features were concealed. Hence, 2D heatmaps and 3D 
profile views were suitable AL representations for clas-
sification of color-coded ALs. This was an encouraging 
finding in 3D image analysis.

Models trained on grayscale and black/white image 
variants
Different from color-coded 3D ALs, it was possible to 
train SVM and RF models on grayscale and b/w image 
variants, in addition to CNNs. Classification results for 
models trained on grayscale image variants are reported 
in Table 4.

As expected, for CNNs, the loss in color informa-
tion slightly reduced global classification performance. 
However, for the combined collection 1, the reduction 
in accuracy from 0.74 ± 0.01 to 0.71 ± 0.02 was less than 
one might anticipate. Reduction in performance was 
largest for high elevation viewpoints (collection 4 and 
5) that retained the least altitude information in their 

projections. Thus, under these conditions, heatmap views 
from collection 4 were no longer a suitable AL represen-
tation, emphasizing the need for applying the color gra-
dient for heatmaps. Moreover, observed differences in 
model performance between grayscale and color-coded 
images could be more generally explained. The color gra-
dient used red for low, yellow for intermediate, and green 
for high potency values while the grayscale was deter-
mined as a weighted sum of the red, green and blue chan-
nels with weights of 0.299, 0.587, and 0.114, respectively. 
Thus, yellow resulting from combining red and green 
appeared brightest, followed by green and red, which 
yielded darker gray tones representing both high and low 
high potencies. Hence, dark gray tones did not distin-
guish between high and low potency values, correspond-
ing to a loss of information. This explained why model 
performance reduction was largest for the top-down ele-
vation view (0.67 ± 0.03 compared to 0.73 ± 0.04), which 
exclusively relied on color to differentiate topographical 
features. By contrast, lower elevation views profited from 
the presence of topographically detectable peaks and val-
leys that were retained in the grayscale images, thus con-
firming relevance of these features for ML.

Table 4 Classification of  models trained on  grayscale 
images

The table summarizes classification performance for color-coded 3D AL and 
Ref-AL images using RF, SVM, and CNN models trained on grayscale images. All 
values reported are averages and standard deviations over 10 independent trials

Collection RF SVM CNN Metric

1 0.57 ± 0.01 0.53 ± 0.01 0.71 ± 0.02 Accuracy

0.57 ± 0.01 0.54 ± 0.01 0.71 ± 0.02 F1

0.35 ± 0.01 0.30 ± 0.01 0.56 ± 0.03 MCC

2 0.54 ± 0.01 0.53 ± 0.01 0.70 ± 0.03 Accuracy

0.55 ± 0.01 0.54 ± 0.01 0.70 ± 0.03 F1

0.32 ± 0.02 0.29 ± 0.02 0.55 ± 0.04 MCC

3 0.55 ± 0.02 0.53 ± 0.01 0.70 ± 0.03 Accuracy

0.56 ± 0.01 0.54 ± 0.02 0.70 ± 0.03 F1

0.33 ± 0.02 0.30 ± 0.02 0.55 ± 0.04 MCC

4 0.54 ± 0.02 0.57 ± 0.03 0.67 ± 0.03 Accuracy

0.54 ± 0.02 0.58 ± 0.04 0.67 ± 0.03 F1

0.31 ± 0.03 0.36 ± 0.05 0.51 ± 0.05 MCC

5 0.55 ± 0.03 0.50 ± 0.01 0.68 ± 0.02 Accuracy

0.56 ± 0.03 0.51 ± 0.02 0.68 ± 0.02 F1

0.33 ± 0.04 0.25 ± 0.02 0.52 ± 0.03 MCC

6 0.58 ± 0.01 0.53 ± 0.02 0.72 ± 0.03 Accuracy

0.58 ± 0.02 0.55 ± 0.02 0.72 ± 0.03 F1

0.37 ± 0.02 0.30 ± 0.03 0.59 ± 0.04 MCC

7 0.69 ± 0.02 0.68 ± 0.01 0.74 ± 0.04 Accuracy

0.69 ± 0.02 0.68 ± 0.01 0.74 ± 0.04 F1

0.53 ± 0.03 0.52 ± 0.02 0.62 ± 0.06 MCC
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Furthermore, CNN model performance on collection 1 
was superior to RF and SVM models. However, RF and 
SVM were also able to distinguish between smooth, rug-
ged and heterogeneous 3D AL variants on the basis of 
grayscale encodings, with a mean prediction accuracy of 
0.57 ± 0.01 and 0.53 ± 0.01, respectively. Here, random 
predictions would correspond to an accuracy of 0.33. 
CNNs outperformed SVM and RF models for the other 
collections, with a relative increase in accuracy of 10% 
or more and consistently higher F1 and MCC values. 
However, prediction accuracy of all methods improved 
significantly for the 0° elevation angle images (collec-
tion 7) where SVM and RF models reached an accuracy 
of 0.68 ± 0.03 and 0.69 ± 0.02, respectively, and CNNs of 
0.74 ± 0.04. Taken together, the results for models trained 
on grayscale images revealed that (i) features learned by 
CNNs from 3D AL images color-coded by potency con-
tributed to the predictions but were not essential and (ii) 
elevation (peak) information, as emphasized by images 
from collection 7, was of critical relevance for accurate 
classifications.

Next, SVM, RF, and CNN models trained on b/w 
images were investigated. As illustrated in Fig.  2, com-
pared to original 3D AL images, b/w image variants 

(resulting from binarization of pixel intensities) had 
drastically reduced information content. Consequently, 
prediction accuracy of all models trained on b/w image 
variants was further reduced compared to models trained 
on grayscale images  (Table  5). CNNs retained limited 
predictive ability for collection 1, with a mean accuracy 
of 0.62 ± 0.02, but mostly retrained classification perfor-
mance for images with decreasing elevation angles (65°, 
35°, and 0°; collection 5–7). For 0° elevation (collection 7), 
classification accuracy of SVM and RF models was high-
est, with 0.68 ± 0.01 and 0.69 ± 0.02, respectively. These 
observations again emphasized the critical importance 
of capturing 3D AL altitude information for meaningful 
image classification.

Edge detection in pre‑processed images
Unlike CNN models, SVM and RF models cannot 
directly learn image feature representations from pixel 
values. Thus, to further evaluate the predictive ability 
of SVM and RF models to classify 3D AL images on the 
basis of topological features, Sobel operators and Canny 
edge filters were applied to all grayscale images. SVM 
and RF models were then derived using edge-filtered 
images from half of the activity classes and tested on 
edge-filtered images of the remaining half of the classes. 

Table 5 Classification of  models trained on  black 
and white images

The table summarizes classification performance for color-coded 3D AL and 
Ref-AL images using RF, SVM, and CNN models trained on b/w images. All values 
reported are averages and standard deviations over 10 independent trials

Collection RF SVM CNN Metric

1 0.48 ± 0.01 0.44 ± 0.01 0.62 ± 0.02 Accuracy

0.47 ± 0.01 0.45 ± 0.01 0.62 ± 0.02 F1

0.21 ± 0.02 0.16 ± 0.01 0.43 ± 0.04 MCC

2 0.46 ± 0.01 0.43 ± 0.01 0.61 ± 0.03 Accuracy

0.46 ± 0.01 0.44 ± 0.01 0.61 ± 0.03 F1

0.20 ± 0.02 0.15 ± 0.02 0.42 ± 0.04 MCC

3 0.47 ± 0.01 0.46 ± 0.02 0.60 ± 0.02 Accuracy

0.47 ± 0.01 0.46 ± 0.02 0.60 ± 0.02 F1

0.20 ± 0.02 0.19 ± 0.03 0.41 ± 0.03 MCC

4 0.45 ± 0.02 0.47 ± 0.03 0.54 ± 0.05 Accuracy

0.45 ± 0.02 0.48 ± 0.03 0.54 ± 0.04 F1

0.17 ± 0.03 0.21 ± 0.04 0.32 ± 0.07 MCC

5 0.41 ± 0.03 0.39 ± 0.01 0.70 ± 0.05 Accuracy

0.41 ± 0.03 0.39 ± 0.01 0.69 ± 0.04 F1

0.12 ± 0.05 0.09 ± 0.02 0.54 ± 0.07 MCC

6 0.52 ± 0.03 0.51 ± 0.02 0.69 ± 0.07 Accuracy

0.52 ± 0.04 0.51 ± 0.03 0.69 ± 0.07 F1

0.29 ± 0.05 0.26 ± 0.03 0.53 ± 0.10 MCC

7 0.69 ± 0.02 0.68 ± 0.01 0.73 ± 0.02 Accuracy

0.69 ± 0.02 0.68 ± 0.01 0.73 ± 0.02 F1

0.53 ± 0.03 0.52 ± 0.02 0.59 ± 0.04 MCC

Table 6 Classification of  pre-processed models 
on the basis of edge detection

Collection RF SVM Metric

Canny Sobel Canny Sobel

1 0.48 ± 0.00 0.50 ± 0.01 0.52 ± 0.01 0.57 ± 0.01 Accuracy

0.48 ± 0.01 0.50 ± 0.01 0.52 ± 0.01 0.58 ± 0.01 F1

0.23 ± 0.01 0.26 ± 0.01 0.28 ± 0.02 0.36 ± 0.02 MCC

2 0.44 ± 0.01 0.50 ± 0.01 0.50 ± 0.02 0.56 ± 0.01 Accuracy

0.45 ± 0.01 0.50 ± 0.01 0.50 ± 0.02 0.56 ± 0.01 F1

0.16 ± 0.02 0.25 ± 0.02 0.25 ± 0.02 0.34 ± 0.02 MCC

3 0.45 ± 0.01 0.49 ± 0.02 0.51 ± 0.02 0.56 ± 0.01 Accuracy

0.46 ± 0.01 0.49 ± 0.02 0.52 ± 0.02 0.57 ± 0.01 F1

0.18 ± 0.01 0.24 ± 0.02 0.27 ± 0.03 0.35 ± 0.02 MCC

4 0.43 ± 0.01 0.54 ± 0.03 0.53 ± 0.04 0.60 ± 0.03 Accuracy

0.44 ± 0.02 0.54 ± 0.03 0.54 ± 0.04 0.60 ± 0.03 F1

0.16 ± 0.02 0.31 ± 0.05 0.30 ± 0.06 0.40 ± 0.04 MCC

5 0.44 ± 0.02 0.50 ± 0.02 0.47 ± 0.03 0.55 ± 0.02 Accuracy

0.44 ± 0.02 0.51 ± 0.02 0.49 ± 0.03 0.57 ± 0.02 F1

0.16 ± 0.03 0.26 ± 0.04 0.21 ± 0.05 0.33 ± 0.03 MCC

6 0.42 ± 0.01 0.50 ± 0.02 0.52 ± 0.03 0.56 ± 0.02 Accuracy

0.42 ± 0.01 0.51 ± 0.03 0.52 ± 0.02 0.58 ± 0.02 F1

0.13 ± 0.02 0.25 ± 0.04 0.28 ± 0.04 0.35 ± 0.03 MCC

7 0.61 ± 0.01 0.66 ± 0.03 0.73 ± 0.02 0.74 ± 0.01 Accuracy

0.63 ± 0.01 0.66 ± 0.03 0.73 ± 0.02 0.74 ± 0.01 F1

0.42 ± 0.02 0.50 ± 0.04 0.59 ± 0.03 0.61 ± 0.01 MCC
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The classification results for these SVM and RF models 
are reported in Table  6. For the most part, no further 
improvements relative to the performance of RF and 
SVM trained on grayscale or b/w images were observed. 
In addition, SVM and RF performance did not improve 
when applying the ORB and Harris boundary feature 
filters. Overall, the combination of SVM and the Sobel 
operator was overall preferred but confined in accuracy 
to 0.60; however, with a notable exception for collection 
7. In this case, these SVM models achieved an accuracy 
of 0.73 ± 0.02 and 0.74 ± 0.01 for the Canny and Sobel 
filters, respectively. Interestingly, this level of classifica-
tion accuracy was comparable to the one achieved by 
CNNs trained on original color-coded 3D AL and Ref-AL 
images.

Results are reported for RF and SVM models trained 
on edge-filtered images and applied to classify such 
images originating from different activity classes. All val-
ues reported are averages and standard deviations over 
10 independent trials.

Importantly, edges in pre-processed images resulted 
from data peaks in rugged regions of 3D ALs. Hence, 
the classification performance of SVM model on these 
filtered image variants clearly indicated the critical 
importance of altitude-dependent topological features 
for image classification. The sparseness of such features 
in smooth Ref-ALs rationalized the ability of classifica-
tion models to distinguish these image variants with very 
high accuracy from rugged Ref-ALs and heterogeneous 
3D ALs. In these two image categories, altitude-depend-
ent topological feature accounting for peaks in 3D ALs 
were prevalent. Accordingly, rugged and heterogeneous 
AL variants were more difficult to distinguish from each 
other. However, even for this classification task, over-
all accurate predictions were obtained, indicating that 
machine learning correctly detected differences in rela-
tive feature density and feature combinations.

Conclusions
In this work, we have investigated classification of 3D 
AL images using machine learning. The study was moti-
vated by the need to complement SAR visualization and 
graphical SAR analysis with systematic computational 
assessment of different 3D AL representations. The 
study concept took into consideration that images also 
represented a preferred data format for machine learn-
ing using 3D AL models of compound data set of diverse 
composition. Therefore, for 38 different activity classes 
with significant compound potency variations, we have 
generated a variety of 3D AL image variants including 
Ref-ALs designed to emphasize different topological 
features in a consistent way. These sets of images were 
classified using ML on the basis of topological features 

accounting for different SAR characteristics. Original 
color-coded 3D AL models and corresponding heat-
map views were accurately classified using CNN models 
trained on learned representations, lending credence to 
the use of such representations. In addition, CNN, SVM, 
and RF models produced meaningful classification of 3D 
AL images with models trained on image variants hav-
ing lower information content. Furthermore, SVM mod-
els were able to accurately predict pre-processed images 
on the basis of edge information representing altitude-
dependent features. Thus, investigating a hierarchy of AL 
representations with successively reduced information 
content revealed factors that were critical for classifica-
tion. Taken together, classification of images of different 
design representing 3D ALs from different viewpoints 
revealed a pivotal role of elevation-dependent features for 
accurate image classification, hence providing a diagnos-
tic for the predictions. These features were decisive for 
distinguishing images of smooth 3D ALs with very high 
accuracy from images of rugged and heterogeneous 3D 
ALs. In addition, images of rugged and heterogeneous 3D 
ALs were also differentiated with meaningful accuracy. 
Accordingly, on the basis of our proof-of-concept inves-
tigation, image analysis is thought to have considerable 
potential for distinguishing between 3D ALs with differ-
ent topologies and hence for classifying them on the basis 
of SAR information they contain. Accordingly, future 
work will focus on differentiating heterogeneous 3D ALs 
on the basis of the relative content of SAR continuity ver-
sus discontinuity. Classification of such 3D ALs might be 
attempted on the basis of images capturing differential 
density of elevation-dependent topological features.
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