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Abstract 

Virtual compound libraries are increasingly being used in computer‑assisted drug discovery applications and have led 
to numerous successful cases. This paper aims to examine the fundamental concepts of library design and describe 
how to enumerate virtual libraries using open source tools. To exemplify the enumeration of chemical libraries, we 
emphasize the use of pre‑validated or reported reactions and accessible chemical reagents. This tutorial shows a 
step‑by‑step procedure for anyone interested in designing and building chemical libraries with or without chemo‑
informatics experience. The aim is to explore various methodologies proposed by synthetic organic chemists and 
explore affordable chemical space using open‑access chemoinformatics tools. As part of the tutorial, we discuss three 
examples of design: a Diversity‑Oriented‑Synthesis library based on lactams, a bis‑heterocyclic combinatorial library, 
and a set of target‑oriented molecules: isoindolinone based compounds as potential acetylcholinesterase inhibitors. 
This manuscript also seeks to contribute to the critical task of teaching and learning chemoinformatics.

Keywords: Chemical enumeration, Chemoinformatics, Combinatorial libraries, DOS synthesis, Drug design, 
Education, KNIME, Python

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Hit identification is the starting point and one of the 
most crucial stages of small-molecule drug discovery [1]. 
One approach to increase the likelihood of finding new 
hit compounds is presented by the computational gen-
eration of virtual chemical libraries to be used in various 
virtual screening methods. Thus, many researchers are 
developing new de novo chemical libraries and libraries 
“make-on-demand” by different in silico approaches [2]. 
For example, GDB‐17 generated by Reymond et  al. is a 
chemical library that explores the chemical space broadly 
by enumerating more than 160 billion organic small mol-
ecules with up to 17 atoms [3]. Another example is the 
95 million compounds in the virtual library CHIPMUNK 
(CHemically feasible In silico Public Molecular UNiverse 

Knowledge base) that were enumerated by performing a 
selected set of reactions widely used in traditional combi-
natorial chemistry [4]. Other examples of virtual librar-
ies based on prevalidated or reported reactions, as well 
as accessible chemical reagents developed by pharmaceu-
tical companies are BI-Claim developed by Boehringer 
Ingelheim [5], Eli Lilly’s Proximal Collection [6], Pfizer 
global virtual library (PGVL) [7], and Merck’s Accessible 
inventory (MASSIV) [8]. This approach was also used by 
chemical vendors to generate “make-on-demand” virtual 
libraries such as the “Readily Accessible” (REAL) Data-
base and REAL Space being the largest synthetic accessi-
bility-based virtual compound collections to date [9].

In general, virtual libraries address the need to improve 
the quality of compounds to identify efficiently lead 
compounds [10]. In this context, the size, the structural 
complexity, and the diversity of the virtual libraries play 
a key role in increasing the chance of a successful drug 
discovery and development outcome [11]. Another criti-
cal aspect of virtual libraries’ generation is that the com-
pounds obtained must have some novelty, and most 
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importantly, they must be synthetically feasible. This 
strategy is particularly attractive to build libraries for dif-
ficult and emerging molecular targets [12].

The construction of a virtual chemical compound can 
be done in a variety of ways. For example, using a known 
reaction schema and available reagents, based on func-
tional groups, by de novo-based design, by morphing/
transformation, or by decorating a molecular graph [13].

Different tools have been developed to enumerate 
virtual libraries and are summarized in Table  1. Some 
of these tools replace a predetermined central unit of 
a molecule, such as Molecular Operating Environment 
(MOE) [14] and Schrödinger [15]. Other approaches 
are based on combinatorial enumeration from speci-
fications of central scaffolds with connection points 
and lists of R groups such as SMILES or standard data 
files (SDF) like Library synthesizer [16] or Nova [17]. 
Few tools allow the user to enter a list of pre-validated 
reactions to generate virtual libraries like Reactor [18], 

DataWarrior [19], and KNIME [20]. These tools have 
the advantage of being freely accessible. For Reactor, an 
academic license can be requested. Our research group 
recently developed D-Peptide Builder, a free webserver 
to enumerate combinatorial peptide libraries. The user 
can build linear or cyclic peptide libraries with N-meth-
ylated or non-methylated amino acids [21, 22].

The pre-validated reactions strategy will result useful 
for synthetic organic chemists, aimed to explore all possi-
ble compounds obtained through the reactions or design 
approaches developed within their research groups or 
reported in the literature. However, several experimental 
research groups do not have access to commercial soft-
ware and/or do not have a background in informatics to 
rapidly use the open-source tools to enumerate chemical 
libraries.

This manuscript aims to present and discuss a step-by-
step tutorial to enumerate chemical libraries using open-
access chemoinformatics tools. As part of the tutorial, 

Table 1 Examples of chemoinformatic tools available to enumerate virtual chemical libraries

Tool Main features References

Free tools

 RDKit Library enumeration is based on generic reactions and that for every one of its generic 
reactants a list of real reactant structures is provided

[23]

 DataWarrior Enumerated product structures are generated from a given generic reaction and that 
for every one of its generic reactants a list of real reactant structures is provided

[19]

 KNIME Library enumeration is based on generic reactions, where a list of reagent structures is 
provided for each of its generic reagents

[24]

 Library synthesizer Enumerated chemical libraries from specifications of central scaffolds with connection 
points and lists of R groups

[16]

 D‑Peptide Builder A chemoinformatic tool to enumerate combinatorial libraries of up to pentapeptides, 
linear or cyclic, using the natural pool of 20 amino acids. The user can use non‐ and/
or N‐methylated amino acids. The server also enables the rapid visualization of the 
chemical space of the newly enumerated peptides in comparison with other librar‑
ies relevant to drug discovery and preloaded in the server

[21]

 SmiLib v2.0 Tool for rapid combinatorial library enumeration in the flexible and portable SMILES 
notation. Combinatorial building blocks are attached to scaffolds by means of linkers, 
this allows for the creation of customized libraries using linkers of different sizes and 
chemical nature

[25]

 GLARE (Global Library Assessment of REagents) Allows to optimize reagent lists for the design of combinatorial libraries [26]

Comercial tools

 Reactor (ChemAxon) Library enumeration is based on generic reactions combined with reaction rules; 
therefore, it is capable of generating chemically feasible products without preselec‑
tion of reagents

[18]

 Molecular Operating Environment (MOE) Scaffold Replacement: New chemical compounds are generated by replacing a por‑
tion of a known compound (the scaffold), while preserving the remaining chemical 
groups

QuaSAR_CombiGen: A single combinatorial product is constructed by attaching 
R‑groups to a scaffold at marked attachment points, called ports. The entire combi‑
natorial library is enumerated by exhaustively cycling through all combinations of 
R‑groups at every attachment point on every scaffold

[14]

 Schrödinger Core hopping: Create libraries by substituting one or several attachments on a core 
structure with fragments from reagent compounds

[15]

 Nova (Optibrium) Enumerated chemical libraries from specifications of central scaffolds with connection 
points and lists of R groups

[17]
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three chemical libraries’ design approaches were devel-
oped. One using the DOS Build/Couple/Pair approach, 
the second exemplifies the design of a bis-heterocyclic 
combinatorial library. The third is the design of isoin-
dolinone-based compounds as putative acetylcholinest-
erase (AChE) inhibitors. The design and construction 
of these libraries are explained step by step. This manu-
script also aims to contribute to the critical task of learn-
ing chemoinformatics [27].

Chemical data formats
Single chemical structures
As in almost every task in chemoinformatics, molecular 
representation is a key aspect to consider during the enu-
meration of chemical compounds [28]. Probably the most 
well-known description of compounds is the two-dimen-
sional (2D) graphical representation. There are currently 
many programs to help draw chemical structures and 
facilitate the storage and interconversion between stand-
ard file formats. Some of these software programs have 
free academic versions such as MarvinSketch [29] and 
ACD/ChemSketch [30], and others are commercial such 
as ChemDraw [31], Schrödinger [15], and MOE [14], to 
name a few [32]. Three-dimensional (3D) structures are 
also widely used, especially now that numerous computer 
programs have been developed to calculate and visualize 
them. These representations provide a powerful and intu-
itive tool for understanding many aspects of chemistry. 
However, they have limitations, especially when it comes 
to everyday tasks in chemoinformatics that require stor-
age and handling a vast number of compounds [33]. In 
these applications, molecular information is typically 
represented by the linear notation [34]. Hereunder, 
we describe some of the most commonly used linear 
notations to enumerate chemical structures: SMILES, 
SMARTS, InChi, and InChikeys. Intuitive examples illus-
trating the general concepts of such linear notations are 
shown in Fig. 1.

SMILES
Short and readable descriptions of molecular graphs are 
linear notations. A clear example is the broadly used Sim-
plified Molecular Input Line System (SMILES), which 
captures a molecules’ structure in the form of an unam-
biguous text string using alphanumeric characters. They 
allow the efficient storage and fast processing of large 
numbers of molecules.  The SMILES notation uses the 
following basic rules for encoding molecules [36, 37]:

1. Atoms are represented by their atomic symbols. 
Hydrogen atoms saturating free valences are not rep-
resented explicitly.

2. Neighboring atoms stand next to each other, and 
bonds are characterized as being single (-), double 
( =), triple (#), or aromatic (:). Single and aromatic 
bonds are usually omitted.

3. Enclosures in parentheses specify branches in the 
molecular structure.

4. For the linear representation of cyclic structures, a 
bond is broken in each ring and the connecting ring 
atoms are followed by the same digit in the textual 
representation.

5. Atoms in aromatic rings are indicated by lower case 
letters. In some cases, there may be problems with 
aromaticity perception.

Although SMILES strings are unambiguous in describ-
ing chemical structures, they are not unique because 
multiple valid SMILES representations exist for the same 
molecular graph. Canonical SMILES strings are often 
used to ensure the uniqueness of molecules in a database. 
In principle, canonical SMILES strings can be used to 
identify duplicated compounds, but in practice, canoni-
calization differs between programs. For more consist-
ent, documented, and standardized duplicated removal, 
the IUPAC International Chemical Identifier (InChi, 
InChiKey) [38] is recommended. Another aspect that 
must be taken into account when using SMILES is the 
handling of tautomers. Tautomerization can lead to alter-
native SMILES strings for the same ligand, and inconsist-
encies SMILES interpretation can lead to inconsistencies 
in tautomer representation. Several programs can enu-
merate canonical tautomers (e.g., Accelerys, OpenEye, 
and Schrödinger), and this is recommended for the con-
sistent processing of molecules.

SMARTS
SMILES Arbitrary Target Specification (SMARTS) is a 
language developed to specify substructural patterns 
used to match molecules and reactions. Substructure 
specification is achieved using rules that are extensions 
of SMILES. In particular, the atom and bond labels are 
extended to also include logical operators and other spe-
cial symbols, which allow SMARTS atoms and bonds to 
be more inclusive [39]. This notation is especially use-
ful for finding molecules with a particular substructure 
in a database. SMARTS can also be used to filter out 
molecules with substructures that are associated with 
toxicological problems [40] or that appear as frequent 
hitters (promiscuous compounds) in many biochemi-
cal high-throughput screens (Pan Assay Interference 
Compounds, PAINS) [41].  Other applications are the 
separation of active from inactive compounds and the 
evaluation of ligand selectivity. The characterization of 
chemical reaction centers has been described by Rarey 
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et al. [42], through the development of a new algorithm 
called SMARTSminer, which allows the automatic deri-
vation of discriminative SMARTS patterns from sets of 
pre-classified molecules.

The SMARTS language provides several primitive sym-
bols describing atomic and bond properties beyond those 
used in SMILES (atomic symbol, charge, and isotopic 

Fig. 1 SMILES, SMARTS, InChI and InChIKey concepts. Examples for the illustration of basic SMILES, SMARTS, InChI, and InChIKey syntax 
rules are provided. SMARTS representations were made in SMARTviewer [35]. InChI and InChIKey identifiers are displayed for caffeine and 
1‑[(E)‑2‑fluorovinyl]‑3‑nitrobenzene
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specifications). Table 2 lists the atomic and bond primi-
tives used in SMARTS [39].

Atom and bond primitive specifications may be com-
bined to form expressions by using logical operators. 
SMARTS examples can be found on Daylight’s web site 
[43].

Because chemical pattern representations are relatively 
new, the number of interfaces where the user can graphi-
cally create patterns is limited. Examples of editors to 
handle SMARTS notation are MarvinSketch [29], JSME 
[44], SMARTeditor [45], and the PubChem’s Sketcher 
web editor [46, 47]. A comparison between these editors 
was described by Schomburg et al. [45].

InChI and InChI Keys
InChI is the International Chemical Identifier developed 
under IUPAC’s auspices, the International Union of Pure 
and Applied Chemistry, with principal contributions 
from NIST (the U.S. National Institute of Standards and 
Technology) and the InChI Trust [38]. The InChI objec-
tive is to establish a unique label for each compound and 
allow an easier linking of diverse data compilations. This 
notation resolves many of the chemical ambiguities not 
addressed by SMILES, particularly concerning stereocent-
ers, tautomers, and other valence model problems. How-
ever, InChIs are difficult to read and interpret by humans 
in most cases. InChIs comprise different layers and sub‐
layers of information separated by slashes (/). Each InChI 
string starts with the InChI version number, followed 
by the main layer. This main layer contains sub‐layers 
for empirical formula, atom connections, and hydrogen 
atoms positions. The identity of each atom and its cova-
lently bonded partners provide all of the information nec-
essary for the main layer. The main layer may be followed 
by additional layers, for example, for the charge, isotopic 
composition, tautomerism, and stereochemistry [35].

The InChIKey is a fixed-length (27-character) con-
densed digital representation of an InChI, developed to 
make it easy to perform web searches for chemical struc-
tures. The first block of 14 characters for an InChIKey 
encodes core molecular constitution, as described by a 
formula, connectivity, hydrogen positions, and charge 
sublayers of the InChI main layer. The other structural 
features complementing the core data—namely exact 
positions of mobile hydrogens, stereochemical, iso-
topic, and metal ligands, whichever are applicable—are 
encoded by the second block of InChIKey. The possi-
ble protonation or deprotonation of the core molecu-
lar entity (described by the protonation sublayer of the 
InChI main layer) is encoded in the very last InChIKey 
flag character. Further details of InChIKey are described 
here https ://www.inchi -trust .org.

Chemical reactions
Representing chemical reactions is much more compli-
cated than representing single structures [48]. To rep-
resent chemical reactions is of particular importance to 
identify the reactants, products, and if it wants to repre-
sent reactions more generically, it is required to deter-
mine the reaction center, that is, the collection of atoms 
and bonds that are changed during the reaction [49], so 
that the substructural transformation can be described 
by specifying the reactive substructures in the reagent 
and the product. To this end, Daylight [50] has developed 
SMILES so that they can be used to describe reactions, 
SMARTS for reaction queries, and SMIRKS to describe 
transformations [51]. For its part, IUPAC has also been 
developing a non-proprietary, international identifier 
for reactions "RInChI" [52]. The RInChI project’s objec-
tive is to create a unique data string record and structure 
detailed information on reaction processes, using InChI 
software. These approaches are powerful and flexible, 

Table 2 SMARTS atomic and bond primitives

SMARTS atomic primitives SMARTS bond primitives

*: any atom
a: aromatic
A : aliphatic
D<n>: degree, <n> explicit connections
H<n>: total‑H‑count, <n> attached hydrogens
h<n>: implicit‑H‑count, <n> implicit  hydrogens
R<n>: ring membership, in <n> SSSR rings
r<n>            ring size, in smallest SSSR ring of size <n>
v<n>: valence, total bond order <n>
X<n>: connectivity, <n> total connections
x<n>: ring connectivity, <n> total ring connections
+<n>: positive charge, +<n> formal charge
‑<n>: negative charge, +<n> formal charge
#n : atomic number
@: chirality

‑: single bond (aliphatic)
/: directional bond "up"
\: directional bond "down"
/?: directional bond "up or unspecified"
\?: directional bond "down or unspecified"
= : double bond
#: triple bond
: : aromatic bond
~: any bond (wildcard)
@  : any ring bond

https://www.inchi-trust.org
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allowing for the inclusion of various information, includ-
ing atom mapping.

To understand the scope of these approaches and the 
importance of atom mapping, suppose we look for reac-
tions that let us obtain an alcohol from a carbonyl group, 
such as an ester. If we look for reactions in which there is 
a carbonyl group in the starting material and alcohol in 
the product, this search may produce undesirable results, 
where there is another carbonyl group or alcohol in the 
starting material. Still, the reaction does not change (see 
Table  3, Reaction 1). Atom-to-atom mapping ensures 
that both the carbonyl and alcohol groups are at the reac-
tion site. However, it is essential to note that atom map-
ping depends on the reaction mechanism, as shown in 
reactions 2 and 3 of Table 3.

To accurately capture a generic reaction, there are two 
requirements. The first is the actual set of changes in the 
molecule that occurs during the reaction (captured with 
changes in atoms and bonds). The second is the indirect 
effects of activating and deactivating groups near the 
reaction site [39].

Within the Daylight’s system, the indirect effects on a 
generic reaction are most appropriately expressed with 
the SMARTS query language. However, SMARTS have 
been designed for efficient querying of reaction data-
bases, and they do not have the other requirements to 
accurately capture a generic reaction. SMIRKS accom-
plishes this by concisely expressing the atom and the 
list of bond changes of a reaction, as well as the indi-
rect effects of activating and deactivating groups near 

the reaction site. SMIRKS is a hybrid of SMILES and 
SMARTS and can be used to represent reaction mecha-
nisms, resonance, and general modifications of molecu-
lar graphs [53, 54]. It is a restricted version of reaction 
SMARTS with a set of rules that act as constraints. A 
comparison between SMILES, SMARTS, and SMIRKS to 
represent chemical reactions is described in Table 4.

Chemical reaction database systems
Reaction databases store information that can help cre-
ate a data-rich environment in the early stage of phar-
maceutical process–product development. With this 
information, various improvements to the initial selec-
tion process can be established, which can be seen mainly 
reflected in a decrease in cost and time required. For 
example, it can compare different reactions to produce 
the same product, analyze different ways to carry out a 
specific transformation of a functional group, and spec-
ify reaction’s conditions. It can also evaluate the reaction 
path in terms of performance, cost, and sustainability 
[55].

Searching for reactions and retrieving relevant infor-
mation from a chemical reaction is a complex task and 
involves searching for chemical structures of reagents 
or products (complete or partial), transformation infor-
mation (reaction centers), description of reactions (the 
type of reaction, general comments), and numerical 
data about the experimental reaction (yield, selectivity, 
reaction conditions, etc.). For this reason, efforts have 
been made to classify databases concerning their search 

Table 3 Examples of reaction queries



Page 7 of 25Saldívar‑González et al. J Cheminform           (2020) 12:64  

Ta
bl

e 
4 

Co
m

pa
ri

so
n 

be
tw

ee
n 

SM
IL

ES
, S

M
A

RT
S 

an
d 

SM
IR

KS
 to

 re
pr

es
en

t c
he

m
ic

al
 re

ac
ti

on
s

SM
IL

ES
SM

A
RT

S
SM

IR
KS

Re
pr

es
en

ta
tio

n
Re

ac
ta

nt
 >

 A
ge

nt
 >

 P
ro

du
ct

In
 s

om
e 

ca
se

s 
th

e 
pr

es
en

ce
 o

f a
ge

nt
s 

ca
n 

be
 o

m
itt

ed
Re

ac
ta

nt
 >

  >
 P

ro
du

ct

A
 re

ac
tio

n 
qu

er
y 

m
ay

 b
e 

co
m

po
se

d 
of

 o
pt

io
na

l r
ea

ct
an

t, 
ag

en
t, 

an
d 

pr
od

uc
t p

ar
ts

, w
hi

ch
 a

re
 s

ep
ar

at
ed

 b
y 

th
e 

" >
 " 

ch
ar

ac
te

r
Re

ac
ta

nt
 >

 A
ge

nt
 >

 P
ro

du
ct

Re
ac

ta
n 

>
  >

 
 >

 A
ge

nt
 >

 
 >

  >
 P

ro
du

ct
Q

ue
ry

Re
ac

ta
nt

 >
  >

 P
ro

du
ct

Ex
am

pl
e

CC
(=

 O
)O

.O
CC

 >
 [H

 +
].[

C
l‑]

.O
CC

 >
 C

C
(=

 O
)O

CC
 >

  >
 [#

6]
[C

X3
](=

 O
)[#

6]
Th

is
 q

ue
ry

 re
tu

rn
s 

re
ac

tio
ns

 in
 w

hi
ch

 th
e 

pr
od

uc
t c

on
ta

in
s 

ke
to

ne
s

[C
:1

]([
O

,C
l:5

]) 
=

 [O
:2

].[
N

:3
][H

:4
] >

  >
 [N

:3
][C

:1
] =

 [O
:2

].[
*:5

][H
:4

]
[C

]([
O

,C
l])

 =
 [O

].[
N

][H
] >

  >
 [N

][C
] =

 [O
].[

*]
[H

]
Th

e 
us

e 
of

 th
e 

SM
A

RT
S 

[O
,C

l] 
al

lo
w

s 
ox

yg
en

 o
r c

hl
or

in
e

C
ha

ra
ct

er
is

tic
s

Th
e 

m
ap

 is
 a

lw
ay

s 
th

e 
la

st
 p

ar
t o

f t
he

 a
to

m
 e

xp
re

ss
io

n 
de

lim
ite

d 
by

 a
 c

ol
on

 a
nd

 it
 is

 o
pt

io
na

l
If 

hy
dr

og
en

 is
 m

ap
pe

d,
 it

 is
 a

ls
o 

"s
pe

ci
al

" a
nd

 m
us

t b
e 

sh
ow

n 
(h

yd
ro

ge
ns

 a
re

 n
or

m
al

ly
 o

m
itt

ed
 fr

om
 S

M
IL

ES
)

A
to

m
 m

ap
 is

 o
pt

io
na

l
A

ny
 v

al
id

 R
ea

ct
io

n 
SM

IL
ES

 is
 a

 v
al

id
 S

M
A

RT
S 

qu
er

y
A

ny
 v

al
id

 M
ol

ec
ul

e 
SM

A
RT

S 
ca

n 
be

 a
 c

om
po

ne
nt

 o
f a

 
Re

ac
tio

n
Re

cu
rs

iv
e 

SM
A

RT
S 

su
pp

or
ts

 o
nl

y 
m

ol
ec

ul
e 

ex
pr

es
si

on
s

A
ll 

va
lid

 S
M

IR
KS

 a
re

 v
al

id
 re

ac
tio

n 
qu

er
ie

s

A
to

m
s 

ca
n 

be
 a

dd
ed

 o
r d

el
et

ed
 d

ur
in

g 
a 

tr
an

sf
or

m
at

io
n

A
to

m
ic

 S
M

A
RT

S 
ex

pr
es

si
on

s 
ca

n 
be

 u
se

d 
fo

r a
to

m
s 

di
re

ct
ly

 
in

vo
lv

ed
 in

 th
e 

re
ac

tio
n 

(t
he

 re
ac

tio
n 

ce
nt

er
)

St
oi

ch
io

m
et

ry
 is

 d
efi

ne
d 

to
 b

e 
1–

1 
fo

r a
ll 

at
om

s 
in

 th
e 

re
ac

‑
ta

nt
 a

nd
 p

ro
du

ct
 fo

r a
 tr

an
sf

or
m

at
io

n
Ex

pl
ic

it 
hy

dr
og

en
s 

th
at

 a
re

 u
se

d 
on

 o
ne

 s
id

e 
of

 a
 tr

an
sf

or
‑

m
at

io
n 

m
us

t a
pp

ea
r e

xp
lic

itl
y 

on
 th

e 
ot

he
r s

id
e 

of
 th

e 
tr

an
sf

or
m

at
io

n 
m

us
t b

e 
m

ap
pe

d
Bo

nd
 e

xp
re

ss
io

ns
 m

us
t b

e 
va

lid
 S

M
IL

ES
 (n

o 
bo

nd
 q

ue
rie

s 
al

lo
w

ed
)

A
to

m
ic

 e
xp

re
ss

io
ns

 m
ay

 b
e 

an
y 

va
lid

 a
to

m
ic

 S
M

A
RT

S 
ex

pr
es

si
on

 fo
r n

od
es

 w
he

re
 th

e 
bo

nd
in

g 
(c

on
ne

ct
iv

ity
 a

nd
 

bo
nd

 o
rd

er
) d

oe
s 

no
t c

ha
ng

e

U
se

To
 re

pr
es

en
t s

pe
ci

fic
 re

ac
tio

ns
 b

et
w

ee
n 

sp
ec

ifi
c 

re
ac

ta
nt

s 
yi

el
di

ng
 s

pe
ci

fic
 p

ro
du

ct
s

SM
A

RT
S 

ar
e 

us
ed

 fo
r s

ea
rc

hi
ng

 re
ac

tio
ns

SM
IR

KS
 a

re
 u

se
d 

to
 re

pr
es

en
t g

en
er

ic
 c

he
m

ic
al

 tr
an

sf
or

m
a‑

tio
ns

A
pp

lic
at

io
ns

St
or

e 
a 

lib
ra

ry
 o

f r
ea

ct
io

ns
 o

f i
nt

er
es

t (
th

es
e 

m
ig

ht
 b

e 
a 

re
co

rd
 o

f r
ea

ct
io

ns
 th

at
 h

av
e 

be
en

 c
ar

rie
d 

ou
t a

t a
 

co
m

pa
ny

, a
 s

et
 o

f r
ea

ct
io

n 
pl

an
s 

in
 a

n 
ac

ad
em

ic
 re

se
ar

ch
 

gr
ou

p,
 o

r e
ve

n 
a 

se
t o

f h
yp

ot
he

tic
al

 re
ac

tio
ns

 th
at

 m
ig

ht
 

ne
ve

r s
uc

ce
ed

 in
 th

e 
la

bo
ra

to
ry

)

Re
tr

ie
ve

 s
pe

ci
fic

 s
ea

rc
he

s
A

vo
id

 u
ni

nt
er

es
tin

g 
re

su
lts

Re
ac

tio
n 

cl
as

si
fic

at
io

n 
an

d 
ca

te
go

riz
at

io
n

U
si

ng
 S

M
IR

KS
 to

 re
pr

es
en

t c
he

m
ic

al
 tr

an
sf

or
m

at
io

ns
, r

ea
c‑

tio
n 

sp
ec

ifi
ca

tio
ns

 c
an

 b
e 

st
or

ed
 in

 th
e 

da
ta

ba
se

St
ru

ct
ur

es
 c

an
 b

e 
tr

an
sf

or
m

ed
 a

nd
 c

om
bi

ne
d 

(re
ac

te
d)

 to
 

pr
od

uc
e 

ne
w

 s
tr

uc
tu

re
s



Page 8 of 25Saldívar‑González et al. J Cheminform           (2020) 12:64 

reaction information. The criteria that have been estab-
lished are the following [56].

i) Each reaction is an individual record in the data-
base (detailed and graphical).  The reaction must be 
retrieved from the database as a detailed record (rea-
gents, products, stoichiometry, etc.). It can also be 
extracted as a graphical representation where the 
reaction scheme is shown. In many databases, the 
reaction is represented in a graphical form.

ii) Structural information for target product as well as 
substrates.

iii) Reaction centers are reliably assigned and searcha-
ble. The reaction center of a reaction is the collection 
of atoms and bonds changed during the reaction [49].

iv) Reaction components must be searchable.  Informa-
tion for the components involved in the reaction 
such as reagent, catalysts, solvents, etc.

v) Multistep reactions.  In the case of multistep reac-
tions, all reactions (individual and whole pathway) 
must be searchable.

vi) Reaction conditions.  Conditions such as pH, tem-
perature, pressure, etc. should be searchable by exact 
and suitable values.

vii) Reaction classification. The type of reaction (i.e., 
esterification) should be searchable.

viii) Post-processing of the database contents. Export 
of the retrieved reaction data in other tools (i.e., MS 
Excel).

The main reaction databases that help organize, store, 
and retrieve data have been described by Papadakis 
et  al. [55]. The CASREACT reaction database [57, 58] 
stands out as containing the most significant number of 
reported reactions, approximately 123 million single-step 
and multi-step reactions, dating from 1840 to the pre-
sent. This database can be used to provide information 
on different ways to produce the same product (single-
step or multi-step reactions), used for applications of a 
particular catalyst, and various ways to carry out specific 
functional group transformations [59]. Another reaction 
database is REAXYS [60], based on Elsevier’s industry-
leading chemistry databases that include data for more 
than 49 million reactions, dating from 1771 to the pre-
sent. It includes many compounds (organic, inorganic, 
and organometallic) and experimental reaction details 
(yield, solvents, etc.). It is searchable for reactions, sub-
stances, formulas, and data such as physicochemical 
properties data, spectra. Additionally, the REAXYS data-
base can be used for synthesis route planning [61].

WebReactions from Open Molecules [62] is a good 
example of an open access reaction database. It intro-
duces a new concept for retrieving reactions from a large 

database in which reactions are indexed by the bond 
changes that occur and the effect of the surrounding 
groups on such bonds in aspects like rate, hindrance, or 
resistance to change. Unlike conventional reaction data-
bases working on reaction substructure search, WebRe-
actions rather perform a customizable reaction similarity 
search focusing on the reaction center.

The database entries are taxonomically indexed with 
these successively nested subheadings: a rigorous digital 
generalization of the reaction class and type, the nature of 
substitution surrounding the reaction center, the nature 
of entering and/or leaving groups, features in the reactant 
which remains unchanged in the reaction. For example, 
the synthesis of fentanyl, a potent opioid analgesic [63], 
and its synthetic derivatives involve a reductive amina-
tion that can be searched for in WebReactions [64]. As 
shown in Fig. 2a, once the reaction of interest is drawn, 
reaction centers are defined (red), and a minimum yield 
and characteristics of surrounding atoms can be estab-
lished. In this case, there are seven matching reactions, 
three examples are in Fig. 2b–d, which show how similar 
reactions could be carried out under different reducing 
agents and conditions. Each result provides the reactant, 
product, and catalyst, and the original paper’s reference. 
A synthetic laboratory may select candidate reactions 
based on the highest possible yield, or what resources 
(such as reagents) are readily available.

Freely available and open‑source tools 
for the computational‑aided design of chemical 
libraries
The virtual enumeration of chemical reactions is a pow-
erful tool in systematic compound library design. The 
exploration of virtual chemistry is bounded only by the 
human imagination and the capabilities of computers. By 
using reactions deposited in chemical reaction databases, 
a large number of virtually obtained compounds can be 
accessed. Therefore, careful planning of these reactions is 
of utmost importance to influence the products obtained 
in these experiments. Until now, computer-based meth-
ods have considered generating compounds to address 
issues such as the diversity of chemical libraries [8, 65], 
the design of drug-like or focused libraries [66], and on 
making and identifying compounds for high-throughput 
screening strategies [67].

For the efficient design of chemical libraries, it is impor-
tant to keep in mind the type of compounds to obtain to 
later evaluate the strategic bonds and select a strategy to 
use. The choice of strategy to use will largely depend on 
the ease with which this strategy has to be adopted by 
medicinal chemists and the additional problems to be 
covered (structural features, physicochemical proper-
ties, and diversity). The synthesis strategy that has been 
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mostly addressed to generate virtual libraries is combi-
natorial chemistry, however, other approaches such as 
diversity-, biology-, lead-, or fragment oriented synthesis 
can be easily implemented [68]. In this part, it is essen-
tial to focus on well-characterized reactions, to avoid the 
bottleneck in current computational approaches to drug 
design: the assessment of synthetic accessibility [69].

Another pragmatic way to improve compound qual-
ity while enhancing and accelerating drug discovery 
projects is to access and propose a high quality, novel, 
diverse building block collection [70]. Guidelines have 
been developed that provide more specific guidance to 
medicinal chemists and help prioritize the synthesis of 
compounds. Among these guidelines is the proposed 
’rule of 3′ (MW ≤ 300; logP -3 to 3; HBA ≤ 3; HBD ≤ 3; 
tPSA ≤ 60, Rotatable bonds ≤ 3) to guide fragment selec-
tion for fragment-based lead generation [71] and the 
’rule of 2′ (MW < 200, clogP < 2, HBD 2, HBA 4) to design 

novel reagents for drug discovery projects [70]. These 
guidelines can help not only prioritize reagents but also 
target libraries to compounds with optimal physicochem-
ical properties for drug design. Databases such as ZINC 
DB [72], Asinex [73], Life Chemicals [74], and Maybridge 
[75] can be used to access and download catalogs of com-
mercially available starting materials.

In order to exemplify the points above, this section 
focuses on creating libraries of chemical compounds 
from public data sources, generated using different syn-
thetic strategies and various open-access tools like RDKit, 
KNIME, and DataWarrior. The designed libraries are syn-
thetically accessible as the design approach was based on 
feasible reactions and existing reagents. However, this 
does not mean that the obtained compounds are easy or 
cheap to carry out. If an approach based on known reac-
tion schemes was not applied, it would be necessary to 
evaluate the synthetic feasibility of the possible synthetic 

Fig. 2 Searching the reductive amination involved in the synthesis of fentanyl in WebReactions. a Reaction input and fine‑tuning. b–d Example 
results
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routes or the products’ accessibility, which we discuss 
further in this manuscript.

Design of a library of bis‑heterocycles obtained 
with click chemistry using Python and the RDKit 
package
As medicinal chemists try to mimic the core elements of 
a wide range of natural products such as nucleic acids, 
amino acids, carbohydrates, vitamins, and alkaloids, het-
erocycles have become a standard structural unit in drug 
discovery. These structures allow modulating important 
drug properties such as potency and selectivity through 
bioisosteric replacements, lipophilicity, polarity, and 
aqueous solubility [76].

Click chemistry provides a means for the rapid explo-
ration of the chemical universe enabling rapid struc-
ture–activity relationships (SAR) profiling through the 
generation of analog libraries. Click chemistry is wide-
ranging, owing to strongly driven, highly selective reac-
tions of broad scope, allowing a much greater diversity 
of block structures to be used [77]. Huisgen’s copper-
(I) catalyzed 1,3-dipolar cycloaddition of alkynes and 
azides yielding triazoles is the premier example of a 

click reaction [78], due to the accessibility of azides and 
alkynes, highly diverse, unambiguous libraries become 
available quickly.

This example is based on the synthetic approach 
reported by Shafi et  al. [79] to obtain bis-heterocycles, 
linking 5-membered heterocycles building blocks con-
taining one or two heteroatoms (at least one nitrogen, 
sulfur, oxygen) to a set of azide containing building 
blocks through the formation of a 1,4-disubstituted 
1,2,3-triazole using click chemistry (Fig. 3). To this pur-
pose, the heterocycle must contain a nucleophilic moi-
ety such as a thiol, hydroxyl, or amino group that reacts 
with a 3-halopropyne derivative through nucleophilic 
aliphatic substitution  (SN). Once the alkyne is appropri-
ately attached to the heterocycle, it reacts with the set of 
azides to form a 1,2,3-triazole linking both fragments. 
Python and the chemoinformatics toolkit RDKit [23] 
are used to implement algorithms and functions in this 
example. The toolkit RDKit provides the capabilities to 
handle and manipulate molecular structures in Python. 
A comprehensive introduction and installation instruc-
tions can be found in the online documentation from the 
RDKit homepage (https ://rdkit .org/docs/index .html).

Fig. 3 A strategy used to build bis‑heterocycles

https://rdkit.org/docs/index.html
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>>> import pandas as pd 
>>>import rdkit as rk 
>>>from rdkit import Chem 
>>>from rdkit.Chem import AllChem 
>>>from rdkit.Chem.rdMolDescriptors import CalcNumHeteroatoms 

#Read building blocks using a Supplier  
>>>supp = Chem.SDMolSupplier('Sigma_bb.sdf') 
>>>for mol in supp: 
>>> if mol is not None: mol.GetNumAtoms() 

#Create a list of molecules
>>>mols = [x for x in supp] 
>>> len(mols) #Number of building blocks 

(stramSmorFloM.mehC=1ttap>>> '[$([NX3;H2;!$(NC=O)]),$([#16X2H]),$([OX2H])]-
[cr5;$([cr5]:1:[nr5,or5,sr5]:[cr5]:[cr5]:[nr5,or5,sr5]:1),$([cr5]:1:[cr5]:[nr5,or5,sr5]:[cr5]:[cr5]:1)]') 
>>>het5 = [x for x in mols if x.HasSubstructMatch(patt1)] 

#SMARTS Terminal alkyne 3-bromo or chloro substituted 
>>>patt2= Chem.MolFromSmarts('[Br,Cl][#6]C#[CH1]')  
>>>alkynes = [x for x in mols if x.HasSubstructMatch(patt2)] 

#SMARTS Azide 
>>>patt3= Chem.MolFromSmarts('[N;H0;$(N-[#6]);D2]=[N;D2]=[N;D1]')  
>>>azide = [x for x in mols if x.HasSubstructMatch(patt3)] 

# Match a substructure with a SMARTS query

#SMARTS 5-membered heterocycles  

Procedure in Python:

1. Build or identify a library of commercially available 
building blocks. The building blocks used for this 
example were taken from the Sigma Aldrich (Build-
ing Blocks) catalog obtained from the ZINC DB [80], 
consisting of 124,368 building blocks.

2. Identify the characteristics of building blocks for 
the strategy to be followed. Minor components and 
duplicate compounds were removed, building blocks 
were selected to comply with the Congreve’s ‘rule 

of three’ [71]. The curated database can be found in 
Additional file 1: "Sigma_bb.sdf." As shown below, the 
building blocks were read in Python using a supplier. 
Then, compounds were filtered for the presence of 
appropriate functional groups: a 5-membered heter-
ocyclic ring with one (N, O or S) or two heteroatoms 
(N, O, S; at least one N), and a nucleophilic substitu-
ent (–OH, –SH, –NH2), a terminal alkyne 3-bromo 
or chloro substituted and an azide.

3. Setting up coupling reactions. To generate the library 
of bis-heterocycles, the reactions and their correspond-
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ing SMIRKS were defined according to a synthetic 
approach reported by Shafi et al. [79] (Table 5). These 
reactions were used in the code to enumerate com-
pounds that were eventually exported in CSV format.

4. Results. In total, 7884 bis-heterocycles were 
obtained. Examples of compounds obtained follow-
ing this strategy and using the Sigma Aldrich build-
ing block database are shown in Table 9.

Table 5 SMIRKS of the coupling reactions

# In[]:  
#Nucleophilic Substitutuion 
 >>>rxn=AllChem.ReactionFromSmarts('[#6;a;r5:1]-
[$([NX3;H2;!$(NC=O)]),$([#16X2H]),$([OX2H]):2].[#35,#17]-[#6:3][C:4]#[C:5]>>[#6;a;r5:1]-
[$([NX3;H]),$([#16X2]),$([OX2]):2]-[#6:3][C:4]#[C:5]')  

>>>prods1 = AllChem.EnumerateLibraryFromReaction(rxn,[het5,alkynes]) 
>>>smis = list(set([Chem.MolToSmiles(x[0],isomericSmiles=True) for x in prod])) 

#Click reaction

>>> rxn2= AllChem.ReactionFromSmarts('[#6:7][C:6]#[CH1:5].[#6:4]-[#7:3]=[N+:2]=[#7-:1]>>[#6:4]-[#7:3]-1-
[#6:5]=[#6:6](-[#6:7])-[#7:1]=[#7:2]-1')  
>>> prods2 = AllChem.EnumerateLibraryFromReaction(rxn2,[[ Chem.MolFromSmiles(x) for x in smis ],azide]) 
>>> smis2 = list(set([Chem.MolToSmiles(x[0],isomericSmiles=True) for x in prods2])) 
>>>len(smis2) 

#In[] #Export results as .CSV File
>>> df = pd.DataFrame(smis2, columns=["colummn"])  
>>> df.to_csv('bis_heterocycles.csv', index=False) 
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diabetes [83], and infectious diseases [84]. Many lac-
tam-containing compounds are reported to act as 
HIV-1 integrase inhibitors [85], opioid receptor ago-
nists [86, 87], as well as antitumoral [88, 89], anti-
inflammatory [90, 91], and antidepressant agents [92]. 
For the first example, a library of lactams was auto-
mated by applying the DOS strategy Build/Couple/
Pair [93] for medicinal chemistry applications [94]. 
The Build/Couple/Pair approach consists of building 
different starting materials with suitable functional 
groups that can be joined together through intermo-
lecular coupling reactions in all possible stereochemi-
cal combinations. In the pairing step, intramolecular 
coupling reactions that join the remaining functional 
groups are instrumental for developing skeletal diver-
sity and structurally different molecular scaffolds. The 
KNIME (Konstanz Information Miner) workspace [20] 
was selected as a platform for generating the work-
flow, where each task is represented by a node with 
input and output ports. This server can be downloaded 
directly from the KNIME homepage (https ://www.
knime .com/). For the management and analysis of 
databases, the KNIME Example Server provides access 
to many explanatory workflows. The example server 
is accessible via the KNIME Explorer panel within the 

Fig. 4 Workflow for the design of lactams. a Read structures of building blocks; b Building blocks filter: the structures were curated, filtered 
according to the ‘rule of three’, and selected for the presence of appropriate functional groups; c Coupling phase: application of the amide bond 
formation reaction between carboxylic acids and primary or secondary amines; d Pairing phase: use of the reactions as described in Table 8. Finally, 
the compounds were separated into macrocycles and not macrocycles

Table 6 Functional groups that  were quantified to  filter 
building blocks

Functional groups SMARTS

Alkene [H]\[#6]([H]) = [#6]/[#6]

Alkyne [H]C#C[#6]

Carboxylic Acid C(= O)[O;H,‑]

Sulfonyl chloride [$(S‑!@[#6])](= O)(= O)(Cl)

Amine primary [N;H2;D1;$(N‑!@[#6]);!$(N–C = [O,N,S])]

Amine secondary [N;H1;D2;$(N(‑[#6])‑[#6]);!$(N‑
[!#6;!#1]);!$(N–C = [O,N,S])]

Alcohol aromatic [O;H1;$(O‑!@c)]

Alcohol aliphatic [O;H1;$(O‑!@[C;!$(C = !@[O,N,S])])]

Aldehyde [CH;D2;!$(C‑[!#6;!#1])] = O

Halogen [$([F,Cl,Br,I]‑!@[#6]);!$([F,Cl,Br,I]‑
!@C‑!@[F,Cl,Br,I]);!$([F,Cl,Br,I]‑[C,S]
(= [D1;O,S,N]))]

Azide [N;H0;$(N‑[#6]);D2] = [N;D2] = [N;D1]

Design of a DOS library using KNIME and RDKit 
and Marvin nodes
Lactams are a class of compounds important for drug 
design due to their great variety of potential thera-
peutic applications, spanning from cancer [81, 82], 

https://www.knime.com/
https://www.knime.com/
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Table 8 Intramolecular cyclization considered for the pairing phase
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KNIME workbench and represents a great help when 
starting a new workflow.

Figure  4 shows the workflow designed to generate a 
library of lactams following the B/C/P approach. The 
development of this workflow is described in detail 
below.

1. Build or identify a library of commercially avail-
able building blocks. We selected the commercially 
Enamine building blocks library as a first input for 
this tutorial, containing 437,625 unique compounds 
(version March 2019) [95]. To allow for the readabil-
ity of all datasets, nodes for retrieving molecules in 
different formats were considered, including the SDF 
file (structure data file) (A1) or CSV file (comma-sep-
arated value) (A2). The Marvin Sketch node (A3) was 
also included to draw other possible building blocks.

2. Identify the characteristics of building blocks for the 
strategy to be followed. Compounds were normal-
ized, minor components and duplicate compounds 
were removed (B1), building blocks were selected 
in to comply with the Congreve’s ‘rule of three’ [71] 
(B2), and then filtered for the presence of appropriate 
functional groups (B3). The strategy used required 
building blocks with more than two functional 
groups: one for the coupling reaction and another for 
the pairing reaction. The functional groups used in 
this part and their corresponding SMARTS codes are 
listed in Table 6.

3. Setting up coupling reactions. To generate a library 
of lactams, only the amide bond formation between 
carboxylic acids (C2) and primary (C1) or secondary 
amines (C3) was considered as the coupling reaction 
(C4 and C5), the SMIRKS of this reaction is showed 
in Table  7. The SMILES of both secondary and ter-
tiary amides-containing coupling products were gen-
erated (C6–C7).

4. Establish pairing reactions. Then different intramo-
lecular cyclization reactions were applied for the 
pairing phase (D1–D2). Compounds containing the 
two functional groups involved in the pairing reac-
tion within the same building block were removed. 
This step was done to ensure that the lactam-con-
taining ring was closed. Table  8 shows the different 
intramolecular cyclization considered for the pairing 
phase and their corresponding SMIRKS.

5. Separated into macrocycles and not macrocycles. 
The lactams obtained from the DOS B/C/P workflow 
were divided into macrocycles (more than 7-mem-
bered rings) and non-macrocycles (3- to 7-mem-
bered rings). Examples of non-macrocyclic lactams 
that were produced under this approach are shown 
in Table  9. Information about the number of com-

pounds generated and the database’s diversity was 
published by Saldivar-González et al. [94].

Library of isoindolinone based compounds 
as potential AChE inhibitors
Alzheimer’s disease (AD) is an incurable, progressive 
neurodegenerative disorder with a long presymptomatic 
period. It is clinically characterized by cognitive and 
behavioral impairment, social and occupational dysfunc-
tion and, ultimately, death [96]. The enhancement of cho-
linergic neurotransmission by preserving acetylcholine 
(ACh) levels would be an effective way to overcome AD’s 
occurrence, symptoms, and progression. Accordingly, 
the inhibition of acetylcholinesterase (AChE), which 
is responsible for the metabolic breakdown of ACh has 
been regarded as one of the most promising approaches 
[97]. Although various efficient cholinesterase inhibitor 
drugs such as donepezil, rivastigmine, and galanthamine 
have been developed, there is still significant demand 
for drug discovery leading to efficient anti-Alzheimer’s 
agents [98].

Isoindolinones are an important heterocyclic scaffold 
ubiquitous in natural products such as aristoyagonine, 
nuevamine, lennoxamine, and chilenine [99]. Recently, 
Rayatzadeh et al. [98] reported the synthesis and acetyl-
cholinesterase inhibitory activity of novel isoindolinone 
derivatives, in which two of the tested compounds 
showed an  IC50 of 41 and 83 μM, respectively. Even more, 
the compounds were obtained through a convenient pro-
cedure in the absence of any catalysts or additives in an 
Ugi reaction with good tolerance to diverse functional 
groups and satisfactory yields between 70 and 90%. This 
background information attracted our attention, so we 
decided to use the approach reported to be an example of 
how a library can be built with an established scaffold and 
a targeted biological activity.

Data Warrior was selected as a platform for the gen-
eration of this example. This software is a universal data 
analysis and visualization program, useful to explore 
large data sets of chemical structures with alphanumeri-
cal properties [19]. Some of its functionalities include 
combinatorial library enumeration, the prediction of 
molecular properties, and various methods to visualize 
chemical space and activity cliffs with the intent to sup-
port chemists taking smarter decisions about structural 
changes toward better property profiles.

Procedure in Data Warrior:

1. Build or identify a library of commercially available 
building blocks. For this example, building blocks’ 
primary input was the Synquest Building Blocks Eco-
nomical catalog retrieved from the ZINC DB [100], 
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Table 9 Representative examples of compounds from the three libraries design in this work



Page 18 of 25Saldívar‑González et al. J Cheminform           (2020) 12:64 

consisting of 59,597 building blocks. However, deriv-
atives of 2-carboxybenzaldehyde were not found in 
this database, so a SMARTS containing the moiety 
was used to search for building blocks directly in all 
ZINC DB catalogs [101]. The screenshots and steps 
of how this search was performed can be found in 
Additional file 1.

2. Identify the characteristics of building blocks for 
the strategy to be followed. Minor components and 
duplicate compounds were removed using Bank-
Cleaner server (https ://mobyl e.rpbs.univ-paris -dider 
ot.fr/cgi-bin/porta l.py?form=FAF-Drugs 4#forms 
::Bank-Clean er), then building blocks were selected 
to comply with the Congreve’s ‘rule of three’[71] with 
the filter parameters created at the FAF-Drugs4′s Fil-
ter Editor (https ://mobyl e.rpbs.univ-paris -dider ot.fr/
cgi-bin/porta l.py?form=Filte r-Edito r#forms ::Filte 
r-Edito r), and running the filter at FAF-Drugs4′s Fil-
tering Tool (https ://mobyl e.rpbs.univ-paris -dider 
ot.fr/cgi-bin/porta l.py?form=FAF-Drugs 4#forms 
::FAF-Drugs 4). The filter parameters can be found in 
Additional file 1. The functional groups needed were 
filtered using the Data Warrior substructure search. 
The detailed procedure and the substructures defined 
to filter can be found in Additional file 1 (“Substruc-
ture filtering in Data Warrior” section). In this case, 
the three-component Ugi reaction required an iso-
cyanide and a primary amine, which were obtained 
from the Synquest Building Blocks, and 2-carboxy-
benzaldehyde, obtained from the ZINC catalog. 
Additionally, to include only groups that would add 
flexibility to the final compound, for isocyanides and 
primary amines, the building blocks containing aro-
matic rings were eliminated.

3. Establish the three-component reaction. Using the 
Create Combinatorial Library on the Chemistry 
module of Data Warrior, the reaction was built in its 
simpler form under “Generic Reaction,” only drawing 
the atoms involved in the transformation and ade-
quately mapping each atom from the reagents into 
its position in the product (Fig. 5a). An.RXN file with 
the reaction already drawn in another program can 
also be imported. The list of building blocks previ-
ously created for each of the reactants in.SDF format 
was imported (Fig.  5b), and the library was gener-
ated.

4. Results. The SMILES of the isoindolinones were 
obtained, generating 738 different compounds. 
Examples of isoindolinones that were generated 
under this approach are shown in Table 9.

Post‑processing virtual libraries
Diversity analysis
Before performing a virtual screening or the synthesis of 
a virtual compound, it is convenient to characterize the 
compounds generated using different criteria. For exam-
ple, profiling the compound library with whole molecule 
descriptors of pharmaceutical relevance can help to vali-
date the strategy used, represent medicinally relevant 
chemical spaces [102], and filter compounds with drug-
like properties [103, 104]. Physicochemical properties 
frequently used to describe chemical libraries include 
molecular weight (MW), number of rotatable bonds 
(RBs), hydrogen-bond acceptors (HBAs), hydrogen-bond 
donors (HBDs), topological polar surface area (TPSA), 
and the octanol/water partition coefficient (SlogP).

A complementary approach to characterize compound 
databases is through molecular scaffolds or chemotypes 
i.e., a molecule’s core structure [105]. Scaffold analysis is 
broadly used to compare compound databases, to iden-
tify novel scaffolds in a compound library, to measure 
diversity based on molecular scaffolds [106], to evaluate 
the performance of virtual screening approaches [107], 
and to analyze the SAR of sets of molecules with meas-
ured activity [108–110]. Like physicochemical properties, 
molecular scaffolds are easy to interpret and facilitate 
communication with a scientist working in different dis-
ciplines. Another approach, perhaps more difficult to 
interpret but widely used to characterize databases and 
has been successfully applied to a series of computer-
assisted chemoinformatics and drug design applications, 
is the molecular fingerprints [111]. Fingerprints are espe-
cially useful for similarity calculations, such as database 
searching or clustering, generally measuring similarity as 
the Tanimoto coefficient [112].

In addition to helping in the characterization of data-
bases, these chemoinformatic approaches are useful for 
determining the chemical and structural diversity of the 
compounds generated. The quantitative information gen-
erated helps guide the selection of compound libraries 
or individual compounds to identify novel lead candi-
dates for biological targets. In particular, diversity analy-
sis helps compare different databases and evaluate the 
structural novelty of a compound collection [113]. Free 
tools such as RDKit [23], Platform for Unified Molecu-
lar Analysis (PUMA) [114], or the workflows developed 
in KNIME by Naveja et al. [115] can help in the task of 
assessing chemical diversity. Interpreting the results of 
these analyzes individually, in many cases, is complicated 
and can lead to biased interpretations since, as previously 
mentioned, the perception and evaluation of the diver-
sity of a collection of compounds, in general, is relative 
to the molecular representation. To  decrease the diver-
sity’s dependence with molecular representation, it has 

https://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py?form=FAF-Drugs4#forms::Bank-Cleaner
https://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py?form=FAF-Drugs4#forms::Bank-Cleaner
https://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py?form=FAF-Drugs4#forms::Bank-Cleaner
https://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py?form=Filter-Editor#forms::Filter-Editor
https://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py?form=Filter-Editor#forms::Filter-Editor
https://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py?form=Filter-Editor#forms::Filter-Editor
https://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py?form=FAF-Drugs4#forms::FAF-Drugs4
https://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py?form=FAF-Drugs4#forms::FAF-Drugs4
https://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py?form=FAF-Drugs4#forms::FAF-Drugs4
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been proposed to use a consensus approach through the 
assessment of global diversity using Consensus Diversity 
Plots (CDPs). A CDP is a 2D graph that represents in 
the same plot up to four measures of diversity. The most 
common are fingerprint-based, scaffold, whole molecular 
properties associated with drug-like characteristics, and 
database’s size [116].

For the three compound libraries designed in this man-
uscript (lactams, bis-heterocycles, and isoindolinones), 
their chemical space based on physicochemical proper-
ties and shapes was analyzed and compared with a ref-
erence library of approved drugs. Their global diversity 
of each database was also analyzed using the CDPlot. 

Figure  6a illustrates an application of PCA to generate 
a visual representation of the property-based chemi-
cal space of 24,698 lactams,7884 bis-heterocycles, 649 
isoindolinones, and a collection of 2125 drugs approved 
for clinical use obtained from DrugBank [117]. PCA is a 
mathematical method for dimensionality reduction that 
allows us to visualize similarities and differences within 
collections of compounds based on structural and phys-
icochemical parameters [118], making it a valuable tool 
to guide the design of chemical libraries. The figure 
shows that the three libraries designed in this manuscript 
occupy the same property space as the main part of the 
approved drugs library, indicating that the compounds 

Fig. 5 a Reaction input tab in Enumeration of Combinatorial Library; b Reactants input tab in Enumeration of Combinatorial Library; c View of the 
library generated
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are prone to have favorable drug-like properties. Out of 
the three design libraries, the DOS collection is the most 
diverse, covering almost the same space as approved 
drugs. In contrast, the bis-heterocycles and isoin-
dolinones are less diverse and focus on a region of the 
space. Because of the design strategy, the property space 

of bis-heterocycles’ library space is more restricted to the 
heterocycles and azides. Since the isoindolinones library 
was designed based on a common scaffold, the variations 
of the molecular properties depend on the side-chain 
substitutions. Thus, it is not surprising that they are 
focused on a more restricted region in chemical space.

Fig. 6 Post‑processing plots. a PCA plot generated using six structural and physicochemical descriptors (MW, HBA, HBD, SlogP, TPSA and RBs). b 
PMI plot. Compounds are placed in a triangle where the vertices represent rod, disc, and spherical compounds. c Consensus Diversity Plot (CDP): 
(1) Approved drugs, (2) DOS, (3) Bis‑heterocycles, (4) Isoindolinones. Scaffold diversity is measured in the vertical axis using area under the curve 
(AUC) and the diversity using molecular fingerprints is measured in the horizontal axis using MACCS/Tanimoto. Diversity based on physicochemical 
properties is represented by the Euclidean distance of the six physicochemical properties using a continuous color scale. The relative size of the 
data set is represented by the size of the data point. d ADME/Tox profile of the three databases calculated with the free server FAF‑Drugs. *Based on 
Lipinski’s Rule of Five
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The molecular shape is also a useful property to define 
chemical spaces [119]. In the PMI plot in Fig. 6b, we can 
see that the main space occupied by approved drugs 
is between rod and disc shapes, and once again, we can 
observe the three libraries designed to share that space. 
Bis-heterocycles and isoindolinones libraries are focused 
in a specific shape. On one side, bis-heterocycles are 
predominantly in the PMI plot’s disc zone because the 
azide and heterocyclic fragments were linked, forming a 
1,4-disubstituted 1,2,3-triazole in the middle, obtaining 
large molecules. Furthermore, two aromatic rings highly 
restricted the flexibility of the fragments linked, forcing 
the molecule to be in an extended position (Table 9). On 
the other side, isoindolinones are mainly in the disc zone 
of the PMI plot because the scaffold ring is planar so that 
the main shape variations will be caused only by the sub-
stituents in positions 1 and 2 of the ring (Table 9). Some 
substituents at position 2 of isoindolinones could cause 
the molecules to grow in a rod shape, explaining why a 
few molecules of this library tend to expand into the rod 
zone. Similarly, the planarity of bis-heterocycles explains 
that fewer compounds in this library grow into the ring 
space. DOS library is centered in the shape space, similar 
to approved drugs, because of its larger structural diver-
sity. In contrast to the other two libraries designed in this 
work, compounds in DOS explore the sphere zone with 
potentially drug-like properties.

Figure  6c shows the CDP of the libraries designed in 
this work. The size of the data points represents the rela-
tive size of each data set, and the color of each data point 
represents the diversity of the physicochemical prop-
erties of the data set as measured by the Euclidean dis-
tance of six properties of pharmaceutical relevance (MW, 
HBAs, HBDs, TPSA, SlogP, RBs). To measure the struc-
tural diversity considering the entire structures (includ-
ing not only the central scaffold but also the side chains) 
(x-axis), the MACCS fingerprints were used, and then the 
Tanimoto coefficient was applied [120]. Values outside 
the similarity matrix’s diagonal were used to compute the 
median for all the pairwise comparisons. On the other 
hand, as a measure of scaffold diversity, the Area Under 
the cyclic system recovery Curve (AUC, y-axis) [121] was 
used. Scaffolds were generated under the Bemis-Murcko 
definition [122]. The AUC value is a useful parameter 
to evaluate the diversity of the scaffold’s content in each 
database. AUC value ranges from 0.5 (maximum diver-
sity, when each compound in the library has a different 
cyclic system) to 1.0 (minimum diversity, when a single 
cyclic system encompasses all the compounds). Accord-
ing to Fig. 6c, the DOS library is the most diverse of all 
three designed libraries when considering all three diver-
sity criteria: high scaffold and physicochemical diversity, 
and intermediate fingerprint diversity. Approved drugs 

are also very diverse when considering scaffold and fin-
gerprints; however, the variety in physicochemical prop-
erties is lower. The relative lower scaffold diversity of 
bis-heterocycles and isoindolinones (with an area under 
the scaffold recovery curve, AUC, close to one—Fig. 6c) 
agrees with the design strategy of both libraries that 
is focused on the scaffolds. In bis-heterocycles, with-
out considering the heterocycle, the structural variation 
associated with the azides is more considerable, causing 
larger fingerprint-based diversity than isoindolinones. In 
isoindolinones, even if the number of different amines 
and isocyanides is limited, the three-component reac-
tion (described in section “Library of isoindolinone based 
compounds as possible AChE inhibitors”, vide supra) 
offers a larger amount of combinations, increasing the 
physicochemical diversity.

However, it is vital to keep in mind that even in the 
design and synthesis of focused libraries, there must be 
some degree of diversity, and "redundant" compounds 
(molecules that are structurally similar and have the 
same activity) should be avoided. A diverse subset 
of compounds should be more likely to contain com-
pounds with different activities and should also con-
tain fewer "redundant" compounds. For this reason, 
the metrics used above can also be useful for navigat-
ing through the relevant chemical space to identify 
subsets of compounds for synthesis, purchase, or test-
ing. Approaches to select subsets efficiently are mainly 
cluster analysis, dissimilarity-based methods, cell-based 
methods and optimization techniques [123]. If you want 
to repeat this study, you can use the file titled "Diversity 
Analysis.csv" and use the PUMA server (https ://www.
difac quim.com/d-tools /) or the workflows reported by 
Naveja et al. [115].

ADME/Tox profile
Other than the diversity analysis described in the pre-
vious section, in order to reduce the number of com-
pounds to be used in virtual screening, filters like 
functional groups, physio-chemical properties, PAINS, 
and toxicophores can be applied using free servers like 
FAF-Drugs (https ://mobyl e.rpbs.univ-paris -dider ot.fr), 
Chembioserver 2.0 (https ://chemb ioser ver.vi-seem.
eu/index .php) and the workflows designed in KNIME 
[124–126].

The compounds of three libraries obtained in this 
work were analyzed in FAF-Drugs to filter undesir-
able compounds and assist hit selection before chemi-
cal synthesis. In this server, depending on the filtering 
ranges, Accepted (compounds with no structural alerts 
and satisfying the physicochemical filter), Interme-
diate (compounds which embed low-risk structural 

https://www.difacquim.com/d-tools/
https://www.difacquim.com/d-tools/
https://mobyle.rpbs.univ-paris-diderot.fr
https://chembioserver.vi-seem.eu/index.php
https://chembioserver.vi-seem.eu/index.php
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alerts with several occurrences below the threshold) or 
Rejected (compounds that include a high-risk structural 
alert) files are written associated with all their  CSV 
results files [127]. According to the FAF-Drugs results, 
it can be seen in Fig. 6d that the compounds identified 
as bis-heterocycles have more drug-like physicochemi-
cal properties; however, it is the isoindolinone database 
that contains the fewest structural alerts. In contrast, 
the database of lactams obtained by the B/C/P DOS 
strategy is the one that contains the largest amount of 
PAINS and rejected molecules. The main problematic 
moieties in this database are shown in Additional file 1: 
Figure S1, where many fluorenylmethyloxycarbonyl 
compounds are associated with promiscuity [128], and 
compounds with an excess of halogens in their struc-
ture are observed.

Synthetic accessibility
The number of designed compounds in silico may still 
be vast, and some of them may not be easy to synthesize 
in the laboratory. Therefore, an estimate of the synthetic 
accessibility, or, make filters related to reagents’s cost, in 
principle, could help filter further the database or prior-
itize the structures generated.

If an approach based on known reaction schemes was 
not applied, it would be necessary to evaluate the syn-
thetic feasibility of the possible synthetic routes. The 
optimal method for evaluating a given compounds’ syn-
thetic feasibility is probably to search the chemical litera-
ture for cases where this or similar molecules/scaffolds 
have been synthesized and to check the results with expe-
rienced organic chemists [13]. Some of the tools available 
for planning synthetic routes are SciFinder [129], Reaxys 
[60], Synthia [130], spaya.ai [131], and IBM RXN [132], 
of which the last two mentioned are open access; being 
an area of research growing in parallel with the technolo-
gies available, we should always keep an eye on develop-
ing tools such as AutoSynRoute [133] and new evaluation 
methods [134]. Unfortunately, this is not an accessible 
approach in an automated algorithm to filter the input to 
a large-scale virtual library, so computer-based methods 
to evaluate synthetic accessibility have been developed.

Synthetic accessibility is related to the ease of synthesis 
of compounds according to their synthetic complexity, 
which combines starting materials information and struc-
tural complexity [135], and is usually measured through 
a score (SAscore) on a determined scale. Different tools 
are available to measure the synthetic accessibility of mol-
ecules. Some examples are SYLVIA [136], CAESA [137], 
WODCA [138], an RDKit Python source [139], an scoring 
function in C +  + based on the MOSES software library 
[140], as well as other methods reported [141].

Conclusions
In recent years, the generation of virtual libraries has had 
unprecedented progress thanks to the development of 
different computational methods and synthetic knowl-
edge. Virtual libraries represent an important source 
of novel structures in drug discovery applications. This 
work showed how, through different computational 
open-access methods, it is possible to automate design 
approaches and enumerate and explore all the com-
pounds obtained using pre-validated reactions and com-
mercially or in-house available building blocks. These 
methods are becoming increasingly sophisticated and 
allow restrictions on compound synthesis and filters to 
prevent the creation of unwanted chemical compounds. 
The importance of the post-processing step should always 
be remembered, bearing in mind that the aims of gener-
ating virtual libraries should be focused on generating 
molecules that are more attractive to medicinal chemists, 
both improving the quality of compounds manufactured 
and making sure they are synthetically accessible. We 
have shown how different previously reported tools and 
software available can be used on the generated libraries 
to predict critical pharmacological properties, molecular 
shape or to compare them to already existing libraries.

The tutorial examples used in this manuscript show 
that it is possible to generate libraries with predicted 
drug-like properties using validated reactions and com-
mercially available building blocks. Some of the gener-
ated compounds explore novel areas of the molecular 
shape space, compared to approved drugs. We are con-
fident that the approaches used in this manuscript will 
flourish (hopefully, with the aid of this tutorial), as long 
as the knowledge derived from organic synthesis contin-
ues to be captured and exploited. We also anticipate that 
more academic groups will use these strategies to design 
new chemical structures.
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