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Abstract 

We present the open‑source AiZynthFinder software that can be readily used in retrosynthetic planning. The algo‑
rithm is based on a Monte Carlo tree search that recursively breaks down a molecule to purchasable precursors. The 
tree search is guided by an artificial neural network policy that suggests possible precursors by utilizing a library of 
known reaction templates. The software is fast and can typically find a solution in less than 10 s and perform a com‑
plete search in less than 1 min. Moreover, the development of the code was guided by a range of software engineer‑
ing principles such as automatic testing, system design and continuous integration leading to robust software with 
high maintainability. Finally, the software is well documented to make it suitable for beginners. The software is avail‑
able at http://www.githu b.com/Molec ularA I/aizyn thfin der.
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Introduction
Synthesis planning is the process by which a chemist or a 
computer determines how to synthesize a specific com-
pound. This is typically carried out by retrosynthetic 
analysis where the desired compound is iteratively bro-
ken down into intermediates or smaller precursors until 
known or purchasable building blocks have been found. 
Such analysis was pioneered by Corey et  al. and was 
traditionally carried out by hand or by using expert sys-
tems utilizing hand-encoded rules [1–3]. With the rise 
of deep learning, in the last decade, the field of retrosyn-
thetic software tools has undergone a swift change. Now, 
sophisticated and automatic algorithms have the poten-
tial to provide retrosynthetic analysis with a broader 
application domain and with better accuracy [4–6].

Retrosynthesis planning algorithms can be divided 
into template-based and template-free approaches. In 
template-based approaches, reaction templates or rules 
that describe chemical transformations are manually 
encoded or derived from a database of known reactions, 
and subsequently applied to other compounds to create 
plausible reaction outcomes. Segler et al. showed that it 
was possible to train a neural network to prioritize tem-
plates, and subsequently use this as a policy to guide 
a Monte Carlo tree search algorithm that suggests syn-
thetic pathways for a given compound [7, 8]. Template-
free approaches, on the other hand, do not rely on such 
templates but typically treat the chemical reaction as a 
natural language problem, where one set of words (reac-
tants) is transformed into another set of words (products) 
[9–11]. Other template-free methods are based on graph 
approaches [12, 13].

There are several tools available for retrosynthesis 
planning but to our knowledge only two are fully open 
source, i.e. the ASKCOS suite of programs from MIT [14] 
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and LillyMol from Eli Lilly and Company [15]. The tools 
Chemical AI [16] and IBM RXN [17] are free for regis-
tered users, but only the algorithm of the latter has been 
reported in the literature. Other tools [18–23] are closed 
commercial applications where the algorithm is partly 
undisclosed. This is partly a problem of data availabil-
ity—most of the reaction databases or manually encoded 
rules are commercial and limits the way a free and open 
source software can use them. The same applies to the 
database of purchasable precursors that is used as a stop 
criterion in several programs. However, we believe that 
the scientific community would benefit from an open 
source implementation that provides algorithmic trans-
parency and promotes reproducible research with a 
sustainable software. Therefore, we present the AiZynth-
Finder tool that can be used for retrosynthesis planning. 
An early version of this tool has been used previously to 
determine the influence of the reaction database on ret-
rosynthesic predictions [24], but the code base has been 
re-engineered to make it more flexible, robust and main-
tainable. We provide a trained neural network policy as 
well as tools to make a database of purchasable precur-
sors so that the tool can be used directly. In addition, we 
provide extensive documentation to lower the learning 
curve for new users. We envisage that by providing this 
tool free and open-source, other researchers can use it 
for benchmarking, contribute to a continuous develop-
ment and use the tool for suggesting synthetic routes for 
novel compounds.

Implementation
The AiZynthFinder software is written in Python 3 and 
is distributed on GitHub under the MIT license [25]. It 
is dependent on several freely available Python packages 
such as TensorFlow [26], RDKit [27] and NetworkX [28].

The central algorithm of the AiZynthFinder software 
has been described elsewhere [8, 24] and therefore, we 
only provide a brief outline here: The input is a molecule 
that will be broken down to purchasable precursors. 
The outcome will be a list of precursors that can be pur-
chased or molecules that cannot be broken down by the 
algorithm. The software is based on a Monte Carlo tree 
search [29], where each node in the tree corresponds to 
a set of molecules that can or cannot be broken down 
further. At each iteration a leaf node is selected that is 
deemed to be the most promising to exploit further using 
upper confidence bound statistics [29]. A neural network 
policy is then used to shortlist reaction templates and 
prioritize which child to create by applying a reaction 
template to create the new precursors. This procedure 
is repeated until a terminal state has been reached, i.e., a 
precursor that is purchasable has been found, or the tree 
has reached a maximum depth. At this point the score of 

the leaf node is backpropagated up to the root of the tree 
(the input molecule), and the next iteration commences. 
The tree search is terminated either after a fixed number 
of iterations or a time-limit has passed. In comparison to 
the algorithm proposed by Segler et al. [8], the algorithm 
in AiZynthFinder does not include a filter to quickly 
remove unfeasible reactions nor does it utilize different 
policies for the expansion and rollout phases.

The structure of the AiZynthFinder package is shown 
in Fig.  1a. The main interface to the algorithm is in the 
aizynthfinder.py module, which brings classes from 
the mcts sub-package together to perform the tree 
search. However, for the end-user we provide two inter-
faces: one command-line interface (CLI) and one graphi-
cal user interface (GUI) that is intended to be used in a 
Jupyter notebook. These two interfaces, which reside in 
the interface sub-package, are installed together with 
the package. The CLI comes with some additional fea-
tures that are lacking from the GUI. Foremost, it allows 
compounds to be processed in batch, i.e. the user can 
submit hundreds or thousands of compounds with one 
command. Secondly, detailed results are stored to disc 
that later can be processed or viewed. For instance, one 
can calculate statistics on the search trees, or one can 
produce images of the top-ranked routes. Lastly, the CLI 
allows a finer detail of debugging information, which 
could be invaluable to software developers. The sub-
package training contains tools to train the policy 
neural network, and the sub-package tools contains 
other useful CLIs.

The overall design follows principles from object-
oriented programming such that each component is 
implemented as a class. The main classes for the tree 
search and their relationships are shown in Fig. 1b. The 
AiZynthFinder class loads a user configuration from file 
as a Configuration object, which includes the creation 
of a Policy and a Stock object. This configuration is used 
to control the tree search. The actual tree search is then 
carried out by the TreeSearch class that creates a Node 
object representing a node in the tree search that can be 
expanded to create new Nodes. The molecules on each 
Node are represented by a State object that holds a list 
of TreeMolecule objects. A Reaction class encapsulates a 
chemical reaction on TreeMolecule objects and is used to 
apply the reaction templates to create new precursors.

The Policy class encapsulates a recommendation 
engine based on a trained neural network. Given a mol-
ecule object, it will return a sorted list of reaction tem-
plates and the probability of each template. The templates 
are sorted on the probability as given by the neural net-
work. We have trained neural networks on several tem-
plate libraries (see ref [24] for a comparison) and provide 
one based on the publicly available US patent office data 
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(USPTO) set [30] for anyone to use. We also provide tools 
to train the neural network, in case someone has their 
own or in-licensed reaction database. These tools can for 
instance be used with RDChiral [31] and our previously 
described procedure [24] for extracting templates.

The Stock class is an abstraction around a collection 
of compounds that serves as stop-conditions for the 
tree search. This is a list of purchasable compounds, 
but could also be an abstract collection based on some 
rules, e.g. compounds with less than seven carbon 
atoms are considered purchasable. To support differ-
ent kinds of collections, the Stock class uses one or 

more instances of query classes that given a molecule 
object returns whether that compound is “in stock”. The 
package comes with two query classes, one that holds 
a set of InChI keys [32] in the computer memory and 
one that holds a connection to a Mongo database with 
InChI keys. We also provide examples to show how 
one can create a rule-based query class. For our inter-
nal usage we refer to lists of purchasable compounds 
from several commercial vendors, however it is just as 
straightforward to create a list from open source data-
bases such as ZINC [33]. To simplify this process, we 
provide a tool to make a stock in a suitable format for 

Fig. 1 The AiZynthFinder package. a The python package structure, outlining top‑level modules and sub‑packages. b The main classes involved 
in the tree search and the relationships. A line ending with a solid diamond indicates an “owns”‑relation, and a line ending with arrow indicates an 
“uses”‑relationship, according to UML notation
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the tree search from files containing SMILES strings 
[34].

The main MCTS implementation has been exten-
sively profiled and optimized—the bottlenecks are calls 
to the neural network and to RDChiral [31] for resolv-
ing reaction templates, routines that rely on optimized 
C or C++ code. We have not attempted to parallelize 
the code, as the serial execution time is sufficient for 
our purposes (see below). For the prediction of multiple 
compounds at the same time, the code can of course be 
embarrassingly parallelized. The benchmarking num-
bers below were made using a single CPU (Intel Xeon 
4.00 GHz) and a single GPU (Nvidia GeForce RTX 2080 
Ti) on a Linux machine with 64 GB memory.

More than 85% of the code is covered by automatic unit 
and integration tests, which we execute on each commit. 
Furthermore, the code is pep8 compliant, autoformatted 
and code complexity is monitored automatically on each 
commit. All of this contributes to the robustness and 
maintainability of the code base and provides the basis 
for continuous integration and deployment. Extensive 
API documentation is autogenerated from docstrings 
and is complemented by hand-written tutorials.

Results and discussion
As described in the Implementation section, there are 
two main interfaces to the tool. Here, we exemplify the 
usages of the tool with the GUI and then proceed with 
a comparison using the CLI. In the example below we 
have used the policy trained on USPTO data [24]. Fur-
thermore, we created a stock from compounds avail-
able in the ZINC database [33]; we only downloaded 
tranches including fragment compounds (molecular 
weight up to 250 D and log P up to 3.5) that had reactivity 
labeled as “standard” or “reactive”, resulting in 17,422,831 
compounds.

Graphical user interface
To use the GUI (and the CLI), a configuration file needs 
to be created in YAML-format. This configuration file 
must contain the path to files for the policy and instruc-
tions how to setup the stock. The policy files are (1) the 
saved neural network model and, (2) a list of reaction 
templates. Multiple stocks and policy networks can be 
specified in the configuration and selected in the GUI 
before running the algorithm. The user is also free to fine 
tune the search algorithm using a set of properties. For 
the GUI, they serve as default values whereas for the CLI 
they are used in the search algorithm. If not provided in 
the configuration file, default recommended settings are 
automatically applied.

The GUI is based on the Jupyter notebook infrastruc-
ture, which builds and displays the GUI requiring at 

minimum two lines of python code. Although, a Jupyter 
notebook requires the user to enter Python code, the 
number of commands one must enter is minimal so that 
it is suitable even for non-technical researchers. A Jupy-
ter notebook is also ideal as a working environment for 
researchers that want to experiment with the algorithm 
and the result of the tree search. Because a Jupyter note-
book provides the full Python environment, one can eas-
ily customize the setup of the algorithm and fully inspect 
the predicted routes. Furthermore, there are projects 
such as voilá [35] built around Jupyter notebooks that 
make it easy to create interactive webpages directly from 
the notebooks. This could be setup for users that primar-
ily want to use AiZynthFinder to find suggestions for syn-
thesis plans.

In Fig. 2, we have input the SMILES string for the anti-
viral drug Amenamevir. Furthermore, the user can then 
select the stock and neural policy they want to use, as 
well as some options for the tree search.

When the tree search is completed, the user can view 
the predicted reaction routes. The GUI allows brows-
ing through the top-ranked routes, but using Python 
scripting, all routes can be extracted and displayed. Fig-
ure 3 shows an example for the Amenamevir drug. First, 
the results show whether the route is solved or not, i.e. 
if all precursors are in stock, and the score of the route. 
The score reflects the fraction of solved precursors and 
the number of reactions required to synthesize the tar-
get compound. The score for a solved compound is close 
to 1.0, whereas the score for an unsolved compound is 
typically less than 0.8. However, it should be noted that 
the score was designed to support the tree search and 
is rather indiscriminate with regard to the quality of the 
route (i.e. if it’s a good route or not) and should be inter-
preted with care. Second, the results clearly display which 
precursors to procure in order to synthesize the target 
compound. Lastly, it shows the predicted route with 
precursors in stock highlighted with a green rectangle, 
and the precursors that are not in stock are highlighted 
in orange. In the example shown in Fig.  3, we see that 
suggested route is very similar to the reported synthetic 
route for Amenamevir [36], with the difference that the 
anilinoacetate is available to purchase and does not need 
to be synthesized.

Comparison with the ASKCOS tool
As mentioned above, several other retrosynthesis tools 
exist, but unfortunately very few of them are open source 
or well described in the literature. The software that is 
closest for a comparison is the Tree builder module in the 
ASKCOS suite of programs [14, 37]. First the algorithm 
underlying the Tree builder module is similar to the algo-
rithm of AiZynthFinder, although different expansion 
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policies are used, and the search tree constructed differ-
ently. The software is written in Python and the code is 
available on Github. However, it is foremost intended for 
end-users and the interface is web-based. LillyMol [15], 
which is another open-source code, uses an exhaustive 
search of template space to produce one-step sugges-
tions, i.e. not complete routes, and is thus less relevant 
to compare with. To make a rough baseline comparison 
between ASKCOS and AiZynthFinder we selected 100 
random compounds from the ChEMBL database and 
submitted them to the Tree builder module of the pub-
lic ASKCOS web server [38]. Even though this might not 
represent the latest version of the codebase, it is intui-
tively the interface that most people would use. We set 
a max depth of 6, an expansion time of 120 s and used a 
fast filter; otherwise default values were applied. We used 
the AiZynthFinder CLI together with the ZINC stock 
and the USPTO policy to predict routes for the same 100 
compounds. Some statistics on the source code and the 
route finding are collected in Table 1 and the full data is 
available as Additional file 1. It is important to note that 
these 100 compounds are not necessarily a representa-
tive part of the chemical space that might be relevant in 
a drug design project. Thus, the test set should be viewed 
as an illustration of the capacity of the software rather 
than a go-to benchmarking set.

AiZynthFinder and ASKCOS find routes for 55 and 62 
compounds respectively. There were 47 compounds for 
which both tools found a route, 15 compounds where 
ASKCOS found a solution and AiZynthFinder did not, 

and 8 compounds where AiZynthFinder found a solu-
tion and ASKCOS did not. There were 30 compounds 
that neither tool found a solution for. We have found 
that  route finding capability depends on the stock that 
is used as stop criteria in both tools [24]. The exam-
ple stock created from a subset of the ZINC database is 
for instance much less extensive than some of the com-
mercial stocks we typically use. If we include the readily 
available Enamine building blocks in the stock, we could 
find routes for an additional 10 compounds. The ASK-
COS tool from the public webserver employs a commer-
cial database consisting of 107,000 compounds with list 
prices less than $100/g from Sigma Aldrich and eMol-
ecules [6]. The other factor that determines if a solution 
is found is the template library—here we used USPTO 
policy for AiZynthFinder, whereas ASKCOS is based on 
the more extensive Reaxys database [39]. Using a policy 
based on Reaxys data we find routes for 56 compounds, 
although there is not a complete overlap with the USPTO 
results. We have previously investigated the effect of poli-
cies trained on a variety of datasets on the route finding 
capability of AiZynthFinder [24] however we cannot 
release these to the public due to licensing agreements. 
Furthermore, the capability to find a route for both tools 
is closely related to the complexity of the synthesis. This 
can be seen in Fig. 4, showing the distribution of the syn-
thetic accessibility (SA) score [40] for four sets of data. 
We see that for both AiZynthFinder and ASKCOS, the 
SA score is generally lower for compounds that the tools 
were able to find a solution for. Similar observations have 

Fig. 2 The input section of the AiZynthFinder GUI. A user has entered the SMILES string for the drug Amenamevir and selected the ZINC stock
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been discussed previously in the literature [41]. It seems 
that ASKCOS is somewhat better at finding solutions 
with a mid-range SA score, but this might be due to the 
lack of some scaffolds in the ZINC stock. Moreover, it 
seems that AiZynthFinder predicts slightly shorter reac-
tion routes, with fewer purchasable precursors, although 
it is unclear if the difference is significant given the rather 
small test set.

Looking at the timings of the software, we see that 
AiZynthFinder is faster than ASKCOS, both in terms of 
total search time and the time it takes to find the first 
solution. However this difference could be partially 
attributed to the environment in which the test was 
executed, a local Linux computer in the case of AiZynth-
Finder and a webserver in the case of ASKCOS. Lastly, 
we want to point out that AiZynthFinder has a much 
smaller code base than ASKCOS, with less than half the 
number of Python statements in the core modules (the 

part of the code necessary to execute the tree search). The 
large difference in total statements of the package can be 
attributed to the fact that ASKCOS has a lot more fea-
tures than AiZynthFinder. However, the difference in the 
number of core statement could be because we re-engi-
neered the AiZynthFinder package such that it is a better 
designed package than the previously released code. We 
quantify this by calculating the average complexity [42], 
which quantifies the number of independent branching 
points, and Halstead effort [43], which is the product of 
a volumetric measure and the difficulty to understand the 
code. The number of lines, the code complexity and code 
effort is among the metrics typically used to determine 
if a codebase is maintainable [44], and they indicate that 
the AiZynthFinder code is less complex and require less 
effort to extend than ASKCOS.

This is far from a comprehensive comparison and is 
intended to highlight the similarities and differences 

Fig. 3 The output section of the AiZynthFinder GUI displaying the first suggested route to synthesize Amenamevir
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between the two tools. As mentioned above, it is dif-
ficult to compare the software on equal footing. Differ-
ent researchers have different priorities when it comes to 

retrosynthesis, and it is not entirely clear how to make a 
good comparison. We have not discussed the quality of 
the predicted routes, which is in our opinion is an ill-
defined metric. For instance, we submitted Amenamevir 
to the ASKCOS webserver and did not recover the 
expected literature route, but that does not mean that the 
route suggested by ASKCOS is incorrect. The only fair 
way to find out is to synthesize the compounds accord-
ing to the proposed the route, but even then the success-
ful application of the suggested route is conditioned on 
finding the optimal conditions for synthesis. As such, a 
comprehensive comparison of tools is out of scope for 
this software note.

Future developments
It is our aim that the AiZynthFinder software provides 
a framework for research and development of novel ret-
rosynthesis algorithms. Therefore, we have designed the 
software to be easy to maintain and extend with new 
features. Currently, it contains a solid foundation, i.e., 
the Monte Carlo tree search algorithm that has shown 
promising results in finding routes for a range of com-
pounds. And we provide interfaces that suits this core 
activity. However, it does not yet provide a fully inte-
grated solution. For instance, we are working on improv-
ing the accuracy of the predicted routes by implementing 
a scoring framework. It is also of interest to augment the 
predictions with an information retrieval system for the 
used templates, so that chemists can e.g. look up simi-
lar reactions. Finally, we are working on improving the 

Table 1 Statistics of  AiZynthFinder and  ASKCOS 
predictions on 100 compounds from ChEMBL

a The number of Python statements in the modules that are used by the 
AiZynthFinder CLI and tree builder module, respectively
b The total number of python statements in the aizynthfinder and makeit 
(ASKCOS) python packages, respectively
c The average cyclomatic complexity over all functions used by the 
AiZynthFinder CLI or the tree builder module
d The average Halstead effort over all functions used by the AiZynthFinder CLI 
or the tree builder module
e The average time to complete the search over all compounds
f The average time to find the first solution over all compounds that were solved

AiZynthFinder ASKCOS

Number of core  statementsa 1095 2336

Number of total  statementsb 1495 9987

Average code  complexityc 2.2 3.4

Average code  effortd 22.0 116.8

Reaction database USPTO [30] Reaxys [39]

Stock ZINC [33] Sigma and 
eMol‑
ecules [6]

Average search  timee (s) 38.7 151.0

Average solution  timef (s) 7.1 14.3

Number of solved routes 55 62

Average number of steps 2.4 3.3

Average number of precursors 2.7 3.2

Fig. 4 Distribution of the synthetic accessibility score of the 100 ChEMBL compounds, grouped by whether a synthetic route was found with 
AiZynthFinder or ASKCOS
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recommendation policy, by for instance utilizing the 
“ring breaker” policy [45]. All such extensions should 
be possible to implement easily in the current codebase 
because it has low complexity and Halstead effort. If the 
features do not depend on internal AstraZeneca infra-
structure or data, and are relevant to the larger commu-
nity, they will be made available when we publish new 
research findings. We expect minor releases with new 
features to happen several times a year, whereas patch 
releases fixing bugs and trivial code updates will be 
released continuously.

Conclusions
We have presented the AiZynthFinder tool for retrosyn-
thesis planning. In our experience, it can suggest syn-
thetic routes for most compounds in a very short time. 
We hope that it will be perceived as user-friendly and 
with a low learning curve, because we provide extensive 
documentation. Furthermore, the software is robust and 
flexible and lends itself to easy extension with novel fea-
tures. Although it does not provide a complete and inte-
grated solution for synthesis planning, we believe that we 
have provided a framework and platform where novel 
algorithms can be tested and integrated in the future. 
We hope that by releasing the software to the public 
that researchers interested in retrosynthesis can use it to 
explore synthetic route prediction and provide sugges-
tion how it can be improved. By providing open source 
code and algorithmic transparency, we aim to promote 
collaboration around a sustainable reference software. 
We encourage users to contribute ideas or code so that 
the tool can be incrementally improved and thereby pro-
vide more accurate and useful predictions of reaction 
routes.
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