
Genheden et al. J Cheminform (2020) 12:70
https://doi.org/10.1186/s13321-020-00472-1

SOFTWARE

AiZynthFinder: a fast, robust and flexible
open-source software for retrosynthetic
planning
Samuel Genheden1*, Amol Thakkar1,2, Veronika Chadimová1, Jean‑Louis Reymond2, Ola Engkvist1
and Esben Bjerrum1*

Abstract

We present the open‑source AiZynthFinder software that can be readily used in retrosynthetic planning. The algo‑
rithm is based on a Monte Carlo tree search that recursively breaks down a molecule to purchasable precursors. The
tree search is guided by an artificial neural network policy that suggests possible precursors by utilizing a library of
known reaction templates. The software is fast and can typically find a solution in less than 10 s and perform a com‑
plete search in less than 1 min. Moreover, the development of the code was guided by a range of software engineer‑
ing principles such as automatic testing, system design and continuous integration leading to robust software with
high maintainability. Finally, the software is well documented to make it suitable for beginners. The software is avail‑
able at http://www.githu b.com/Molec ularA I/aizyn thfin der.

Keywords: Neural network, CASP, Retrosynthesis planning software, Monte Carlo tree‑search, Retrosynthesis

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Synthesis planning is the process by which a chemist or a
computer determines how to synthesize a specific com-
pound. This is typically carried out by retrosynthetic
analysis where the desired compound is iteratively bro-
ken down into intermediates or smaller precursors until
known or purchasable building blocks have been found.
Such analysis was pioneered by Corey et al. and was
traditionally carried out by hand or by using expert sys-
tems utilizing hand-encoded rules [1–3]. With the rise
of deep learning, in the last decade, the field of retrosyn-
thetic software tools has undergone a swift change. Now,
sophisticated and automatic algorithms have the poten-
tial to provide retrosynthetic analysis with a broader
application domain and with better accuracy [4–6].

Retrosynthesis planning algorithms can be divided
into template-based and template-free approaches. In
template-based approaches, reaction templates or rules
that describe chemical transformations are manually
encoded or derived from a database of known reactions,
and subsequently applied to other compounds to create
plausible reaction outcomes. Segler et al. showed that it
was possible to train a neural network to prioritize tem-
plates, and subsequently use this as a policy to guide
a Monte Carlo tree search algorithm that suggests syn-
thetic pathways for a given compound [7, 8]. Template-
free approaches, on the other hand, do not rely on such
templates but typically treat the chemical reaction as a
natural language problem, where one set of words (reac-
tants) is transformed into another set of words (products)
[9–11]. Other template-free methods are based on graph
approaches [12, 13].

There are several tools available for retrosynthesis
planning but to our knowledge only two are fully open
source, i.e. the ASKCOS suite of programs from MIT [14]

Open Access

Journal of Cheminformatics

*Correspondence: samuel.genheden@astrazeneca.com; esben.
bjerrum@astrazeneca.com
1 Hit Discovery, Discovery Sciences, R&D, AstraZeneca Gothenburg,
Mölndal, Sweden
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-1614-7376
http://www.github.com/MolecularAI/aizynthfinder
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-020-00472-1&domain=pdf

Page 2 of 9Genheden et al. J Cheminform (2020) 12:70

and LillyMol from Eli Lilly and Company [15]. The tools
Chemical AI [16] and IBM RXN [17] are free for regis-
tered users, but only the algorithm of the latter has been
reported in the literature. Other tools [18–23] are closed
commercial applications where the algorithm is partly
undisclosed. This is partly a problem of data availabil-
ity—most of the reaction databases or manually encoded
rules are commercial and limits the way a free and open
source software can use them. The same applies to the
database of purchasable precursors that is used as a stop
criterion in several programs. However, we believe that
the scientific community would benefit from an open
source implementation that provides algorithmic trans-
parency and promotes reproducible research with a
sustainable software. Therefore, we present the AiZynth-
Finder tool that can be used for retrosynthesis planning.
An early version of this tool has been used previously to
determine the influence of the reaction database on ret-
rosynthesic predictions [24], but the code base has been
re-engineered to make it more flexible, robust and main-
tainable. We provide a trained neural network policy as
well as tools to make a database of purchasable precur-
sors so that the tool can be used directly. In addition, we
provide extensive documentation to lower the learning
curve for new users. We envisage that by providing this
tool free and open-source, other researchers can use it
for benchmarking, contribute to a continuous develop-
ment and use the tool for suggesting synthetic routes for
novel compounds.

Implementation
The AiZynthFinder software is written in Python 3 and
is distributed on GitHub under the MIT license [25]. It
is dependent on several freely available Python packages
such as TensorFlow [26], RDKit [27] and NetworkX [28].

The central algorithm of the AiZynthFinder software
has been described elsewhere [8, 24] and therefore, we
only provide a brief outline here: The input is a molecule
that will be broken down to purchasable precursors.
The outcome will be a list of precursors that can be pur-
chased or molecules that cannot be broken down by the
algorithm. The software is based on a Monte Carlo tree
search [29], where each node in the tree corresponds to
a set of molecules that can or cannot be broken down
further. At each iteration a leaf node is selected that is
deemed to be the most promising to exploit further using
upper confidence bound statistics [29]. A neural network
policy is then used to shortlist reaction templates and
prioritize which child to create by applying a reaction
template to create the new precursors. This procedure
is repeated until a terminal state has been reached, i.e., a
precursor that is purchasable has been found, or the tree
has reached a maximum depth. At this point the score of

the leaf node is backpropagated up to the root of the tree
(the input molecule), and the next iteration commences.
The tree search is terminated either after a fixed number
of iterations or a time-limit has passed. In comparison to
the algorithm proposed by Segler et al. [8], the algorithm
in AiZynthFinder does not include a filter to quickly
remove unfeasible reactions nor does it utilize different
policies for the expansion and rollout phases.

The structure of the AiZynthFinder package is shown
in Fig. 1a. The main interface to the algorithm is in the
aizynthfinder.py module, which brings classes from
the mcts sub-package together to perform the tree
search. However, for the end-user we provide two inter-
faces: one command-line interface (CLI) and one graphi-
cal user interface (GUI) that is intended to be used in a
Jupyter notebook. These two interfaces, which reside in
the interface sub-package, are installed together with
the package. The CLI comes with some additional fea-
tures that are lacking from the GUI. Foremost, it allows
compounds to be processed in batch, i.e. the user can
submit hundreds or thousands of compounds with one
command. Secondly, detailed results are stored to disc
that later can be processed or viewed. For instance, one
can calculate statistics on the search trees, or one can
produce images of the top-ranked routes. Lastly, the CLI
allows a finer detail of debugging information, which
could be invaluable to software developers. The sub-
package training contains tools to train the policy
neural network, and the sub-package tools contains
other useful CLIs.

The overall design follows principles from object-
oriented programming such that each component is
implemented as a class. The main classes for the tree
search and their relationships are shown in Fig. 1b. The
AiZynthFinder class loads a user configuration from file
as a Configuration object, which includes the creation
of a Policy and a Stock object. This configuration is used
to control the tree search. The actual tree search is then
carried out by the TreeSearch class that creates a Node
object representing a node in the tree search that can be
expanded to create new Nodes. The molecules on each
Node are represented by a State object that holds a list
of TreeMolecule objects. A Reaction class encapsulates a
chemical reaction on TreeMolecule objects and is used to
apply the reaction templates to create new precursors.

The Policy class encapsulates a recommendation
engine based on a trained neural network. Given a mol-
ecule object, it will return a sorted list of reaction tem-
plates and the probability of each template. The templates
are sorted on the probability as given by the neural net-
work. We have trained neural networks on several tem-
plate libraries (see ref [24] for a comparison) and provide
one based on the publicly available US patent office data

Page 3 of 9Genheden et al. J Cheminform (2020) 12:70

(USPTO) set [30] for anyone to use. We also provide tools
to train the neural network, in case someone has their
own or in-licensed reaction database. These tools can for
instance be used with RDChiral [31] and our previously
described procedure [24] for extracting templates.

The Stock class is an abstraction around a collection
of compounds that serves as stop-conditions for the
tree search. This is a list of purchasable compounds,
but could also be an abstract collection based on some
rules, e.g. compounds with less than seven carbon
atoms are considered purchasable. To support differ-
ent kinds of collections, the Stock class uses one or

more instances of query classes that given a molecule
object returns whether that compound is “in stock”. The
package comes with two query classes, one that holds
a set of InChI keys [32] in the computer memory and
one that holds a connection to a Mongo database with
InChI keys. We also provide examples to show how
one can create a rule-based query class. For our inter-
nal usage we refer to lists of purchasable compounds
from several commercial vendors, however it is just as
straightforward to create a list from open source data-
bases such as ZINC [33]. To simplify this process, we
provide a tool to make a stock in a suitable format for

Fig. 1 The AiZynthFinder package. a The python package structure, outlining top‑level modules and sub‑packages. b The main classes involved
in the tree search and the relationships. A line ending with a solid diamond indicates an “owns”‑relation, and a line ending with arrow indicates an
“uses”‑relationship, according to UML notation

Page 4 of 9Genheden et al. J Cheminform (2020) 12:70

the tree search from files containing SMILES strings
[34].

The main MCTS implementation has been exten-
sively profiled and optimized—the bottlenecks are calls
to the neural network and to RDChiral [31] for resolv-
ing reaction templates, routines that rely on optimized
C or C++ code. We have not attempted to parallelize
the code, as the serial execution time is sufficient for
our purposes (see below). For the prediction of multiple
compounds at the same time, the code can of course be
embarrassingly parallelized. The benchmarking num-
bers below were made using a single CPU (Intel Xeon
4.00 GHz) and a single GPU (Nvidia GeForce RTX 2080
Ti) on a Linux machine with 64 GB memory.

More than 85% of the code is covered by automatic unit
and integration tests, which we execute on each commit.
Furthermore, the code is pep8 compliant, autoformatted
and code complexity is monitored automatically on each
commit. All of this contributes to the robustness and
maintainability of the code base and provides the basis
for continuous integration and deployment. Extensive
API documentation is autogenerated from docstrings
and is complemented by hand-written tutorials.

Results and discussion
As described in the Implementation section, there are
two main interfaces to the tool. Here, we exemplify the
usages of the tool with the GUI and then proceed with
a comparison using the CLI. In the example below we
have used the policy trained on USPTO data [24]. Fur-
thermore, we created a stock from compounds avail-
able in the ZINC database [33]; we only downloaded
tranches including fragment compounds (molecular
weight up to 250 D and log P up to 3.5) that had reactivity
labeled as “standard” or “reactive”, resulting in 17,422,831
compounds.

Graphical user interface
To use the GUI (and the CLI), a configuration file needs
to be created in YAML-format. This configuration file
must contain the path to files for the policy and instruc-
tions how to setup the stock. The policy files are (1) the
saved neural network model and, (2) a list of reaction
templates. Multiple stocks and policy networks can be
specified in the configuration and selected in the GUI
before running the algorithm. The user is also free to fine
tune the search algorithm using a set of properties. For
the GUI, they serve as default values whereas for the CLI
they are used in the search algorithm. If not provided in
the configuration file, default recommended settings are
automatically applied.

The GUI is based on the Jupyter notebook infrastruc-
ture, which builds and displays the GUI requiring at

minimum two lines of python code. Although, a Jupyter
notebook requires the user to enter Python code, the
number of commands one must enter is minimal so that
it is suitable even for non-technical researchers. A Jupy-
ter notebook is also ideal as a working environment for
researchers that want to experiment with the algorithm
and the result of the tree search. Because a Jupyter note-
book provides the full Python environment, one can eas-
ily customize the setup of the algorithm and fully inspect
the predicted routes. Furthermore, there are projects
such as voilá [35] built around Jupyter notebooks that
make it easy to create interactive webpages directly from
the notebooks. This could be setup for users that primar-
ily want to use AiZynthFinder to find suggestions for syn-
thesis plans.

In Fig. 2, we have input the SMILES string for the anti-
viral drug Amenamevir. Furthermore, the user can then
select the stock and neural policy they want to use, as
well as some options for the tree search.

When the tree search is completed, the user can view
the predicted reaction routes. The GUI allows brows-
ing through the top-ranked routes, but using Python
scripting, all routes can be extracted and displayed. Fig-
ure 3 shows an example for the Amenamevir drug. First,
the results show whether the route is solved or not, i.e.
if all precursors are in stock, and the score of the route.
The score reflects the fraction of solved precursors and
the number of reactions required to synthesize the tar-
get compound. The score for a solved compound is close
to 1.0, whereas the score for an unsolved compound is
typically less than 0.8. However, it should be noted that
the score was designed to support the tree search and
is rather indiscriminate with regard to the quality of the
route (i.e. if it’s a good route or not) and should be inter-
preted with care. Second, the results clearly display which
precursors to procure in order to synthesize the target
compound. Lastly, it shows the predicted route with
precursors in stock highlighted with a green rectangle,
and the precursors that are not in stock are highlighted
in orange. In the example shown in Fig. 3, we see that
suggested route is very similar to the reported synthetic
route for Amenamevir [36], with the difference that the
anilinoacetate is available to purchase and does not need
to be synthesized.

Comparison with the ASKCOS tool
As mentioned above, several other retrosynthesis tools
exist, but unfortunately very few of them are open source
or well described in the literature. The software that is
closest for a comparison is the Tree builder module in the
ASKCOS suite of programs [14, 37]. First the algorithm
underlying the Tree builder module is similar to the algo-
rithm of AiZynthFinder, although different expansion

Page 5 of 9Genheden et al. J Cheminform (2020) 12:70

policies are used, and the search tree constructed differ-
ently. The software is written in Python and the code is
available on Github. However, it is foremost intended for
end-users and the interface is web-based. LillyMol [15],
which is another open-source code, uses an exhaustive
search of template space to produce one-step sugges-
tions, i.e. not complete routes, and is thus less relevant
to compare with. To make a rough baseline comparison
between ASKCOS and AiZynthFinder we selected 100
random compounds from the ChEMBL database and
submitted them to the Tree builder module of the pub-
lic ASKCOS web server [38]. Even though this might not
represent the latest version of the codebase, it is intui-
tively the interface that most people would use. We set
a max depth of 6, an expansion time of 120 s and used a
fast filter; otherwise default values were applied. We used
the AiZynthFinder CLI together with the ZINC stock
and the USPTO policy to predict routes for the same 100
compounds. Some statistics on the source code and the
route finding are collected in Table 1 and the full data is
available as Additional file 1. It is important to note that
these 100 compounds are not necessarily a representa-
tive part of the chemical space that might be relevant in
a drug design project. Thus, the test set should be viewed
as an illustration of the capacity of the software rather
than a go-to benchmarking set.

AiZynthFinder and ASKCOS find routes for 55 and 62
compounds respectively. There were 47 compounds for
which both tools found a route, 15 compounds where
ASKCOS found a solution and AiZynthFinder did not,

and 8 compounds where AiZynthFinder found a solu-
tion and ASKCOS did not. There were 30 compounds
that neither tool found a solution for. We have found
that route finding capability depends on the stock that
is used as stop criteria in both tools [24]. The exam-
ple stock created from a subset of the ZINC database is
for instance much less extensive than some of the com-
mercial stocks we typically use. If we include the readily
available Enamine building blocks in the stock, we could
find routes for an additional 10 compounds. The ASK-
COS tool from the public webserver employs a commer-
cial database consisting of 107,000 compounds with list
prices less than $100/g from Sigma Aldrich and eMol-
ecules [6]. The other factor that determines if a solution
is found is the template library—here we used USPTO
policy for AiZynthFinder, whereas ASKCOS is based on
the more extensive Reaxys database [39]. Using a policy
based on Reaxys data we find routes for 56 compounds,
although there is not a complete overlap with the USPTO
results. We have previously investigated the effect of poli-
cies trained on a variety of datasets on the route finding
capability of AiZynthFinder [24] however we cannot
release these to the public due to licensing agreements.
Furthermore, the capability to find a route for both tools
is closely related to the complexity of the synthesis. This
can be seen in Fig. 4, showing the distribution of the syn-
thetic accessibility (SA) score [40] for four sets of data.
We see that for both AiZynthFinder and ASKCOS, the
SA score is generally lower for compounds that the tools
were able to find a solution for. Similar observations have

Fig. 2 The input section of the AiZynthFinder GUI. A user has entered the SMILES string for the drug Amenamevir and selected the ZINC stock

Page 6 of 9Genheden et al. J Cheminform (2020) 12:70

been discussed previously in the literature [41]. It seems
that ASKCOS is somewhat better at finding solutions
with a mid-range SA score, but this might be due to the
lack of some scaffolds in the ZINC stock. Moreover, it
seems that AiZynthFinder predicts slightly shorter reac-
tion routes, with fewer purchasable precursors, although
it is unclear if the difference is significant given the rather
small test set.

Looking at the timings of the software, we see that
AiZynthFinder is faster than ASKCOS, both in terms of
total search time and the time it takes to find the first
solution. However this difference could be partially
attributed to the environment in which the test was
executed, a local Linux computer in the case of AiZynth-
Finder and a webserver in the case of ASKCOS. Lastly,
we want to point out that AiZynthFinder has a much
smaller code base than ASKCOS, with less than half the
number of Python statements in the core modules (the

part of the code necessary to execute the tree search). The
large difference in total statements of the package can be
attributed to the fact that ASKCOS has a lot more fea-
tures than AiZynthFinder. However, the difference in the
number of core statement could be because we re-engi-
neered the AiZynthFinder package such that it is a better
designed package than the previously released code. We
quantify this by calculating the average complexity [42],
which quantifies the number of independent branching
points, and Halstead effort [43], which is the product of
a volumetric measure and the difficulty to understand the
code. The number of lines, the code complexity and code
effort is among the metrics typically used to determine
if a codebase is maintainable [44], and they indicate that
the AiZynthFinder code is less complex and require less
effort to extend than ASKCOS.

This is far from a comprehensive comparison and is
intended to highlight the similarities and differences

Fig. 3 The output section of the AiZynthFinder GUI displaying the first suggested route to synthesize Amenamevir

Page 7 of 9Genheden et al. J Cheminform (2020) 12:70

between the two tools. As mentioned above, it is dif-
ficult to compare the software on equal footing. Differ-
ent researchers have different priorities when it comes to

retrosynthesis, and it is not entirely clear how to make a
good comparison. We have not discussed the quality of
the predicted routes, which is in our opinion is an ill-
defined metric. For instance, we submitted Amenamevir
to the ASKCOS webserver and did not recover the
expected literature route, but that does not mean that the
route suggested by ASKCOS is incorrect. The only fair
way to find out is to synthesize the compounds accord-
ing to the proposed the route, but even then the success-
ful application of the suggested route is conditioned on
finding the optimal conditions for synthesis. As such, a
comprehensive comparison of tools is out of scope for
this software note.

Future developments
It is our aim that the AiZynthFinder software provides
a framework for research and development of novel ret-
rosynthesis algorithms. Therefore, we have designed the
software to be easy to maintain and extend with new
features. Currently, it contains a solid foundation, i.e.,
the Monte Carlo tree search algorithm that has shown
promising results in finding routes for a range of com-
pounds. And we provide interfaces that suits this core
activity. However, it does not yet provide a fully inte-
grated solution. For instance, we are working on improv-
ing the accuracy of the predicted routes by implementing
a scoring framework. It is also of interest to augment the
predictions with an information retrieval system for the
used templates, so that chemists can e.g. look up simi-
lar reactions. Finally, we are working on improving the

Table 1 Statistics of AiZynthFinder and ASKCOS
predictions on 100 compounds from ChEMBL

a The number of Python statements in the modules that are used by the
AiZynthFinder CLI and tree builder module, respectively
b The total number of python statements in the aizynthfinder and makeit
(ASKCOS) python packages, respectively
c The average cyclomatic complexity over all functions used by the
AiZynthFinder CLI or the tree builder module
d The average Halstead effort over all functions used by the AiZynthFinder CLI
or the tree builder module
e The average time to complete the search over all compounds
f The average time to find the first solution over all compounds that were solved

AiZynthFinder ASKCOS

Number of core statementsa 1095 2336

Number of total statementsb 1495 9987

Average code complexityc 2.2 3.4

Average code effortd 22.0 116.8

Reaction database USPTO [30] Reaxys [39]

Stock ZINC [33] Sigma and
eMol‑
ecules [6]

Average search timee (s) 38.7 151.0

Average solution timef (s) 7.1 14.3

Number of solved routes 55 62

Average number of steps 2.4 3.3

Average number of precursors 2.7 3.2

Fig. 4 Distribution of the synthetic accessibility score of the 100 ChEMBL compounds, grouped by whether a synthetic route was found with
AiZynthFinder or ASKCOS

Page 8 of 9Genheden et al. J Cheminform (2020) 12:70

recommendation policy, by for instance utilizing the
“ring breaker” policy [45]. All such extensions should
be possible to implement easily in the current codebase
because it has low complexity and Halstead effort. If the
features do not depend on internal AstraZeneca infra-
structure or data, and are relevant to the larger commu-
nity, they will be made available when we publish new
research findings. We expect minor releases with new
features to happen several times a year, whereas patch
releases fixing bugs and trivial code updates will be
released continuously.

Conclusions
We have presented the AiZynthFinder tool for retrosyn-
thesis planning. In our experience, it can suggest syn-
thetic routes for most compounds in a very short time.
We hope that it will be perceived as user-friendly and
with a low learning curve, because we provide extensive
documentation. Furthermore, the software is robust and
flexible and lends itself to easy extension with novel fea-
tures. Although it does not provide a complete and inte-
grated solution for synthesis planning, we believe that we
have provided a framework and platform where novel
algorithms can be tested and integrated in the future.
We hope that by releasing the software to the public
that researchers interested in retrosynthesis can use it to
explore synthetic route prediction and provide sugges-
tion how it can be improved. By providing open source
code and algorithmic transparency, we aim to promote
collaboration around a sustainable reference software.
We encourage users to contribute ideas or code so that
the tool can be incrementally improved and thereby pro-
vide more accurate and useful predictions of reaction
routes.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1332 1‑020‑00472 ‑1.

Additional file 1. Complete search results for comparison between
AiZynthFinder and ASKCOS.

Acknowledgements
We thank Dr. Michael E. Fortunato, Dr. Connor W. Coley and Prof. Klavs F.
Jensen for helpful comments and clarifications regarding the ASKCOS
software.

Authors’ contributions
SG managed the refactoring project, refactored and made improvements
to the code, developed the testing framework, performed the tool compari‑
sons and wrote the initial manuscript. AT worked with the reaction datasets,
extracted the templates and trained and developed the policy networks. VC
investigated the performance and feasibility of the synthesis predictions. J‑LR
was AT academic supervisor and provided helpful feedback and guidance. OE
supervised and managed the team. EB designed and coded the first version
of the Monte Carlo tree‑search software and supervised and managed the
project in the early phases. All authors were involved in feedback, planning

of the work and editing and improving the manuscript. All authors read and
approved the final manuscript.

Funding
Amol Thakkar was supported financially by the European Union’s Horizon
2020 research and innovation program under the Marie Skłodowska‑Curie
Grant Agreement No. 676434, “Big Data in Chemistry” (“BIGCHEM,” http://bigch
em.eu).

Availability and requirements
Project name: AiZynthFinder
Project home page: http://www.githu b.com/Molec ularA I/aizyn thfin der
Operating system(s): Platform independent
Programming language: Python 3
Other requirements: several open source python packages
License: MIT.
Any restrictions to use by non‑academics: none.

Data availability
The ZINC stock as well as the trained USPTO policy is available to download
from Figshare: https ://doi.org/10.6084/m9.figsh are.12334 577.v1.

Competing interests
Authors declare no competing interests.

Author details
1 Hit Discovery, Discovery Sciences, R&D, AstraZeneca Gothenburg, Mölndal,
Sweden. 2 Department of Chemistry and Biochemistry, University of Bern,
Freiestrasse 3, 3012 Bern, Switzerland.

Received: 3 July 2020 Accepted: 24 October 2020

References
 1. Corey EJ, Todd Wipke W (1969) Computer‑assisted design of complex

organic syntheses. Science 166:178–192. https ://doi.org/10.1126/scien
ce.166.3902.178

 2. Pensak DA, Corey EJ (1977) LHASA—Logic and Heuristics Applied to
Synthetic Analysis. In: Computer‑Assisted Organic Synthesis, American
Chemical Society. 61:1–32

 3. Ihlenfeldt W‑D, Gasteiger J (1996) Computer‑assisted planning of organic
syntheses: the second generation of programs. Angew Chemie Int Ed
Engl 34:2613–2633. https ://doi.org/10.1002/anie.19952 6131

 4. Engkvist O, Norrby O, Selmi N et al (2018) Computational prediction
of chemical reactions: current status and outlook. Drug Discov Today
23:1203–1218. https ://doi.org/10.1016/j.drudi s.2018.02.014

 5. Coley CW, Green WH, Jensen KF (2018) Machine learning in computer‑
aided synthesis planning. Acc Chem Res 51:1281–1289. https ://doi.
org/10.1021/acs.accou nts.8b000 87

 6. Coley CW, Thomas DA, Lummiss JAM et al (2019) A robotic platform for
flow synthesis of organic compounds informed by AI planning. Science
365:eaax1566. https ://doi.org/10.1126/scien ce.aax15 66

 7. Segler MHS, Waller MP (2017) Neural‑symbolic machine learning for
retrosynthesis and reaction prediction. Chem A Eur J 23:5966–5971. https
://doi.org/10.1002/chem.20160 5499

 8. Segler MHS, Preuss M, Waller P (2018) Planning chemical syntheses with
deep neural networks and symbolic AI. Nature 555:604–610. https ://doi.
org/10.1038/natur e2597 8

 9. Schwaller P, Laino T, Gaudin T et al (2019) Molecular transformer: a model
for uncertainty‑calibrated chemical reaction prediction. ACS Cent Sci
5:1572–1583. https ://doi.org/10.1021/acsce ntsci .9b005 76

 10. Zheng S, Rao J, Zhang Z et al (2020) Predicting retrosynthetic reactions
using self‑corrected transformer neural networks. J Chem Inf Model
60:47–55. https ://doi.org/10.1021/acs.jcim.9b009 49

 11. Tetko I V., Karpov P, Van Deursen R, Godin G (2020) Augmented trans‑
former achieves 97% and 85% for top5 prediction of direct and classical
retro‑synthesis. https ://arxiv .org/abs/2003.02804 v1

 12. Shi C, Xu M, Guo H, et al (2020) A graph to graphs framework for retrosyn‑
thesis prediction. https ://arxiv .org/abs/2003.12725

https://doi.org/10.1186/s13321-020-00472-1
https://doi.org/10.1186/s13321-020-00472-1
http://bigchem.eu
http://bigchem.eu
http://www.github.com/MolecularAI/aizynthfinder
https://doi.org/10.6084/m9.figshare.12334577.v1
https://doi.org/10.1126/science.166.3902.178
https://doi.org/10.1126/science.166.3902.178
https://doi.org/10.1002/anie.199526131
https://doi.org/10.1016/j.drudis.2018.02.014
https://doi.org/10.1021/acs.accounts.8b00087
https://doi.org/10.1021/acs.accounts.8b00087
https://doi.org/10.1126/science.aax1566
https://doi.org/10.1002/chem.201605499
https://doi.org/10.1002/chem.201605499
https://doi.org/10.1038/nature25978
https://doi.org/10.1038/nature25978
https://doi.org/10.1021/acscentsci.9b00576
https://doi.org/10.1021/acs.jcim.9b00949
https://arxiv.org/abs/2003.02804v1
https://arxiv.org/abs/2003.12725

Page 9 of 9Genheden et al. J Cheminform (2020) 12:70

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

 13. Somnath VR, Bunne C, Coley CW, et al (2020) Learning Graph Models for
Template‑Free Retrosynthesis. https ://arxiv .org/abs/2006.07038

 14. Coley CW, Barzilay R, Jaakkola TS et al (2017) Prediction of organic reac‑
tion outcomes using machine learning. ACS Cent Sci 3:434–443. https ://
doi.org/10.1021/acsce ntsci .7b000 64

 15. Watson IA, Wang J, Nicolaou CA (2019) A retrosynthetic analysis algo‑
rithm implementation. J Cheminform 11:1. https ://doi.org/10.1186/s1332
1‑018‑0323‑6

 16. https ://Chemi cal.AI
 17. https ://rxn.res.ibm.com/
 18. https ://www.cas.org/produ cts/scifi nder/retro synth esis‑plann ing
 19. https ://www.infoc hem.de/synth esis/ic‑synth
 20. https ://molec ule.one/
 21. https ://www.elsev ier.com/solut ions/reaxy s/how‑reaxy s‑works /synth esis‑

plann er
 22. https ://www.sigma aldri ch.com/chemi stry/chemi cal‑synth esis/synth esis‑

softw are.html
 23. https ://spaya .ai
 24. Thakkar A, Kogej T, Reymond J‑L et al (2019) Datasets and their influence

on the development of computer assisted synthesis planning tools in the
pharmaceutical domain. Chem Sci. 11:154–168. https ://doi.org/10.1039/
C9SC0 4944D

 25. https ://opens ource .org/licen ses/MIT
 26. Abadi M, Agarwal A, Barham P, et al (2015) TensorFlow: large‑scale

machine learning on heterogeneous distributed systems
 27. RDKit: Open‑source cheminformatics, http://www.rdkit .org
 28. Haberg AA, Schult DA, Swart PJ (2008) Exploring network structure,

dynamics, and function using networkX. In: Proceedings of the 7th
Python in Science Conference (SciPy2008), ed. G. Varoquaux, T. Vaught
and J. Millman, Pasadena, CA USA. pp 11–15

 29. Browne CB, Powley E, Whitehouse D et al (2012) A survey of Monte Carlo
tree search methods. IEEE Trans Comput Intell AI Games 4:1–43

 30. Lowe D Chemical reactions from US patents, 1976–Sep 2016, https ://
figsh are.com/artic les/Chemi cal_react ions_from_US_paten ts_1976‑
Sep20 16_/51048 73. Accessed 31 Apr 2018

 31. Coley CW, Green WH, Jensen KF (2019) RDChiral: an RDKit wrapper for
handling stereochemistry in retrosynthetic template extraction and

application. J Chem Inf Model 59:2529–2537. https ://doi.org/10.1021/acs.
jcim.9b002 86

 32. Heller SR, McNaught A, Pletnev I et al (2015) InChI, the IUPAC interna‑
tional chemical identifier. J Cheminform 7:23. https ://doi.org/10.1186/
s1332 1‑015‑0068‑4

 33. Sterling T, Irwin JJ (2015) ZINC 15 ‑ Ligand discovery for everyone. J Chem
Inf Model 55:2324–2337. https ://doi.org/10.1021/acs.jcim.5b005 59

 34. Weininger D (1988) SMILES, a chemical language and information system:
1: introduction to methodology and encoding rules. J Chem Inf Comput
Sci 28:31–36. https ://doi.org/10.1021/ci000 57a00 5

 35. https ://voila .readt hedoc s.io/en/stabl e/index .html
 36. Flick AC, Leverett CA, Ding HX et al (2019) Synthetic approaches to the

new drugs approved during 2017. J Med Chem 62:7340–7382
 37. https ://githu b.com/conno rcole y/ASKCO S
 38. http://askco s.mit.edu/. Accessed 27 Apr 2020 to 29 Apr 2020
 39. Reaxys©, Copyright © 2019 Elsevier Limited except certain content

provided by third parties, Reaxys is a trademark of Elsevier
 40. Ertl P, Schuffenhauer A (2009) Estimation of synthetic accessibility score

of drug‑like molecules based on molecular complexity and fragment
contributions. J Cheminform 1:8. https ://doi.org/10.1186/1758‑2946‑1‑8

 41. Gao W, Coley CW (2020) The synthesizability of molecules proposed
by generative models. J Chem Inf Model. https ://doi.org/10.1021/acs.
jcim.0c001 74

 42. Mccabe TJ (1976) A complexity measure. IEEE Trans Softw Eng SE‑2:308–
320. https ://doi.org/10.1109/TSE.1976.23383 7

 43. Halstead Maurice H (1977) Elements of Software Science. Elsevier North‑
Holland, Inc., Amsterdam. ISBN 0‑444‑00205‑7

 44. Seref B, Tanriover O (2016) Software code maintainability: a literature
review. Int J Softw Eng Appl. https ://doi.org/10.5121/ijsea .2016.7305

 45. Thakkar A, Selmi N, Reymond J‑L et al (2020) ‘Ring Breaker’: neural
network driven synthesis prediction of the ring system chemical space. J
Med Chem. https ://doi.org/10.1021/acs.jmedc hem.9b019 19

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://arxiv.org/abs/2006.07038
https://doi.org/10.1021/acscentsci.7b00064
https://doi.org/10.1021/acscentsci.7b00064
https://doi.org/10.1186/s13321-018-0323-6
https://doi.org/10.1186/s13321-018-0323-6
https://Chemical.AI
https://rxn.res.ibm.com/
https://www.cas.org/products/scifinder/retrosynthesis-planning
https://www.infochem.de/synthesis/ic-synth
https://molecule.one/
https://www.elsevier.com/solutions/reaxys/how-reaxys-works/synthesis-planner
https://www.elsevier.com/solutions/reaxys/how-reaxys-works/synthesis-planner
https://www.sigmaaldrich.com/chemistry/chemical-synthesis/synthesis-software.html
https://www.sigmaaldrich.com/chemistry/chemical-synthesis/synthesis-software.html
https://spaya.ai
https://doi.org/10.1039/C9SC04944D
https://doi.org/10.1039/C9SC04944D
https://opensource.org/licenses/MIT
http://www.rdkit.org
https://figshare.com/articles/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://figshare.com/articles/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://figshare.com/articles/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://doi.org/10.1021/acs.jcim.9b00286
https://doi.org/10.1021/acs.jcim.9b00286
https://doi.org/10.1186/s13321-015-0068-4
https://doi.org/10.1186/s13321-015-0068-4
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1021/ci00057a005
https://voila.readthedocs.io/en/stable/index.html
https://github.com/connorcoley/ASKCOS
http://askcos.mit.edu/
https://doi.org/10.1186/1758-2946-1-8
https://doi.org/10.1021/acs.jcim.0c00174
https://doi.org/10.1021/acs.jcim.0c00174
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.5121/ijsea.2016.7305
https://doi.org/10.1021/acs.jmedchem.9b01919

	AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning
	Abstract
	Introduction
	Implementation
	Results and discussion
	Graphical user interface
	Comparison with the ASKCOS tool
	Future developments
	Conclusions
	Acknowledgements
	References

