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Abstract 

Compound (or chemical) databases are an invaluable resource for many scientific disciplines. Exposomics research-
ers need to find and identify relevant chemicals that cover the entirety of potential (chemical and other) exposures 
over entire lifetimes. This daunting task, with over 100 million chemicals in the largest chemical databases, coupled 
with broadly acknowledged knowledge gaps in these resources, leaves researchers faced with too much—yet not 
enough—information at the same time to perform comprehensive exposomics research. Furthermore, the improve-
ments in analytical technologies and computational mass spectrometry workflows coupled with the rapid growth 
in databases and increasing demand for high throughput “big data” services from the research community present 
significant challenges for both data hosts and workflow developers. This article explores how to reduce candidate 
search spaces in non-target small molecule identification workflows, while increasing content usability in the context 
of environmental and exposomics analyses, so as to profit from the increasing size and information content of large 
compound databases, while increasing efficiency at the same time. In this article, these methods are explored using 
PubChem, the NORMAN Network Suspect List Exchange and the in silico fragmentation approach MetFrag. A subset 
of the PubChem database relevant for exposomics, PubChemLite, is presented as a database resource that can be 
(and has been) integrated into current workflows for high resolution mass spectrometry. Benchmarking datasets 
from earlier publications are used to show how experimental knowledge and existing datasets can be used to detect 
and fill gaps in compound databases to progressively improve large resources such as PubChem, and topic-specific 
subsets such as PubChemLite. PubChemLite is a living collection, updating as annotation content in PubChem is 
updated, and exported to allow direct integration into existing workflows such as MetFrag. The source code and files 
necessary to recreate or adjust this are jointly hosted between the research parties (see data availability statement). 
This effort shows that enhancing the FAIRness (Findability, Accessibility, Interoperability and Reusability) of open 
resources can mutually enhance several resources for whole community benefit. The authors explicitly welcome addi-
tional community input on ideas for future developments.
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Introduction
Compound (or chemical) databases are an invaluable 
resource for many scientific disciplines. Through the joint 
evolution over the last decade of high resolution mass 
spectrometry (HR-MS), cheminformatics techniques and 
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openly available compound databases, a whole new world 
for identifying small molecules in complex samples has 
emerged. Despite many advances, chemical identification 
is still generally considered a bottleneck in many research 
fields (see e.g. [1, 2]). Interest in the exposome [3] and the 
related exposomics field has increased as awareness of 
the influence of the external environment on health and 
disease has increased [4]. Exposomics requires research-
ers to find and identify relevant chemicals that cover the 
entirety of potential (chemical and other) exposures over 
entire lifetimes [4–6], significantly adding to the identifi-
cation challenge.

Scientific disciplines such as environmental science, 
metabolomics, forensics and exposomics are focusing 
increasingly on high throughput data exploration with 
high resolution mass spectrometry (HR-MS) techniques 
[4, 7, 8]. Mass spectral libraries, which can be used to 
obtain rapid tentative identifications of relatively high 
confidence [9–11] still only cover a fraction of chemical 
information resources relevant in exposomics [9], metab-
olomics [12] or in complex samples in general [13, 14]. 
This is especially true for HR-MS techniques, which are 
inherently limited by the availability of reference stand-
ards as well as the relative youth and lack of standardi-
zation in the field [9]. Alternative methods to annotate 
detected exact masses in HR-MS studies beyond spectral 
library searching began emerging around 2010 by search-
ing compound (i.e., chemical) databases for possible 
candidates using the exact mass or calculated molecular 
formula, and ranking these using in silico techniques to 
sort candidates using the measured fragmentation infor-
mation. The plethora of identification methods now 
available are described and compared in detail elsewhere 
[14–17]. A wide variety of (generally open) compound 
databases are typically used as information sources for 
these identification efforts, containing anything between 
tens to hundreds of thousands (e.g. KEGG [18], HMDB 
[19, 20], CompTox [21]) and tens of millions of structures 
(e.g. ChemSpider [22] and PubChem [23–25]). Most of 
these resources and, consequently, the number of candi-
dates per exact mass/formula, are expanding significantly 
over time. Typical queries with smaller databases return 
tens to hundreds of candidates, whereas typical queries 
with large databases such as PubChem now return thou-
sands to tens of thousands of candidates per exact mass/
formula query. For instance, querying HMDB, CompTox 
and PubChem with the formula  C10H14N2 via the Met-
Frag [26, 27] web interface (12 August 2020) returns 4, 
225 and 3704 candidates, respectively.

A major challenge in correctly identifying a chemi-
cal based on exact mass (or formula) and fragmenta-
tion information alone arises due to the relatively little 
information conveyed in the fragmentation spectrum. 

During one open community evaluation approach, the 
2016 Critical Assessment of Small Molecule Identifi-
cation (CASMI) contest, participants were provided 
208 challenges with fragmentation information and 
candidate query sets retrieved from ChemSpider [16]. 
Using fragmentation information alone, participants 
were able to rank between 24 (11.5%) and 70 (33.7%) of 
these 208 challenges correctly in first place [16]. How-
ever, combining this fragmentation information with 
other forms of information (e.g. references, retention 
time information) yielded up to 164 (78.8 %) challenges 
correctly ranked in first place when combining all par-
ticipant methods over the same ChemSpider candidate 
sets [16]. Separately, a detailed evaluation of MetFrag 
combining retention time information with various 
scoring terms available via ChemSpider (5 different lit-
erature terms) and PubChem (PubMed Count and Pat-
ent Count) for 473 environmentally relevant standards 
was performed. This revealed that ranking results were 
improved from 22 to 89% with ChemSpider and from 6 
to 71% with PubChem (with 34 and 71 million entries 
respectively at the time) [26]. In summary over these 
evaluations and more; better ranking performance 
is achieved with small, select databases, at the risk of 
missing the correct answer [28], while the use of addi-
tional metadata (expert knowledge, additional context) 
is necessary to improve the results for practical use, 
especially when using very large compound databases 
to search for candidates.

Another challenge, especially for exposomics, is data-
base choice. Being a mix between metabolomics and 
environmental concepts and challenges, exposom-
ics methods need, on the one hand, the biological con-
text of pathway and metabolomics resources (generally 
small, specialist metabolite databases such as HMDB and 
KEGG), versus the wide coverage required to capture 
“chemical space” which, in environmental contexts, gen-
erally means PubChem or ChemSpider. Although recent 
works mention the need for an “exposomics database”, 
much of the necessary knowledge is already in the pub-
lic domain to some extent, but under rapid development 
and scattered over an ever-growing number of resources. 
Notable recent developments include the CompTox 
Chemicals Dashboard, covering 882,000 (August 2020) 
environmentally and toxicologically-relevant compounds 
[21] and the Blood Exposome Database [29], which, 
although specifically designed for the blood matrix, still 
contains over 64,000 compounds. Large compound data-
bases such as PubChem have content in common with 
many of the openly available smaller databases, but at a 
size of 109 million compounds (January 2021), PubChem 
also contains many (tens of ) millions of entries that are 
not relevant to the exposomics context.
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Beyond the database choice, common criticisms of 
small molecule identification coupled to compound 
databases arising from users over the years include 
the fact that newly-discovered and/or relevant com-
pounds such as emerging chemicals, transformation 
products and metabolites are missing from, or hard 
to add to, these databases for a typical researcher. If 
these compounds are present, these tend to have very 
low metadata scores and thus common environmental 
knowledge of transformations or emerging chemicals 
cannot often be found effectively during identification 
efforts. As a result (and also to increase efficiency), 
many groups in the environmental community have 
taken to compiling their own lists of relevant chemi-
cals (commonly termed “suspect lists” within this com-
munity [7]). The NORMAN Suspect List Exchange 
(NORMAN-SLE) [30] is one initiative that arose to 
address NORMAN Network [31, 32] member needs to 
exchange this information as a result of a collaborative 
trial in 2014 [33], and to date is host to over 73 special-
ised NORMAN member contributed lists of chemicals 
of interest.

With a view on this “current state”, this article inves-
tigates how very large compound databases, or knowl-
edge bases, such as PubChem, could be empowered 
to support HR-MS-based small molecule identifica-
tion efforts in the context of exposomics. This arti-
cle describes initial collaborative efforts on how to 
improve the performance of the PubChem integra-
tion into the in silico identification approach MetFrag. 
Since the first release of MetFrag in 2010, PubChem 
has grown from 25  million to now 109  million com-
pounds, with an accompanying steadily worsening 
rank performance and increasing strain on resources 
due to the rapidly increasing candidate numbers. 
Three main aspects of these collaborative discussions 
are presented in this article: (1) the creation of a small, 
exposomics-relevant subset of PubChem–named 
PubChemLite–for efficient candidate queries, which 
has already been integrated into existing HR-MS work-
flows and teaching efforts; (2) progressive integra-
tion of environmentally-relevant expert knowledge 
to mitigate identified knowledge gaps in PubChem 
annotation content, based on analysis of previous 
benchmarking sets and the NORMAN-SLE content; 
and (3) how annotation content can be leveraged for 
easier interpretation of results. As a result, this article 
focuses heavily on PubChem, MetFrag and the NOR-
MAN-SLE, with the view that the ideas presented here 
could be extended to other knowledge bases and other 
in silico identification approaches based on HR-MS.

Results and discussion
Creating “PubChemLite” for exposomics
Since a very large proportion of the PubChem database 
(> 60%) is sourced from purchasable screening libraries 
from chemical vendors, where the chemicals are gener-
ally produced in relatively small amounts (e.g. mg) in a 
laboratory setting, the vast majority of these chemicals 
are highly unlikely to be detectable in either the environ-
ment or biological samples. Thus, instead of the current 
status quo, i.e. searching the entire PubChem database 
and using metadata scores to “up-prioritize” interesting 
candidates (i.e., processing tens of thousands of candi-
dates per mass, to only obtain tens to hundreds of inter-
esting entries), the first step investigated the creation 
of relevant subsets of PubChem for more efficient que-
ries. This was done by selecting relevant sections of the 
“PubChem Compound Table of Contents” (PubChem 
Compound TOC) Classification [34] as shown in Fig. 1. 
Further details are given in the "Methods" section.

Initially, two versions of PubChemLite were cre-
ated. The environmental selection (PubChemLite tier0), 
formed of the yellow-shaded categories in Fig.  1, short-
ened to “AgroChemInfo, DrugMedicInfo, FoodRelated, 
PharmacoInfo, SafetyInfo, ToxicityInfo, KnownUse”, 
whereas the exposomics selection (PubChemLite tier1) 
had the additional purple-shaded category, shortened 
to “BioPathway”, which contained the additional bio-
logical information categories relevant to metabolomics 
and exposomics. Entries were merged by InChIKey first 
block (the structural skeleton), and total Patent Counts 
and Literature Counts were calculated over the merged 
entries (full details in  the "Methods" section). Each cat-
egory was added as an additional column, where each 
entry was assigned a value that was a (merged) count of 
the sub-categories, and a total annotation count column 
was also added, summing the presence in top categories 
only (for further details, see "Methods"). Initial versions 
(20 November 2019 [35]/14 January 2020 [36]) contained 
315,843/316,810 entries in tier0 (environmental collec-
tion) and 361,976/363,911 entries in tier1 (exposomics). 
In other words, the 103  M entries of PubChem (at the 
time) were collapsed down to two datasets of approxi-
mately 316 K and 360 K compounds. An RMarkdown file 
to visualize the content (categories and subcategories) of 
PubChemLite as an interactive sunburst plot (for a static 
version see Fig.  2) using the 14 January 2020 tier1 ver-
sion is included as Additional file 1 and is also available 
on the ECI GitLab pages [37, 38]; further details are in 
the "Methods" section below.

A benchmark dataset of 977 de-duplicated compounds 
(see Additional file 2) was created by merging chemicals 
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from previous evaluations [16, 26] (predominantly envi-
ronmentally relevant) as described in "Methods". Met-
Frag was run with different versions of PubChemLite as 
well as CompTox (7 March 2019 release [39]) using com-
parable scoring terms. A summary of the results shown 
in Fig.  3  includes calculations both without (green) and 
with (blue) the use of MS/MS information (in silico 
fragmentation score and MS library matching scores). 
Further parameter details are given in the "Methods" sec-
tion, with tables included in Additional file  3. Overall, 
CompTox and PubChemLite perform comparably; ini-
tially CompTox had fewer missing entries (grey shading) 
due to their earlier concerted efforts to add compounds 
of environmental interest, including transformation 

products (these gaps may well be smaller with the new 
data release). These gaps were closed progressively in 
PubChemLite as described in the next section “Identify-
ing and Filling Gaps in PubChem Annotation Content”. 
Furthermore, early results (see Additional file  3: Fig-
ures S1 and S2, Tables S1 and S2) showed that both ver-
sions of PubChemLite, tier0 and tier1, performed almost 
identically even on environmental substances of interest, 
such that finally, one “PubChemLite” for exposomics was 
created, equivalent to tier1 plus the two additional cat-
egories as shown in Fig. 1 [40]. Results from this version 
are also shown in Fig. 3.

The results in Fig.  3 show that, while annotation 
information alone leads to good ranking performance 

Fig. 1 PubChem Compound Table of Contents (TOC) Tree (2 Nov. 2020) from the PubChem Classification Browser [34]. The contents (and 
categories) are updated regularly. Left: the top 22 categories (of the current total 524) are shown (default view). Yellow shading indicates the seven 
categories used in PubChemLite tier0 (“environmental” selection), the purple shading indicates the additional category used for PubChemLite tier1 
(“exposomics”); red shading indicates the two categories that were added into the final PubChemLite exposomics selection. Right: Expansion of the 
“Agrochemical Information” and “Use and Manufacturing” sections as examples of sub-categories
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(~ 70–73% ranked first, dark green shaded results), the 
MS/MS information is essential for further improvements 
(~ 79–83% ranked first, dark blue shaded results). This is 
discussed further below. The PubChemLite results on the 
two initial versions (20 November 2019 and 14 January 
2020) also clearly show that ~ 8 % of the benchmark data-
set were missing from PubChemLite. A detailed interro-
gation of the benchmark set of 977 reference standards 
from Eawag and UFZ revealed that—as commented by 
the community over many years—detailed annotation 
information was missing for well-known relevant trans-
formation products in PubChem. This accounted for 37 
of the 57 missing entries in the January 14, 2020 tier0 ver-
sion and is discussed further in the next section.

Identifying and Filling Gaps in PubChem Annotation 
Content
During previous evaluations of MetFrag specifically [26], 
and in silico identification approaches for HR-MS in gen-
eral during e.g. CASMI [16], the focus has generally been 

on evaluating the methods themselves, aiming for objec-
tive evaluation. The use of identification approaches in 
typical real-life scenarios, however, often requires addi-
tional subjectiveness to provide interpretation, not just 
identification. Thus, the material in this article should 
not be viewed as an evaluation of MetFrag itself (which 
has not changed), but rather demonstrates how improv-
ing the underlying database and associated functionality 
can help to improve outcomes for users (i.e. the ability 
to find relevant chemicals) in the context of exposomics. 
In other words, this has been an opportunity to investi-
gate and improve the annotation content (i.e. information 
content beyond structural properties) in PubChem for 
exposomics.

As Fig. 3 reveals, 57 chemicals from the benchmark set 
were missing in the early versions of PubChemLite, many 
of which were well-known transformation products in 
environmental studies. Since adding annotation content 
requires also sufficient provenance and evidence to sup-
port the annotation, the NORMAN-SLE [30, 44], which 

Fig. 2 Sunburst plot of PubChemLite (14 January 2020 tier1 version [36]) to visualise the content. Note many CIDs are in multiple sub-categories, 
and total counts include this duplication (i.e. the 5695 AgroChemInfo count corresponds with fewer unique CIDs, see below). An interactive version 
embedded in an RMarkdown file is available as Additional file 1, the interactive plot plus code and example file is also available on the ECI GitLab 
pages [37, 38]
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now has its own Classification Browser [45] in PubChem 
(see Fig.  4) was browsed for suitable suspect lists con-
taining annotation content. Initial efforts concentrated 
on list S60 (SWISSPEST19) [46], a list of pesticides and 
transformation products/metabolites documented by 
Kiefer et  al. [47]. This list contained parent-transfor-
mation product mappings, plus the link to information 
about agrochemical use (since the focus was on pesti-
cides). The list was modified into a “predecessor/suc-
cessor” mapping form (to avoid terminology clashes 
within other sections of PubChem) and added, with full 
provenance, into a new “Transformations” section in 
the individual PubChem records (see Fig.  5). Accompa-
nying statements on “Agrochemical Transformations” 
within the agrochemical sections were also added, for 
example “Folpet has known environmental transforma-
tion products that include Phthalimide, Phthalamic acid, 
and Phthalic acid” [48]. The PubChemLite version cre-
ated 22 May 2020 [49] included these new annotations, 
with fewer missing entries and slightly better ranks (see 
Fig.  3). Since this only focused on the agrochemicals 
(pesticides), the many pharmaceutical (and other) trans-
formation products among the Eawag dataset were still 
missing. While these are all present in MassBank [50] (S1 

in the NORMAN-SLE [51]), this dataset does not come 
with appropriate annotation content or provenance. 
Instead, the Supporting Information from Schollee et al. 
[52] provided suitable parent-TP mappings to create the 
predecessor-successor tables, which was merged with the 
Eawag classification information (with permission and 
support from Juliane Hollender) and added as list S66 
[53]. This collection, together with list S68 HSDBTPS 
[54], resulted in the greater coverage in the June 2020 [49] 
and October 2020 [40] versions (see Fig. 3), with only 16 
missing entries (15 in October) remaining. These remain-
ing 16 entries could not be clearly related to any specific 
NORMAN-SLE lists to add further annotation content at 
this stage; although annotation content is being progres-
sively added in separate efforts—as is evident from the 
one less missing entry in October.

Leveraging annotation content in exposomics
The results presented in Fig. 3 detailed the use of rather 
generic metadata terms (literature counts, patent counts, 
total annotation counts). However, one aim of setting up 
PubChemLite was not only to merge several “useful” cat-
egories for exposomics, but to leverage the information 
within these categories (providing interpretation about 

Fig. 3 The ranking performance of various versions of PubChemLite versus CompTox using the merged benchmarking set (n = 977) with 
comparable metadata terms. Green: without MS/MS information. Blue: with MS/MS information (includes in silico fragmentation and MoNA library 
scoring terms). The increase in top ranks and decrease in missing entries with newer versions shows the influence of additional annotation content 
in PubChem (see Section “Identifying and Filling Gaps in PubChem Annotation Content”). The script and associated data files to reproduce this plot 
are available on the ECI GitLab pages [41, 42]. Figure template from [43]
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Fig. 4 Screenshot of the NORMAN Suspect List Exchange Classification in PubChem (13 August 2020), including (partial) expansions of the S60, S66 
and S68 lists, with the corresponding sections added to individual records indicated in green type

Fig. 5 Transformations section in PubChem for Folpet (CID 8607) from SWISSPEST19 [46]
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candidates in candidates sets). The smallest annotation 
category in PubChemLite, the agrochemicals, was taken 
as an additional benchmarking dataset (1336 chemicals, 
22 Jan. 2020, see Additional file 4) to investigate the influ-
ence of database size and the additional scoring terms 
on the ranking results. Since this was to mimic an envi-
ronmental investigation interested in detecting agro-
chemicals (i.e. a “suspect screening” approach [7]), the 
“agrochemical score”, i.e. how many agrochemical cat-
egories exist in PubChem for that chemical, was used as 
an additional scoring term in MetFrag (details in "Meth-
ods"). The results are shown as the green entries in Fig. 6; 
the exact numbers are given in Additional file 3: Table S3.

With a full PubChem query and using only literature 
and patent information to score, only 58% of entries 
were correctly ranked in first place (which is not unex-
pected, as e.g. pharmaceuticals, industrial chemicals or 
even metabolites with the same mass may have larger 
literature or patent counts). When the database was 
restricted to the candidates in PubChemLite using the 
same scoring terms (literature and patent counts), this 
increased to 70%. However, adding the Agrochemical 
Score improved this further to 79.2 %, demonstrating the 
potential usefulness of individual category-based scor-
ing terms to help select relevant chemicals for further 
verification. In terms of computational efficiency, the last 
101 queries (entries 1236–1336) of the Agrochemicals 
query took 11 min to complete with PubChemLite tier1 

(query run 21 Jan. 2020), while the equivalent query with 
the full PubChem database and scoring terms took 164 
min (query run 26 Jan. 2020). This results in approx. 6.5 
s per query for PubChemLite, versus 97 sec per query for 
a full PubChem query (note: both queries were without 
fragmentation).

Since this is purely annotation-based scoring, it is 
imperative to use additional experimental information 
such as fragmentation information and further verifica-
tion with reference standards before any claims of higher 
confidence annotation are made [11]. To address this, the 
benchmarking dataset (n = 977) used above (with MS/
MS information available) was subset according to the 
availability of information in the Agrochemical Informa-
tion category (creating a subset of n = 318), and evaluated 
with scoring terms relevant to the annotation type, as 
shown in the blue entry in Fig. 6. This mimics, to a cer-
tain extent, a typical suspect screening workflow where 
the main interest is in finding and confirming pesticides 
in an environmental sample. As shown, adding MS/MS 
information (MetFrag in silico fragmentation plus MoNA 
similarity score) increased the correctly ranked chemi-
cals in first place to 90.6% for those agrochemicals that 
were also in the benchmarking set. If the database (in this 
case PubChemLite tier0 12 Jun. 2020 version) had been 
restricted to agrochemicals only this would have risen to 
94.3%, as some non-agrochemical isomers still outscored 
several entries based on the literature and patent values. 

Fig. 6 Green shading: Ranking performance of PubChemLite (14 Jan. 2020) in MetFrag using annotation score alone (no MS/MS information) 
with the Agrochemicals set from 14 Jan. 2020. Top: full PubChem (live query, 22 Jan. 2020 with 102,404,298 compounds). Second: PubChemLite 
tier1 with literature and patent scores and third: with the addition of the AgroChemScore (number of subcategories of agrochemical information 
available). The AgroChemScore is not (yet) available for the full database. Note: missing agrochemical entries are due to the presence of metals in 
some agrochemicals, which are excluded from MetFrag results (see "Methods" for rules applied to create PubChemLite). Bottom in blue shading: 
Ranking performance of PubChemLite (12 Jun. 2020) in MetFrag using topic-specific annotation score plus MS/MS information on the subsets of 
the benchmarking containing agrochemical annotation information. The script and associated data files to reproduce this plot are available on the 
ECI GitLab pages [41, 42]. Figure template from [43]



Page 9 of 15Schymanski et al. J Cheminform           (2021) 13:19  

The performance would not be able to rise much higher 
than 94% with this dataset, however, since there are mul-
tiple agrochemical isomers present in the dataset where 
the less-well-known (but often structurally related) iso-
mers ranked lower because of less supporting metadata. 
For instance, for secbutylazine (CID 23712), the can-
didate terbutylazine, CID 22206 was ranked first and 
secbutylazine, CID 23712 was third, while another iso-
mer propazine CID 4937 was second. All three isomers 
were in the dataset. In this case, both the in silico frag-
menter and MoNA similarity scores captured these three 
isomers in the correct order (secbutylazine first, terbuty-
lazine second, propazine third), showing that the experi-
mental evidence is still crucial in distinguishing isomers 
- or indicating whether they are indistinguishable on 
given evidence. Terbutylazine was correctly ranked first 
for its corresponding entry (see Table 1).

Using this benchmarking dataset alone, taking 
PubChemLite and using the specific topic information 
for agrochemicals, most candidates were ranked 1st and 
the worst rank for a chemical was 3rd. Creating a simi-
lar pharmaceutical subset (as opposed to agrochemi-
cals) using the “DrugMedicInfo” category yielded similar 
results (most ranked first, worst rank of 3rd ) using either 
DrugMedicInfo or PharmacoInfo as scoring terms (see 
Additional file 3: Figure S3). For a more generic category 
such as ToxicityInfo, most were ranked 1st or 2nd, but the 
worst rank was 12, indicating that this term may be less 
selective (see Additional file  3: Figure S3). Using patent 
and literature information alone (over the entire bench-
mark set), the worst rank was 27th, with 11 entries miss-
ing entirely. Thus, even though this dataset is of limited 
size (977 entries), the results indicate that there is a good 
chance that the top candidate will be among the Top 3 
using PubChemLite for highly specific categories such 
as (agrochemicals, pharmaceuticals). On the other hand, 
more candidates will often have to be considered for less 
specific categories or questions (e.g. Toxicity Informa-
tion) or when only the generic scoring terms are used. In 

the context of practical use of HR-MS for answering real 
life questions, e.g. the presence of well-known chemicals 
in environmental or patient samples, considering only a 
few candidates (e.g. 1–3) versus hundreds or even thou-
sands of candidates per mass is a great step forward for 
higher throughput interpretation of non-target screening 
results and coming to meaningful conclusions quicker. 
It is expected that greater granularity in the annotation 
information will improve the interpretability and appli-
cability of this information in the future (for instance 
toxicity information is currently often only “informa-
tion is present” and not “the substance is toxic”); efforts 
are being made to achieve this (beyond the scope of the 
current article). Regular updates/deposition of relevant 
third-party data resources in PubChem such as HMDB, 
CompTox and the Blood Exposome database will help 
ensure that this content can be included and updated in 
PubChemLite.

As a future perspective, the addition of extra informa-
tion, such as partitioning information (e.g. logP, logKow or 
logD) and collision cross section (CCS) values, will also 
help in candidate selection in specific cases (although for 
isobars /isomers that are very similar, predictive values 
will often be very close). Efforts are currently underway 
to include XlogP3 [55] in future versions of PubChem-
Lite to integrate within the retention time model already 
present in MetFrag [26]. Further, an initial version of 
PubChemLite (January 14, 2020 tier1) with CCS val-
ues contributed by CCSbase [56, 57] is also available on 
Zenodo [58] and in MetFrag web version [27] and is cur-
rently being evaluated in separate work.

Conclusions
The need to cover the “entire chemical space” in 
exposomics research is a huge challenge for researchers 
and database resources alike (and currently unachiev-
able – due to our inability to define chemical space 
completely). This article explores the use of annotation 
content of very large compound databases, i.e. compound 

Table 1 Candidate score distributions for three isomers/isobars of formula  C9H16ClN5 in the agrochemical dataset

Values for the correct candidate in each case are italiczed. Only the scores for the top 5 candidates (of 37) are shown

Name (CID) Terbutylazine (22,206) Propazine (4937) Secbutylazine (23,712)

MetFrag Scores 4.96; 3.45; 2.77; 1.93; 1.59 4.46; 3.88; 2.27; 1.81; 1.58 4.96; 3.52; 2.78; 1.92; 1.57

Fragmenter Score 351; 250; 351; 239; 126 247; 295; 251; 170; 106 398; 303; 403; 272; 135

MoNA Similarity 0.959; 0.672; 0.987; 0.0; 0.0 0.638; 0.841; 0.661; 0.0; 0.0 0.971; 0.703; 0.998; 0.0; 0.0

PubMed Count 282; 127; 0; 11; 1 282; 127; 0; 11; 1 282; 127; 0; 11; 1

Patent Count 10,935; 8900; 1990; 6636; 6861 10,935; 8900; 1990; 6636; 6861 10,935; 8900; 1990; 6636; 6861

Annotation Count 5; 5; 4; 4; 5 5; 5; 4; 4; 5 5; 5; 4; 4; 5

AgroChemInfo 5; 4; 3; 3; 3 5; 4; 3; 3; 3 5; 4; 3; 3; 3

Rank 1 of 37 2 of 37 3 of 37
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knowledge bases, to create meaningful and efficient sub-
sets relevant to specific use cases, specifically aimed at 
creating subsets of PubChem most relevant for exposom-
ics. The resulting PubChemLite is a dynamic yet effi-
cient database that grows as the respective (and relevant) 
annotation categories grow in PubChem, and is built and 
deposited regularly to allow integration with existing 
HR-MS identification approaches such as MetFrag [27, 
59] and comprehensive MS workflows such as patRoon 
[60]. The subcategories present in PubChemLite allow 
end users a certain a degree of individual or sample-wide 
interpretation of the results, such that broad chemical 
categories become obvious amongst suggested candi-
dates. These can be used as scoring terms or hard filters, 
depending on user choice, and subsets of the database 
could serve as large suspect lists if desired. PubChemLite 
is already in use in several research projects. Feedback on 
the approach and further integration into other resources 
and workflows is greatly welcomed. Further develop-
ments are being made behind the scenes to streamline 
the ideas presented in this manuscript for the community 
in other ways. The code and all necessary files are availa-
ble (see availability statement), such that expert users can 
build and compile their own subsets of PubChem using 
any of the categories available in the PubChem Table of 
Contents Classification Browser [34] by defining their 
own input “bit sets”.

To address the “data gap” issue of highly-relevant 
compounds missing in existing compound databases 
(a broadly acknowledged weakness and argument fre-
quently applied against using compound databases for 
HR-MS-based tentative identification efforts), this arti-
cle also explores how knowledge gaps can be assessed 
and filled, as exemplified with environmentally-relevant 
information from the NORMAN Network. A coupled 
deposition and annotation workflow has been set-up 
between PubChem and the NORMAN-SLE, allowing the 
deposition of environmentally relevant substances into 
PubChem and the progressive integration of the accom-
panying (relevant) annotation content, with full trace-
ability to the original data sources. The examples covered 
in detail here included transformation product and agro-
chemical use cases. Importantly, these integration efforts 
enhance both resources and help combine knowledge 
into a central location (thus increasing the FAIRness 
of the data) by reducing the isolation of the individual 
NORMAN-SLE lists while increasing the annotation 
(information) available in PubChem. The integration of 
content is occurring progressively with a focus on areas 
of high community interest and on those filling the larg-
est gaps. Community input is very welcome to help focus 
these efforts to maximize the overall benefit. The content 

is available in a variety of formats across both resources 
for re-use.

While PubChemLite is an immediately accessible step-
ping-stone for HR-MS-based exposomics research, it 
is still only a small part of efforts towards a bigger pic-
ture solution for the exposomics challenge. Enhancing 
the annotation content of compound knowledge bases 
is clearly one way of improving the useability of very 
large knowledge bases. Dynamic and easy-to-use ways 
to subset and/or order the chemicals based on this anno-
tation content (beyond creation of a MetFrag-specific 
output file) will be needed to improve the useability 
further. At some point, specialist users will need to be 
able to tell chemical knowledge bases what they want 
to find to improve their search results for their specific 
use case, rather than just taking the “best match” based 
on generic scores such as literature or annotation counts. 
Future efforts, beyond enhancing annotation content, 
will include continuing conversations with users and the 
community to develop functionality that can be applied 
either on the database side, or the workflow side, or both, 
to truly empower large compound knowledge bases for 
exposomics research and move from just identification 
towards more detailed interpretation of HR-MS datasets.

Methods
Creating PubChemLite for MetFrag
MetFrag currently has PubChem integrated via the 
RESTful API as well as a local mirror. Of the typically 
thousands of candidates that are retrieved using exact 
mass (with ppm error margin) or molecular formula que-
ries, several candidates are returned that are eventually 
discarded (e.g. disconnected structures, which cannot be 
observed at the input mass or formula in the mass spec-
trometer, or other structures that cannot be processed by 
MetFrag). Since high resolution mass spectrometry rarely 
yields information on stereochemistry (there are excep-
tions for some substances e.g. when chiral chromatogra-
phy is used), it is the default behaviour of MetFrag and 
many other approaches to merge candidates by the first 
block of the InChIKey (i.e. the structural skeleton) and 
present the users results displaying the stereoisomer with 
the highest score. For candidates merged by InChIKey 
first blocks, any ranking is usually driven by metadata 
rather than fragmentation, which does not usually con-
tain sufficient information to distinguish stereoisomers, 
except for some tautomers. In MetFrag, this stereoisomer 
filtering can be switched on or off as desired. However, 
for larger (or complex) structures, the presence of stere-
oisomers can dramatically inflate candidate numbers and 
reduce calculation efficiency, often for little final gain.
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To create subsets of PubChem by annotation content 
category, firstly a Table of Contents fingerprint (TOC 
FP) was created for each of the PubChem Compound 
TOC entries (each bit representing presence or absence 
of information in that category for a compound) along 
with metadata indicating the relationship between the 
bits (e.g., subcategories of a given annotation). Then, 
mapping files containing the desired TOC entries were 
created. Finally the relevant data (compound informa-
tion, patent and literature scores, plus the TOC finger-
prints) was extracted by the compound identifier (CID) 
from the respective PubChem download files [61] using 
scripts that have been made available at the Environmen-
tal Cheminformatics group GitLab pages [62].

Following this, and considering the current, estab-
lished MetFrag behaviour [26], a set of rules was applied 
to the CIDs extracted from the TOC categories to gener-
ate a file that could be processed by MetFrag. Candidates 
that would be discarded later anyway (e.g. disconnected 
structures or other structures that cannot currently be 
processed by MetFrag) were discarded up front. Further, 
CIDs were collapsed by the first block to have one “best 
matching” CID and mappings to all related CIDs. The 
rules applied were the following:

1. Retrieve all CIDs in PubChem with the desired anno-
tation categories;

2. Map all CIDs to corresponding parent CIDs to obtain 
the neutral form, where available, imputing the anno-
tation to the parent;

3. Collapse by InChIKey first block (IKFB), imputing 
total annotation to the IKFB, retaining the “best” 
CID (the most annotated CID for the given IKFB) 
and listing all related CIDs in a separate column, thus 
grouping all CIDs with annotation available;

4. Remove all entries containing the following elements: 
Kr, Dy, Ir, La, Lu, Nd, Nb, Os, Pd, Pt, Pu, Pr, Re, Rh, 
Ru, Sm, Sc, Ag, Ta, Tc, Tb, Th, Tm, Ti, W, Ac, Am, Er, 
Eu, Gd, Hf, Ho, Xe, Yb, Rn, Sr, Be, Cm, Cf, Cs, Md, 
Pm, Fr, Pa, Np, Bk, Es, Fm, No, Lr, Rf, Db, Sg, Bh, Hs, 
Mt, Ds, Rg, Cn, Nh, Fl, Mc, Lv, Ts, Og;

5. Remove disconnected structures-as these will not be 
observed at the mass/formula of the query;

6. Remove charges from charged molecular formulae 
(but not the corresponding structures).

These rules were selected for maximum efficiency, 
resulting in the following behaviour that should be con-
sidered when interpreting the results. Firstly, collapsing 
all annotated CIDs by IKFB could result in the inclu-
sion of different isotopic states and/or charges, which 
may not be included otherwise in MetFrag queries initi-
ated by exact mass/formula and could otherwise prevent 

these candidates appearing in PubChemLite queries at 
their true exact mass/formula. In the context of efficient 
screening of masses for environmental, metabolomics or 
exposomics studies, matches with differing isotopic states 
are unlikely to be found in large amounts in these studies. 
In the cases that isotopically labelled standards are used, 
or isotopically labelled experiments are performed, other 
data interrogation techniques are usually necessary/rec-
ommended to capture these peaks in advance of iden-
tification efforts. For differing charge states, since these 
are usually accounted for in the upstream workflow by 
adjusting the adduct state, the current behaviour ensures 
a consistent “base state” for adjustment of charge in other 
parts of the workflow. Secondly, mixtures are currently 
discarded from PubChemLite files, as this would require 
an additional degree of manipulation (splitting and re-
merging of the entries), which was not accounted for in 
the current version as this affects < 10K entries - of which 
a significant proportion are salts. It would be possible to 
address both issues in future versions should subsequent 
use cases deem this necessary. Finally, related CIDs are 
only included if that CID contains any annotation in at 
least one of the selected annotation categories. For exam-
ple, the InChIKey first block HXKKHQJGJAFBHI has 6 
related CIDs in PubChemLite tier 0 (14 Jan 2020 version: 
4, 111033, 439938, 446260, 7311736, 44150279), while 9 
CIDs (4, 439938, 446260, 4631415, 7311735, 7311736, 
16655457, 123598986, 140936702) match this InChIKey 
first block in the PubChem search interface (search date 
22 May 2020 [63]).

As PubChem is changing daily, both in terms of 
numbers of chemicals and their annotation content, 
PubChemLite will not remain static. Initial evaluations 
in this paper were done on the first archived versions, 
generated November 18th, 2019 [35], with 640 category 
fingerprints generated on October 2nd, 2019. There were 
approximately 33 M entries with TOC annotations at this 
stage (e.g. 33,766,782 on October 29th, 2019). A second 
archived version, with additional scoring, was created 
January 14th, 2020 [36] for further evaluation. By this 
time the fingerprint consisted of 652 categories (January 
9th, 2020) and there were 35 M entries with TOC anno-
tations (35,800,159 on 21 January 2020). The third major 
version, PubChemLite for exposomics (31 October, 2020) 
was based on a fingerprint of 524 categories (29 October 
2020) and there were 49 M TOC annotations (49,493,641 
on 2 November 2020). A breakdown of these files is given 
in Table 2. These datasets are archived as versions 0.1.0, 
0.2.0 and 0.3.0 on Zenodo [35, 36, 40].

For the November 18, 2019 versions, an “FPSum” was 
calculated for all entries by adding the FP bits to give a 
maximum of 7 (tier0) or 8 (tier1). Individual columns 
for each annotation category were also created, so that 
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the annotation categories could be used via the scoring 
term function in MetFrag, in addition to the patent and 
literature information. The resulting datasets (with pre-
view) are available on Zenodo [35]. For the January 14, 
2020 and subsequent versions, “FPSum” was modified to 
“AnnoTotalCount”, so the column name better reflected 
the content, i.e. the availability of annotation categories 
for that entry. Additionally, individual columns were 
created for each annotation category, filled with values 
calculated by adding the category plus the number of 
subcategories present for that annotation, which ranged 
from 3 to 15 subcategories (Jan. 2020). The resulting 
datasets are on Zenodo [36] and were integrated into 
the dropdown menu of local databases for MetFragWeb 
[27]. PubChemLite was built approx. weekly following 
the January 14, 2020 format to test systems, with two 
versions used in this article to check additional annota-
tion content (see results and [49]). During evaluations, 
it became clear that two additional categories would be 
useful, one being “Identification” (present but previously 
overlooked) and the second being “Associated Disorders 
and Diseases” (not present when PubChemLite was offi-
cially drafted). Based on the evaluations showing little 
difference between tier0 and tier1, one version equiva-
lent to tier1 plus these two additional categories has been 
built and released as “PubChemLite for exposomics” ver-
sion 0.3.0 [40] and integrated into MetFragWeb [27] and 
patRoon [60, 64]. Subsequent updates will be built and 
auto-committed to Zenodo (after passing build checks) 
to allow automatic updates for MetFragWeb [27] and any 
workflows/users of the MetFrag command line (Met-
FragCL) version [59] and other workflows like patRoon 
[60].

Assessing PubChemLite
The performance of PubChemLite was assessed using 
various datasets that were already used to evaluate 
MetFrag performance; CASMI 2016 [16] and Met-
Frag Relaunched [26] (hereafter MetFragRL). The 
CASMI2016 dataset consisted of 208 compound-MS/
MS spectra pairs. The MetFragRL evaluation sets 
consisted of four groups of spectra measured under 

different conditions (datasets EA, EQEx, EQExPlus and 
UF, with n = 473, 289, 310 and 226, where n refers to 
the number of compound-MS/MS spectrum pairs). The 
calculations performed on the individual datasets are 
presented in Additional file 3: Table S1 and Figure S1, 
alongside the previously published results. Since some 
compounds had mass spectra available in both modes, 
and there was some overlap between the different data-
sets, this corresponded to a total of 1298 (MetFragRL) 
and 1506 (MetFragRL + CASMI) compound-MS/MS 
pairs overall. Calculations performed on this set (com-
paring PubChemLite tiers and CompTox) are presented 
in Additional file  3: Table  S2 and Figure S2. For the 
purpose of clarity in the main manuscript, this set of 
1506 was de-duplicated down to a set of 977 unique 
compounds by InChIKey First Block after accounting 
for multiple tautomeric forms, to eliminate any confu-
sion due to the presence of duplicate spectra/modes. 
The MS/MS spectrum record number (the first-match-
ing entry in the case of multiple spectra) was used to 
automatically extract and save the corresponding MS/
MS peaks into the file using an R script, using the MS/
MS spectra provided as SI for the respective stud-
ies, downloaded from the journal pages [16, 26]. As 
all compounds were present in PubChem, additional 
compound information was filled in using PubChem 
web services via R functions. The final benchmarking 
file (hereafter “PCLite Benchmark” set) is available as 
Additional file  2 and on the ECI GitLab pages, along 
with all associated code [62].

The PCLite Benchmark set was used to evaluate vari-
ous versions of PubChemLite (dates: 18/11/2019 [35], 
14/01/2020 [36], 22/05/2020 [49], 12/06/2020 [49] and 
31/10/2020 [40]) as well as the CompTox Chemicals 
Dashboard version from 7/03/2019 archived as Met-
Frag Local CSV (database) files [39, 65]. Files are not 
yet available from the most recent CompTox release 
(but have been requested). The “Select Metadata” ver-
sion of CompTox was used, which contained 857,615 
entries, corresponding to 773,561 DTXCID InChIKeys 
and 773,232 InChIKey First Blocks associated with 
DTXCIDs (the CompTox “MS-ready” form [66] of 

Table 2 The breakdown of the major PubChemLite versions by InChIKey First Blocks (IKFB) and CIDs

18 Nov 2019 14 Jan 2020 31 Oct 2020

Tier0 Tier1 Tier0 Tier1 Exposomics

PubChemLite (by IKFB) 315,842 361,556 316,810 363,911 371,663

Eliminated (by IKFB) 12,056 12,762 11,979 12,682 12,971

Total (by IKFB) 327,898 374,318 328,789 376,593 384,634

Parent CIDs (or CID, if no parent) 377,278 430,246 378,581 432,645 431,067

CIDs with desired annotation 402,746 458,621 405,285 462,356 462,838
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information used in MetFrag). All CompTox files from 
the given release contain the same number of entries, 
just with varying metadata content. All queries were 
run with exact mass plus 5 ppm error, additional scor-
ing terms and other parameters as detailed in Addi-
tional file  3: Table  S4 and in the supporter scripts 
available on the ECI GitLab pages [67].
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