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Abstract 

Numerous ligand-based drug discovery projects are based on structure-activity relationship (SAR) analysis, such 
as Free-Wilson (FW) or matched molecular pair (MMP) analysis. Intrinsically they assume linearity and additivity of 
substituent contributions. These techniques are challenged by nonadditivity (NA) in protein–ligand binding where 
the change of two functional groups in one molecule results in much higher or lower activity than expected from 
the respective single changes. Identifying nonlinear cases and possible underlying explanations is crucial for a drug 
design project since it might influence which lead to follow. By systematically analyzing all AstraZeneca (AZ) inhouse 
compound data and publicly available ChEMBL25 bioactivity data, we show significant NA events in almost every sec-
ond assay among the inhouse and once in every third assay in public data sets. Furthermore, 9.4% of all compounds 
of the AZ database and 5.1% from public sources display significant additivity shifts indicating important SAR features 
or fundamental measurement errors. Using NA data in combination with machine learning showed that nonadditive 
data is challenging to predict and even the addition of nonadditive data into training did not result in an increase in 
predictivity. Overall, NA analysis should be applied on a regular basis in many areas of computational chemistry and 
can further improve rational drug design.
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Introduction
The similarity and additivity principles represent the 
basis of various well-established areas in computer-
aided drug design (CADD) such as Free-Wilson (FW) [1] 
analysis, two-dimensional (2D)/three-dimensional (3D) 
quantitative structure-activity relationship (QSAR) [2], 
matched molecular pair (MMP) [3] analysis, and compu-
tational scoring functions [4, 5]. Similarity and additiv-
ity are often implicitly assumed in CADD approaches in 
order to identify favorable molecular descriptors and pre-
dict the activity of new molecules. Otherwise chemists 

would have to synthesize and biologically evaluate every 
single molecule [6].

Yet, both these principles are subject to frequent 
disruptions. The exceptions to the similarity principle 
often complicate SAR analysis. So-called ‘activity cliffs’ 
refer to structurally very similar compound pairs with 
large alterations in potency [7–14]. Exceptions to line-
arity and additivity occur when the combination of sub-
stituents significantly boosts or decreases the biological 
activity of a ligand [15–19]. Nonadditivity (NA) may 
have several underlying reasons, including inconsist-
ency in the binding pose of the central scaffold inside 
the pocket [20] and steric clashes [21]. Conformational 
changes in the binding pocket such as complete reori-
entation of the ligands alter the free energy of binding 
[15]. Furthermore, many nonadditive ‘magic methyl’ 
cases [13, 14, 22], i.e. attaching a simple alkyl fragment 
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to a ligand that greatly increases the biological activity, 
can be explained by conformational changes as the so-
called ‘ortho-effect’.

Additivity and NA of ligand binding have been stud-
ied for many years [23, 24] and can be perceived as a 
specific kind of interaction between functional groups 
[25, 26]. By analyzing public SAR data sets for strong 
NA (ΔΔpActivity > 2.0 log units) and respective X-ray 
structures, Kramer et al. showed that the cases of strong 
NA are underlined by changes in binding mode [15]. 
Babaoglu and Schoichet applied an inverse, deconstruc-
tive logic to structure-based drug design (SBDD) and 
by studying β-lactamase inhibitors demonstrated that 
fragments often do not recapitulate the binding affin-
ity of the parent molecule [27]. The study of Miller and 
Wolfenden about substrate recognition demonstrated 
that the combination of distinct functional groups shows 
strong nonadditive behavior [28]. The work of Hajduk 
et  al.[29] on stromelysin inhibitors and Congrive et  al. 
[30] on CDK inhibitors showed that molecular affinity 
after combining a certain amount of functional groups 
is much higher than expected. Patel et al. examined vari-
ous combinatorial libraries assayed on several different 
biological responses and concluded that only half of the 
data is additive [4]. McClure and colleagues developed 
a method to determine FW additivity in a combinato-
rial matrix of compounds (when multiple R groups are 
altered simultaneously; combinatorial analoging) and 
they intuitively explained the occurring NA by changes in 
binding mode without any structural validation [18, 19]. 
Water molecules are a major player in ligand−protein 
interactions by participating in extended hydrogen-bond 
networks [31]. Baum, Muley, and co-workers thoroughly 
analyzed the structural data and the reasons behind NA 
at the molecular level [17, 32] showing that NA can be 
the result of entropy and enthalpy profile changes, caused 
by hydrophobic interactions, hydrogen bonding and a 
loss of residual mobility of the bound ligands. In another 
study, Kuhn et al. proposed that internal hydrogen bond-
ing gives rise to NA during compound optimization [33]. 
Gomez et al. explained NA caused by protein structural 
changes upon ligand binding [16]. According to these 
studies, instead of seeing NA as a problem, it should be 
interpreted as a hint towards key SAR features and vari-
ations in the binding modes. Identifying NA and under-
standing the reasons behind it is crucial for rational 
drug design since it provides valuable information about 
ligand-protein contacts and molecular recognition. NA 
analysis helps us to identify potential SAR outliers in 
a data set, ultimately suggesting interesting structural 
properties that might change the course of small mole-
cule optimization. Importantly, NA might also be caused 
by experimental noise.

NA is calculated from so-called double-mutant or dou-
ble-transformation cycles (DTC) [15]. These cycles con-
sist of four molecules, which give rise to four MMPs, and 
are linked by two identical transformations (Fig. 1). The 
nonadditivity of the DTC is calculated based on the mol-
ecules’ individual activities. Would the transformation 
be perfectly additive, the difference in activities would 
result in a value of zero. However, a non-zero value does 
not necessarily indicate nonadditivity. Assuming that 
each measurement among these double mutants contains 
experimental uncertainty, the experimental noise might 
add up and result in false nonadditive cases. Therefore, it 
is critical to distinguish real NA from assay noise.

Extensive work on experimental uncertainty and NA 
has been carried out by Kramer et al. [6, 15, 34–36]. For 
homogeneous data an experimental uncertainty of 0.3 
log units was established, while heterogeneous data has 
a higher experimental uncertainty of 0.5 log units. In 
their publications regarding NA they created the statis-
tical framework to systematically analyze NA. Kramer 
first developed a general metric and afterwards created 
an open-source python code to quantify NA, available on 
GitHub [6].

Despite the clear need for NA analysis it is generally not 
incorporated in classical QSAR applications and publica-
tions. NA clearly creates difficulties for linear SAR analy-
sis approaches, such as standard MMP and FW analysis. 
These classical QSAR models will not work if the effect of 
introducing group R1 in the molecule is influenced by R2 
or R3 [4].

Apart from classical CADD approaches, many machine 
learning (ML) and deep learning (DL) techniques became 
popular and are applied to a diverse range of questions—
from generation of new molecules [37–40], to predicting 
binding affinities [41–49] and retrosynthesis predictions 
[50–53]. As shown recently by Sheridan et  al. activity 

Fig. 1 Schematic depiction of a double-transformation cycle 
consisting of four molecules. These four molecules are linked by two 
transformations: First changing yellow to magenta square and second 
changing light blue to dark blue circle. Nonadditivity is calculated 
using the compounds’ activities  pAct1-4
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cliffs are a problem for QSAR models and are limiting 
their predictivity [54]. Thus, the question arises: How 
much are those methods influenced by NA? When activ-
ity data is used for the model training, NA might cause 
problems that are currently not considered adequately.

In this work we show a systematic analysis of AZ 
inhouse and public ChEMBL physicochemical and bio-
logical data with the aim to quantify and compare NA 
in assays and compounds in public and inhouse data. 
Nonlinear events occur in 57.8% of all the AZ inhouse 
and in 30.3% of all public assays, indicating the need for 
constantly integrating NA analysis in drug discovery pro-
jects and understanding the structural reasons behind it. 
Additionally, we trained ML models to evaluate the pre-
dictability of nonadditive data and could show their poor 
performance in all trained models.

Methods
NA analysis code
The open-source NA analysis code provided by Chris-
tian Kramer was used in this study (available on GitHub: 
https:// github. com/ Krame rChri stian/ Nonad ditiv ityAn 
alysis) [6]. The code is written in Python making use of 
the cheminformatics libraries RDKit [55] as well as Pan-
das and NumPy. NA calculations are based on MMP 
analysis (upon the assembly of double-transformation 
cycles (DTC)), using an open-source code developed 
by Dalke et  al., [56] which is an implementation of the 
MMPA algorithm by Hussain and Rea [3]. DTCs are 
assembled from four molecules, forming four MMPs, 
which are connected by two identical chemical trans-
formations. The number of DTCs assembled per test 
depends on the size of the test. Nonadditivity values are 
calculated as difference in logged biological activities of 
the four compounds assembling the DTC  (pAct1-4):

Nonadditivity analysis is performed for each assay 
independently.

Data sets
In this study both public and inhouse data are analyzed in 
order to compare the occurrence of NA. By understand-
ing both types of data valuable information can be con-
cluded for CADD projects.

ChEMBL data set
Assay data was downloaded from ChEMBL version 
25 (accessed Feb. 6, 2020) [57]. A ChEMBL target con-
fidence score of at least 4 (confidence range from 0 to 

��pAct =

(

pAct2 − pAct1
)

−

(

pAct3 − pAct4
)

9 based on available target information) was set as a 
threshold, resulting in 15,504,603 values.

AstraZeneca inhouse data set
All assays with an existing target gene ID were 
extracted from the internal AZ screening and test data-
base (38,356 IT assays run from 2005 until 2020 across 
all AZ sites, accessed September 13, 2020).

Data curation
Molecules were standardized with PipelinePilot (Addi-
tional file  1: Figure S1) including standardization of 
stereoisomers, neutralization of charges, and clearing 
of unknown stereoisomers. This step was followed by 
the enumeration of tautomeric forms and selecting the 
canonical tautomer with PipelinePilot. The same sub-
sequent filtering steps were employed for both datasets 
using a Python script to make inhouse and public data 
comparable (Fig. 2). The filtering steps were the follow-
ing: (1) All endpoints, suitable for NA analysis, were 
selected based on assay description. (2) Measurements 
without values as well as uncertain, i.e. qualified data 
with either “<” or “>” sign, and negative values were 
removed. (3) Only measurements with a defined unit 
(M, mM, μM, nM, pM, or fM) were kept. (4) The activ-
ity values were converted to the negative logarithm of 
the activity—pActivity (pAct) and unrealistic values, 
i.e. lower than 10 pM or higher than 10 mM, were dis-
carded. Cases where the measurement was given as 
pActivity (e.g.  pIC50) but had an indicated unit were 
discarded. (5) All compounds with multiple measure-
ments in one assay, where the difference between the 
minimum and the maximum measurement was larger 
than 2.5 log units, were removed. For those kept, the 
median of the logged activity values was calculated. 
Only compounds with large measurement differences 
were removed, the assay itself was kept. (6) All com-
pounds with different IDs and the same simplified 
molecular-input line-entry system (SMILES) strings 
were filtered out and only the compound with the high-
est activity value was kept. (7) The molecular size was 
restricted to 70 heavy atoms (atomic number > 1). (8) 
Last, small assays with less than 25 compounds were 
removed.

Data selection for QSAR models
The data sets for ML study were extracted from ChEMBL 
(Table 1). Public assays were chosen from the NA analy-
sis of the ChEMBL data set that had (1) NA output, (2) 
>200 compounds, (3) >25 double-transformation cycles 

https://github.com/KramerChristian/NonadditivityAnalysis
https://github.com/KramerChristian/NonadditivityAnalysis
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(DTC) per assay in order to observe the effect of NA on 
ML model performance.

Data curation was conducted with the Jupyter note-
book (available on https:// github. com/ Molec ularAI/ 
Nonad ditiv ityAn alysis) and molecules were standardized 
with the included RDKit standardization code.

Each assay file contains: Compound IDs, SMILES, 
pActivity values, number of occurrences in DTCs, and 
an absolute NA value per compound (Additional files 2, 
3, 4). An NA value above 1.0 log unit is considered to be 
significant, since this is double the expected experimental 
uncertainty for heterogeneous data. Additionally, a differ-
ence larger than 1.0 log unit indicates a divergence from 
perfect additivity by more than 10-fold.

QSAR model building with Optuna
In order to build ML models, an automatic extensive 
hyper-parameter optimization tool, Optuna [58], was 
employed for each of the three selected ChEMBL data 

sets separately. Herein the optimization strategy is based 
on surrogate models, which is supposed to be superior 
to random or grid search. In order to analyze the effect 
of NA on ML performance Random Forest models were 
trained. In addition, a linear model (partial least square-
PLS) was chosen as a base-line and is expected to per-
form worse for non-linear relationships than the RF 
model. RF is often considered as a base-line algorithm, 
being robust against over-fitting, while SVMs often push 
performance a bit further than RF [59]. The linear PLS 
model and a nonlinear SVM model using the default 
radial basis function (RBF) kernel were trained for one 
of the selected ChEMBL data sets (ChEMBL1614027) to 
assess their relative performance to the RF models. All 
models were trained using the scikit-learn framework 
[60].

The models are trained to predict the compounds’ 
 pIC50 value of the selected data sets. This problem is 
often tackled using a binary classification into active/

Fig. 2 The data curation process of public ChEMBL25 data representing number of measurements after each cleaning step

Table 1 Description of ChEMBL assays selected for QSAR models

ChEMBL assay ID # Cpds # Cpds with significant 
NA (%)

# DTC # unique cpds in 
DTC

# DTC with significant 
NA (%)

ChEMBL 
Version 
(access date)

1613777 3497 153 (4.38) 4333 1261 867 (20.01) 26 (06/20/2020)

1613797 6219 64 (1.03) 4523 701 694 (15.34) 27 (08/26/2020)

1614027 2876 76 (2.64) 4086 941 486 (11.89) 27 (08/26/2020)

https://github.com/MolecularAI/NonadditivityAnalysis
https://github.com/MolecularAI/NonadditivityAnalysis


Page 5 of 18Gogishvili et al. J Cheminform           (2021) 13:47  

inactive compounds. However, the underlying problem 
is a regression and thus regression models were used 
for prediction of  pIC50 values. In addition, the data has 
been binarized (based on a threshold of 5 for the pIC50 
response value) to assess general model performance in a 
classification scenario. For all models 500 trial runs were 
performed using a 5-fold cross-validation to avoid over-
fitting. We used ECFP6 counts (as implemented in REIN-
VENT [39]), which is a circular fingerprint with radius 
3. This type of fingerprint captures the circular neigh-
borhood of an atom and thus represent the presence of 
certain substructures. Using counts enables capturing the 
number of times the substructure is present in a mole-
cule. The reported metrics for the regressors are  R2 and 
RMSE as implemented in scikit learn.

Model training protocol
The following protocol was applied to ChEMBL data for 
training RF, SVM and PLS models. Herein, additive data 
refers to those compounds that had NA below the experi-
mental uncertainty cut-off of 1.0 log unit and were thus 
not significant.

Models were trained based on different data selection 
strategies. First, compounds were considered that occur 
in DTCs (‘DTC-split’). For those compounds, their NA 
value is known and they can be classified as either addi-
tive or nonadditive. Second, we formed a data set based 
on all compounds (‘all-split’), in which compounds that 
are not in DTCs are assumed to be additive. For the first 
two selections further separation into training and test 
data is based on stratified splitting with 80% training and 
20% testing, herein, only additive data is used for training, 
while different test sets are compiled consisting of addi-
tive or nonadditive data. Third, a splitting strategy was 
applied to construct the training data consisting of A or 
B compounds, while the testing data contained AB com-
pounds (‘A-B-AB-split’). For this third set the informa-
tion from the DTCs was leveraged to assign compounds 
to either training or test set. This splitting strategy was 
once applied using DTC data only and once adding those 
compounds, for which no DTC information is available. 
Due to a random starting point of assigning compounds 
to the additive test set, this strategy was performed twice 
using two different random seeds (4 and 7) in order to 
exclude the starting point being responsible for the per-
formance of the model. For further information on the 
selection see Additional file 1 ‘A-B-AB splitting strategy’.

For all three data splits the following model training 
and testing strategy was applied:

 (1.1) Optimization of hyper-parameters based on the 
training set (80% additive observations) with 

5-fold cross-validation (i.e. mean performance of 
5 models trained on 80% of the training set).

 (1.2) Train final model on all of the training set using 
the best hyper-parameters from (1.1).

 (1.3) Prediction of test sets
 DTC-split and all-split: predict two test sets – the non-

significant test (20%), i.e. additive data only and 
the significant hold-out sets (all significant obser-
vations), i.e. nonadditive data only.

 A-B-AB-split: predict the non-significant AB test (20%), 
the significant AB test set, all remaining signifi-
cant compounds not assigned as AB, and (if all 
data considered) the non-significant test (20%). 
Three tests sets are used for DTC data, four test 
sets for all data.

 (1.4) Use  R2 and RMSE to quantify performance.

Binary classification

 (2.1) The predictions from (1.3) were dichotomized 
(threshold based on pActivity: 0 if pActivity < 5, 
1 if pActivity > 5) and then compared to the true 
class (same threshold).

 (2.2) Matthews correlation coefficient (MCC from 
scikit learn) is used to quantify performance. 
MCC is used due to several advantages for binary 
classification problems [61]: The MCC score is 
guaranteed to be between − 1 (anti-correlation) 
and 1 (perfect correlation), with 0 being the 
worst possible score, i.e. random. It takes into 
account the complete confusion matrix and thus 
provides a better balance between the different 
categories.

"Mixin" models
The effect of NA data during training and on the model 
performance on the test data was analyzed by adding 
increasing fractions of NA observations in the respec-
tive training sets (see Results). Therefore, we have trained 
models as described above and investigated whether the 
model performance changes by analyzing MCC values 
and confusion matrices. We used the hyper-parameters 
established earlier for the respective datasets.

Overall, for each selected ChEMBL data set 12 RF 
models were trained (Additional file  1: Table  S1). For 
ChEMBL1614027 a PLS and SVM approach was trained 
additionally for the DTC-split.
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Results
The curated ChEMBL dataset contains 13,620 unique 
assays, 799,860 unique compounds and in total 3,625,044 

measurements (Fig.  2), while the AZ inhouse data set 
consists of 6277 unique assays, 1,232,555 unique com-
pounds and in total 5,801,969 measurements.

Most compounds (85%) in AZ assays have been meas-
ured more than once (Table 2), which is not the case for 
ChEMBL data (5%). This must be considered during the 
differentiation of true NA from experimental noise. It 
is, indeed, easy to detect strong NA, although weak NA 
can be easily confused with the experimental uncertainty. 
On the other hand, if the experimental noise is overes-
timated, potentially significant cases will be ignored and 
not considered for compound optimization. Therefore, 
it is critical to set the right threshold for experimen-
tal noise, since as mentioned before, it impacts the NA 
value twice as much as an individual biological meas-
urement. Considering our data and the studies carried 
out by Kramer et al. regarding experimental uncertainty 
of public and inhouse data sets [34–36] 0.3 and 0.5 log 
units were used as thresholds for AZ and ChEMBL data 
respectively. Consequently, the NA values above 0.6 (AZ) 
and 1.0 (ChEMBL) log units were considered significant.

Nonadditivity analysis
Figure 3 shows all observed NA of both AZ inhouse and 
ChEMBL data sets. The sign of the NA value depends on 
the order of the molecules within the double-transforma-
tion cycles (DTCs). Consequently, the raw data obtained 
after running the NA analysis contains both positive and 
negative values (Fig. 3). Negative values have afterwards 
been converted to absolute values. Most of the NA cases 
can be explained with the experimental noise (Fig.  3). 
Especially the major peak in the AZ and ChEMBL data 
are fully covered by the normal distribution expected 

Table 2 The numbers describing both curated AZ inhouse and 
ChEMBL datasets along with the output of NA analysis

Nof: number of, cpds: compounds, DTC: double-transformation cycles
*  Significant NA: 0.6 log units for AZ inhouse data, 1.0 log units for ChEMBL data
#  Strong NA: > 2.0 log units

AZ ChEMBL

Nof

 Measurements 5,801,969 3,625,044

 Cpds measured more than once (%) 85.8% 5.1%

 Curated assays 6277 13,620

 Unique cpds 1,232,555 799,860

 Assays with NA 4030 7534

 Assays with significant NA 3628 (57.8%) 4128 (30.3%)

 Assays with NA* 3081 (49%) –

 Assays with strong NA# 1509 (24%) 1237 (9.1%)

 Unique cpds showing significant NA* 114,862 (9.4%) 40,798 (5.1%)

 Unique cpds showing strong NA# 5767 (0.5%) 8572 (1.1%)

Median nof

 Unique cpds per assay 233 35

 Unique cpds per assay with NA output 490 39

 DTC per assay with NA output 63 13

 Unique cpds per assay with significant 
NA*

562.5 43

 DTC per assay with significant NA* 88.5 23

 Unique cpds per assay with NA* 662 –

 DTC per assay with NA* 133 –

 Unique cpds per assay with strong NA# 1093 52

 DTC per assay with strong NA# 423 43

Fig. 3 Theoretical NA distribution expected from an experimental uncertainty of a 0.3 and b 0.5 log units (grey lines), and observed NA distribution 
for all a AZ (yellow) and b ChEMBL (blue) assays, density = normalized count so that the area sums to 1
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from 0.3 and 0.5 log units of the experimental uncer-
tainty respectively. A significant amount of DTCs not 
explainable by experimental uncertainty can be identified 
from the tail distributions.

According to Fig. 3 both AZ and ChEMBL NA distri-
butions seem normal. However, the kurtosis, which is a 
measure of ‘tailedness’, is significantly large in both data-
sets (Table 3) and both fail the Kolmogorov-Smirnov [62, 
63] tests for normality. Both AZ inhouse and public out-
put of NA analysis is similar, yet undersampled in case 
of ChEMBL. Importantly, with the selected cutoff for 
experimental uncertainty of 0.5 based on previous analy-
sis by Kramer et al. [6, 15, 34–36], NA events occur less 
often in public data than in inhouse data. Based on this, 
one might assume that nonlinear events are rare in pub-
lic data and can be disregarded. However, the pattern of 
nonlinear observations in AZ data sets suggests that it 
must be considered more carefully and structural rea-
sons must be thoroughly investigated since they might be 
hinting towards important structural features.

In order to compare the distribution of NA in two 
groups, two tests have been performed: (1) Kruskal-
Wallis H Test [64], that does not have the assumption 
of normality, testing the null hypothesis that the popu-
lation median of both of the groups is equal; (2) Mann-
Whitney U tests [65] have been employed to test the 

null hypothesis that it is equally likely that a randomly 
selected measurement from one group of observations 
will be less than or greater than a randomly selected 
measurement from the second group of observations. 
According to the obtained results from both tests, the NA 
value distribution in AZ and ChEMBL data sets are not 
different from a given level of confidence (p-value = 0.07).

Importantly, public data has a larger number of assays 
with fewer measurements and unique compounds 
(Table  2). The number of assays showing significant 
NA in ChEMBL data is lower (30.3%, higher than 1 log 
unit) than in AZ inhouse data (57.8%, higher than 0.6 
log units). However, ChEMBL assays, in general, contain 
fewer compounds, therefore the number of DTCs and 
hence the chance of a strong NA occurring is lower.

Less than half of the assays (41.7%) in AZ screening and 
test database are either additive or no DTCs were assem-
bled (Fig.  4a). This number is higher in public bioactiv-
ity data (69.7%, Fig.  4b), which can be explained by the 
higher threshold of experimental noise and smaller assay 
sizes. Remarkably, 24% of all AZ inhouse assays show 
strong NA (above 2 log units), whereas in ChEMBL bio-
activity data strong NA is observed in 9.1% of all assays. 
Yet, various virtual screening studies depend on public 
datasets and it is crucial to take NA into account whilst 

Table 3 Descriptive statistics of NA distribution in AZ inhouse and ChEMBL data sets

Note that all NA values have not been converted to absolute values prior to these calculations

Observations Mean Variance Std Skewness Kurtosis

AstraZeneca 3,053,055 0 0.42 0.65 0 3.13

ChEMBL 1,246,975 0 0.46 0.68 0.01 4.52

Fig. 4 NA distribution among all curated assays from AZ inhouse (a) and public ChEMBL (b) data sets
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judging the performance of predictive models since 1 out 
of 10 assays might not be additive.

Besides the number of assays, NA can also be analyzed 
for DTCs. On average one out of four and one out of 
ten DTCs is not additive for AZ inhouse and ChEMBL 
data respectively (Fig. 5a and b). The distribution of NA 
among DTCs shows significant NA up to 2 log units indi-
cating a gradual decrease in the number of cycles with 
the increasing NA value (Fig. 5c and d).

Out of all compounds 9.4% from AZ and 5.1% from 
ChEMBL data sets show a significant NA shift (Fig. 6). As 
mentioned before, assay sizes and different thresholds for 
the experimental uncertainty influence these numbers.

Bioactivity assays from ChEMBL have a smaller num-
ber of compounds and a lower number of DTCs per 
assay. Yet, Fig.  7a and b show the shifted distribution 
of the compounds occurring in double-transformation 
cycles per assay. Surprisingly, there are more than a 

Fig. 5 NA distribution for all DTCs among curated assays from AZ (a) and ChEMBL (b) data sets. c NA distribution of DTCs showing significant NA 
score (from 0.6 to 2 log units) in AZ (c) and (from 1 to 2 log units) ChEMBL (b) bioactivity data

Fig. 6 NA distribution among all unique compounds from AZ (a) and ChEMBL (b) data sets
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hundred assays in public data sets in which almost all 
compounds participate in the assembly of DTCs. This 
might be due to very small structural variations of 
tested molecules. AZ inhouse assays tend to be more 
diverse. Ultimately, testing more compounds results in 
a lower percentage of unique molecules showing NA. 
Even though the median number of DTCs is higher in 
AZ assays, the number of compounds tested in these 
data sets is also larger, resulting in a relatively lower 
ratio.

NA distribution according to the number of com-
pounds in assays (Fig. 8) indicates that most of the assays 
in the AZ database contain up to 20,000 compounds and 
generally smaller assays show higher NA. On average, 
ChEMBL assays are smaller (Table  2), although several 
large assays vary in size resulting in a more spread out 
pattern (Fig. 8). Herein, highest NA values occur in both 
small as well as large assays (Additional file 1: Figure S2). 
Furthermore, the density distribution of all assays shows 
the assembly around the experimental uncertainty.

Fig. 7 a Distribution of the compounds in DTC. b Distribution of the compounds showing a significant NA shift per assay, density = normalized 
count so that the area sums to 1

Fig. 8 Density distribution of the assays showing significant NA from AZ (a) and ChEMBL (b) based on the average NA and the number of 
compounds in each assay
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CHEMBL1794483 is the largest bioassay obtained from 
CHEMBL25 (Additional file 1: Figure S2). Initial data of 
the quantitative high throughput screening for the inhibi-
tors of polymerase Iota contains 115,311 measurements, 
33,777 DTCs have been assembled with an average NA 
score of 0.44. The NA distribution is almost entirely cov-
ered by the theoretical normal distribution expected 
from the experimental noise of 0.5 log units (Fig.  9a). 
The assembled DTCs contain 24,238 compounds and the 
average additivity shift for each compound is depicted 
in Fig. 9b. In general, it is impossible to point out which 
molecule causes the NA in a given DTC without fur-
ther structural information. If the compound occurs in 
many DTCs with high average NA shift (always with sig-
nificantly low or high potency), it indicates either a plain 
error, i.e. a wrong measurement, or structural properties 
that drastically increase or decrease the compound’s bio-
logical activity.

Figure 10 shows the DTC from CHEMBL1794483 assay 
with one of the highest NA scores. If the SAR was per-
fectly additive then the removal of isopropyl group and 
attaching the benzyl group should have resulted in a 
significant increase of the potency, yielding pActivity of 
8.35. Instead, the activity of the fourth compound even 
decreased and is lower than compound 1.

QSAR model evaluation
In the second part of the results, the influence of NA on 
ML performance will be analyzed. Herein, three differ-
ent ChEMBL assays (Table 1, Additional file 1: Figure S3) 

were used to analyze the following aspects: (1) Can NA 
compounds be correctly predicted from a model based 
on additive data? (2) Does the integration of NA data into 
training increase model performance?

The data sets for the second question were constructed 
based on the median number of compounds with NA 
observations (Fig. 11). Thus, three sets were constructed 
for each ChEMBL assay containing Q1 (0.6%), median 
(1.3%) and Q3 (2.6%) of NA compounds. The NA 

Fig. 9 a Theoretical NA distribution expected from an experimental uncertainty of 0.5 log units (grey line), and an actual NA distribution for 
CHEMBL1794483 assay (blue), density = normalized count so that the area sums to 1. b The average additivity shifts per compound and the 
standard deviation of the shift for the CHEMBL1794483 assay. Black lines show the confidence interval (CI = 95%) indicating the area where the 
compounds should appear in case of additivity given the selected threshold of experimental uncertainty (0.5 log units in this case)

Fig. 10 The DTC from CHEMBL1794483 assay with one of the highest 
NA score (4.35)
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compounds were selected using a stratified split. The NA 
hold-out set was constructed form the Q3 (2.6%) split, i.e. 
all models were evaluated on the same subset of observa-
tions to ensure comparability of performance.

In order to check that any difference in performance is 
not purely due to a different biological/chemical space, 
two aspects were checked: (1) the coverage of pIC50 
values between additive and nonadditive (Additional 
file 1: Figure S3) and (2) the similarity between the com-
pounds (Fig. 12). The similarity of nonadditive and addi-
tive compounds, measured by tanimoto similarity using 
ECFP6, overlaps well, which would be expected, since 
they are related by MMPs. However, the remaining assay 
data, where no DTC can be constructed, is significantly 

different from the additive data. The range of  pIC50 over-
laps well for all three data sets in all three assays.

DTC‑split and all‑split model performance
Based on the automatic hyper-parameter training using 
Optuna, individual RF models were generated for each 
of the three selected ChEMBL assays (Additional file  1: 
Tables S2–S4). Additionally, a linear model (PLS) and 
a SVM was trained for ChEMBL1614027 (Table  4 and 
Additional file 1: Table S2). The model performance met-
rics show that the RF model build using DTC-split per-
forms best. Herein, the  R2 for the cross-validation on the 
training data is significantly better for RF with the lowest 
RMSE. The performance on the additive test set differs 
only slightly between all three models. The good per-
formance of PLS in this case can be explained with the 
additivity of this test data, thus also a linear model would 
be expected to perform well. All models are significantly 
worse for the nonadditive test data, with PLS being the 
worst. A binary classification after prediction of the  pIC50 
values results in a minor improvement of MCC for SVM 
compared to the RF model. Interestingly, the overall per-
formance for both training and additive test set decreases 
when all data (all-split) is used for training the models. 
For the NA set only a minor improvement in RMSE val-
ues can be observed, while overall the model is still non-
predictive for this data set, i.e. negative  R2 and an RMSE 
> 1.2.

Both RF and SVM show similar test set performances 
for ChEMBL1614027, while SVM performance was 
more volatile to the actual choice of hyper-parameters 
(Table  4, Additional file  1: Figure S4). While the RF 
model built with DTC-split data for ChEMBL1614027 
and ChEMBL1613777 performed well on 

Fig. 11 Distribution of NA compounds (%) and the number of DTCs 
(%) in ChEMBL assay that show NA, density = normalized count so 
that the area sums to 1

Fig. 12 Overlay of tanimoto similarity distributions for additive data (green), nonadditive data (yellow) and non-DTC data (red). For each compound 
the maximum Tanimoto similarity to any other compound was calculated using ECFP6, excluding its identity. For both other data sets, i.e. 
nonadditive and non-DTC data, the similarity was calculated against the additive data, density = normalized count so that the area sums to 1
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Fig. 13 Correlation plots with RF predictions for all three ChEMBL assays based on DTC-split model 1
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training and additive test sets, it performed rather badly 
for ChEMBL1613797 with  R2

train = 0.66 and  R2
A-test = 0.05 

(Fig. 13, Table 5), indicating that this set is very difficult 
to learn. Importantly, for all three assays the performance 
on NA test data consistently dropped. In addition to the 
drop in correlation between experimental and predicted 
data the predicted error (RMSE) increases for all NA data 
sets.

The same drop in performance on the training and 
additive test sets when including all assay data (all-split) 
can be seen for ChEMBL1613777 but not for the already 
bad performing ChEMBL1613797 (Additional file  1: 
Tables S3 and S4).

Furthermore, a binary classification of the predicted 
values was done and the MCC was calculated as well as 
confusion matrices generated. Both show that it is much 
harder to accurately predict the NA test sets (Tables 4, 5, 
Additional file 1: Figure S5).

A‑B‑AB‑split model performance
The hypothesis for splitting assay data into A-B-AB was 
that it might be easier to predict compounds, if they were 
not distributed randomly into test or training set, but by 
using the information from the DTCs, i.e. A and B con-
tain information about both transformations for com-
pound AB.

The splitting into different compound sets leverag-
ing the information from DTCs resulted in an increased 
model performance for ChEMBL1614027 on the addi-
tive test set but a drop in performance for the NA test 
set in combination with an increased RMSE (Additional 
file  1: Table  S2). This was observed for both DTC data 
only as well as models built with all assay data included. 
For ChEMBL1613777 the models performed similarly 
well on all test sets with DTC data only (Additional file 1: 
Table  S3). Using all assay data, the model performance 
on the additive AB test sets increased significantly, while 
the performance for the NA test sets did not change. The 
already bad performing model for ChEMBL1613797 did 

not improve at all using the A-B-AB-split (Additional 
file 1: Table S4).

Mixin model performance
In a subsequent test, NA data was added to the training 
set to evaluate whether this could improve the predic-
tion for NA data. For these "mixin" trials, it appears that 
for all ratios and all assays there is no significant differ-
ence in performance, neither for the performance on the 
predicted  pIC50 values evaluated by  R2 and RMSE nor 
for the binary classification evaluated by MCC (Table 6, 
Additional file 1: Tables S2–S4, Figure S6). This might be 
either because it is difficult learning from those examples 
or because they are too few in number in order to impact 
the performance significantly.

Discussion
The project aimed to analyze the occurrence of NA in 
public and inhouse data and its influence on machine 
learning performance.

One of the biggest challenges during this process is the 
data pre-processing to make both sets comparable. Thus, 

Table 5 RF model performance measures based on DTC-split model 1 and all-split model 5

Bold values are best performance measures across DTC-split and All-split

Train  R2 is based on 5-fold cross validation results
* Additive test data
# Nonadditive test data

ChEMBL data Train  R2 (RMSE) Test  R2 (RMSE) Test MCC

A* NA# A* NA#

1613777 DTC-split 0.91 (0.17) 0.56 (0.44) − 0.43 (1.30) 0.48 0.02
All-split 0.64 (0.47) 0.22 (0.68) − 0.34 (1.25) 0.34 0.00

1613797 DTC-split 0.66 (0.22) 0.05 (0.41) − 0.29 (1.14) 0.45 − 0.03

All-split 0.43 (0.45) 0.05 (0.58) − 0.31 (1.11) 0.07 0.00

Table 6 Performance measures for binary classification of mixin 
models, Q refers to relative quantity of NA compounds added to 
the training data

*  Test set size for Q0 differs from Q1/Median/Q3.

ChEMBL data RF (MCC for test)

Q0 (0.0%)* Q1 (0.6%)* Median 
(1.3%)*

Q3 (2.6%)*

1613777 DTC-split 0.02 0.04 − 0.04 0.02

All-split 0.00 0.04 − 0.05 − 0.02

1613797 DTC-split − 0.03 0.07 0.20 − 0.12

All-split 0.00 0.00 0.00 0.00

1614027 DTC-split 0.28 0.28 0.28 0.20

All-split 0.22 0.04 − 0.05 0.11



Page 15 of 18Gogishvili et al. J Cheminform           (2021) 13:47  

additional cleaning steps were applied to ChEMBL bioac-
tivity data, such as filtering by the target confidence score 
to increase the data reliability. The final ‘cleaned’ dataset 
depends on the experience and decision-making of the 
researcher to correctly choose which assays are compat-
ible with the analysis.

The size restriction of the molecules was based on the 
structural transformations and similarities, the upper 
limit of the molecular size included and exchanged dur-
ing the transformations must be set carefully. In this 
study, a maximum of 70 heavy atoms and the transfor-
mation of a maximum 1/3rd of the molecule were used. 
Without having these limitations, the following issues 
may arise: (1) large molecules, such as peptides are not 
compatible with the NA analysis since it is impossible to 
track small functional groups; (2) performing calcula-
tions on large molecules is computationally expensive; (3) 
cases where the functional group represents too large a 
proportion of the molecule will most likely result in NA 
since almost the whole compound is transformed and the 
corresponding binding mode is more likely to change.

In addition to the size restrictions of molecules, lim-
iting assay size after all the data-cleaning steps is also 
crucial. On one hand, small assays should be discarded, 
because there is a lower probability of DTCs assembling. 
In this research project, 25 was set as the lowest number 
of unique compounds per assay. Since most of the assays 
are small (half of the measurements in both inhouse and 
public data sets were concentrated in a few hundred 
assays only), it also influences the general statistics result-
ing in no NA output. One might argue that the majority 
of the assays are additive, however, most of them are too 
small to draw any meaningful conclusions regarding their 
NA.

According to the results, significant nonlinearity occurs 
once in every second assay in AZ inhouse and once in 
every third biological and physico-chemical assays in 
ChEMBL databases. Importantly, significant nonadditive 
events are less frequent in public data sets. The reasons 
for this can be: (1) potential bias in reporting single series 
or positive SAR results; (2) the smaller size of public bio-
activity assays, resulting in less DTCs; (3) a higher thresh-
old of the experimental uncertainty for the entire data, as 
some assays have significantly higher experimental noise. 
An additional influence is the reliability of the compound 
measurements. Since in the inhouse database a majority 
of compounds is measured several times in each assay 
the measurements are more reliable. This is not the case 
in the public data sets, where only 5% of the compounds 
are measured more than once in each assay.

Prior to the analysis, it is crucial to carefully set the 
thresholds for the experimental noise to point out true 
NA cases. Strong NA stands out from the rest of the data 

and it is easy to spot, while weaker NA is usually blended 
with the experimental noise. As described by Kramer 
et al. [6]. NA analysis can estimate the upper limit of an 
experimental uncertainty for specific biochemical assays, 
which is crucial in differentiating true NA from the assay 
artefacts. However, it is less straightforward to select 
the threshold for large data. While experimental noise 
among most of the inhouse assays might be 0.2 log units, 
there are still some assays with larger errors. The problem 
with the higher limits of the experimental noise is the 
higher amount of insignificant NA cases. By choosing 0.5 
log units for public data, we potentially cover all the assay 
artefacts, still, we might have ignored potentially true NA 
cases.

Based on three showcases, we elucidated the impact 
of NA data in QSAR models and how well NA com-
pounds can be predicted by those models. Herein, 
ChEMBL1613777 and ChEMBL1614027 achieve good 
generalization during training the models as shown by 
high cross validation  R2 values. ChEMBL1613797 assay 
data on the other hand proved to be difficult and the 
models do not generalize well. Thus, main conclusions 
are drawn from results based on ChEMBL1613777 and 
ChEMBL1614027. A clear trend for all three selected 
assays was a bad prediction of NA compounds independ-
ent of the models’ training performance. This observation 
remains true for different selection of training data, i.e. 
only based on compounds occurring in DTCs or based 
on all assay data. Employing a different splitting strat-
egy (A-B-AB-split) by leveraging the information from 
DTCs resulted in a better performance for additive com-
pounds but no or a slight drop in performance for NA 
compounds. The reason for this might be that the model 
learns the additivity from compounds A and B. Thus it 
can only predict compound AB correctly, if the additivity 
assumption holds true. If, however, compound AB dis-
plays an unexpected change in affinity, i.e. the compound 
is nonadditive, the model has even more problems pre-
dicting this compound compared to other models trained 
on data where the compounds were randomly assigned 
to either training or test set. Overall, this analysis shows 
how important a careful analysis of nonadditivity in data 
is. Even though the inclusion of those compounds does 
not affect the performance too much, nonadditive com-
pounds cannot be predicted correctly and thus display a 
problem for QSAR models. Here, one also has to keep in 
mind that especially those NA compounds might have an 
interesting SAR that can be further leverage in the drug 
design process.

NA can be a problem for linear SAR techniques. Yet, 
if used intentionally, it can be an important tool for drug 
discovery. This study provides a detailed picture of the 
NA pattern amongst the inhouse and public databases, 
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providing the global distribution of nonlinear events 
amongst assays and unique compounds. A careful 
understanding of the data is the key to successful deci-
sion-making. By conducting NA analysis one can eas-
ily identify outliers, detect potential assay artefacts, or 
key conformational changes. It is crucial to understand 
the possible experimental noise, that can be underly-
ing most of NA cases. Therefore, one must always keep 
in mind the origin of a given assay, the reliability of the 
measurements, and a possible upper limit of experimen-
tal uncertainty.

By systematically incorporating the NA analysis into 
the drug discovery projects, detection of interesting 
interactions and key SAR features will be easier and will 
eventually provide more structural insights for rational 
drug design.

Conclusions
Identifying NA in the SAR data sets can be crucial by 
suggesting important structural features for the com-
pound optimization. However, nonadditive events can be 
caused by the random addition of experimental uncer-
tainty, which is important to consider during the inter-
pretation of results. The impact of the experimental noise 
increases with the size of the assay, as more double-
transformation cycles can be assembled. NA analysis in 
the AZ compound database suggests that significant non-
linear events are more frequent in AZ inhouse data than 
public ChEMBL data. By considering only public data 
one might assume that NA is a rare event and important 
cases can be neglected. AZ data points out the fact that 
this is not true and the statistical framework of the NA 
analysis should be systematically implemented in SAR 
projects and discussed in publications for rational drug 
design.

Retrospectively, it is difficult to identify whether a 
specific change lead to a general increase or decrease 
in activity. From MMP studies we know that 100-fold 
improvements are very rare events of about 1% [66]. 
Our numbers (1–3%) suggest that electrostatic or steric 
problems occur more frequently than expected from 
SAR data because of the undersampling of negative data. 
This undersampling might be a reason why QSAR mod-
els have problems with describing activity cliffs despite 
being often based on non-linear algorithms. This would 
also be useful for setting a baseline of performance to be 
expected from such models.

Currently, the sign of a NA value does not provide 
valuable information since the order of compounds does 
not indicate the effect of a given transformations. In 
other words, one cannot establish which feature leads to 
the gain or loss of activity from investigating a specific 

double-transformation cycle. It would add another level 
of information to see the pattern of NA distribution in 
terms of boosting or decreasing the biological effect, 
whether the cases are equal or mostly lead to the loss of 
biological activity. For further follow-up work it would be 
of interest to draw conclusions about patterns in NA, i.e. 
if target-specific or non-target specific modification can 
be identified that always lead to NA, both on a per data-
set basis and across public and inhouse data.
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