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Abstract 

In polypharmacology drugs are required to bind to multiple specific targets, for example to enhance efficacy or 
to reduce resistance formation. Although deep learning has achieved a breakthrough in de novo design in drug 
discovery, most of its applications only focus on a single drug target to generate drug-like active molecules. However, 
in reality drug molecules often interact with more than one target which can have desired (polypharmacology) or 
undesired (toxicity) effects. In a previous study we proposed a new method named DrugEx that integrates an explora-
tion strategy into RNN-based reinforcement learning to improve the diversity of the generated molecules. Here, we 
extended our DrugEx algorithm with multi-objective optimization to generate drug-like molecules towards multiple 
targets or one specific target while avoiding off-targets (the two adenosine receptors,  A1AR and  A2AAR, and the potas-
sium ion channel hERG in this study). In our model, we applied an RNN as the agent and machine learning predictors 
as the environment. Both the agent and the environment were pre-trained in advance and then interplayed under a 
reinforcement learning framework. The concept of evolutionary algorithms was merged into our method such that 
crossover and mutation operations were implemented by the same deep learning model as the agent. During the 
training loop, the agent generates a batch of SMILES-based molecules. Subsequently scores for all objectives provided 
by the environment are used to construct Pareto ranks of the generated molecules. For this ranking a non-dominated 
sorting algorithm and a Tanimoto-based crowding distance algorithm using chemical fingerprints are applied. Here, 
we adopted GPU acceleration to speed up the process of Pareto optimization. The final reward of each molecule is 
calculated based on the Pareto ranking with the ranking selection algorithm. The agent is trained under the guidance 
of the reward to make sure it can generate desired molecules after convergence of the training process. All in all we 
demonstrate generation of compounds with a diverse predicted selectivity profile towards multiple targets, offering 
the potential of high efficacy and low toxicity.
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Introduction
The ‘one drug, one target, one disease’ paradigm, which 
has dominated the field of drug discovery for many years, 
has made great contributions to drug development and 
the understanding of their molecular mechanisms of 
action [1]. However, this strategy is encountering prob-
lems due to the intrinsic promiscuity of drug molecules, 
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i.e. recent studies showed that one drug molecule could 
interact with six protein targets on average [2]. Side 
effects of drugs caused by binding to unexpected off-
targets are one of the main reasons of clinical failure of 
drug candidates and even withdrawal of FDA-approved 
novel drugs [3, 4]. Up to now, more than 500 drugs have 
been withdrawn from the market due to fatal toxicity [5]. 
Yet, disease often results from the perturbation of bio-
logical systems by multiple genetic and/or environmental 
factors, thus complex diseases are more likely to require 
treatment through modulating multiple targets simulta-
neously. Therefore, it is crucial to shift the drug discovery 
paradigm to “polypharmacology” for many complex dis-
eases [6, 7].

In polypharmacology, drugs bind to multiple specific 
targets to enhance efficacy or to reduce resistance for-
mation (in which case multiple targets can be multiple 
mutants of a single target) [8]. It has been shown that par-
tial inhibition of a small number of targets can be more 
efficient than the complete inhibition of a single target, 
especially for complex and multifactorial diseases [6, 9]. 
In parallel, common structural and functional similarity 
of proteins results in drugs binding to off-targets. Hence 
drugs are also required to have a high target selectivity to 
avoid binding to unwanted target proteins. For example, 
the adenosine receptors (ARs) are a class of rhodopsin-
like G protein-coupled receptors (GPCRs) having aden-
osine as the endogenous ligand. Adenosine and ARs are 
ubiquitously distributed throughout human tissues, and 
their interactions trigger a wide spectrum of physiologi-
cal and pathological functions. There are four subtypes 
of ARs,  A1,  A2A,  A2B and  A3, each of which has a unique 
pharmacological profile, tissue distribution, and effector 
coupling [10, 11]. The complexity of adenosine signaling 
and the widespread distribution of ARs have always given 
rise to challenges in developing target-specific drugs [12]. 
In addition, the similarity to pharmacophores of some 
generic proteins (e.g. the human Ether-à-go-go-Related 
Gene, hERG) should also be taken into consideration as 
they can be sensitive to binding exogenous ligands and 
cause side effects. hERG is the alpha subunit of a potas-
sium ion channel [13] and has an inclination to interact 
with drug molecules because of its larger inner vestibule 
as the ligand binding pocket [14]. When hERG is inhib-
ited this may cause long QT syndrome which can be life 
threatening [15].

In addition to visual recognition, natural language pro-
cessing, and decision making, deep learning has been 
increasingly applied in drug discovery [16]. Deep learn-
ing does not only perform well in prediction models for 
virtual screening, but is also used to construct generative 
models for drug de novo design and/or drug optimiza-
tion [17]. As an example of the former case our group 

implemented a fully-connected deep neural network 
(DNN) to construct a proteochemometric model (PCM) 
with all high quality ChEMBL data [18] for prediction of 
ligand bioactivity [19]. Its performance was shown to be 
better than shallow machine learning methods. Moreo-
ver, we also developed a generative model with recurrent 
neural networks (RNNs), named DrugEx for SMILES-
based de novo drug design [20]. It was shown that the 
generated molecules had large diversity and were similar 
to known ligands to some extent to make sure that reli-
able and diverse drug candidates can be designed.

Since the first version of DrugEx (v1) demonstrated 
effectiveness for designing novel  A2AAR ligands, we 
began to extend this method for drug design toward 
multiple targets. In this study, we updated DrugEx to the 
second version (v2) through adding crossover and muta-
tion operations, which were derived from evolutionary 
algorithms, to the reinforcement learning (RL) frame-
work. We also used Pareto ranking for multi-objective 
selection. In order to evaluate the performance of our 
additions we tested our method into both multi-target 
and target-specific use cases. For the multi-target case, 
desired molecules should have a high affinity towards 
both the  A1AR and  A2AAR. In the target-specific case, on 
the other hand, we required molecules to have only high 
affinity towards the  A2AAR but a low affinity to the  A1AR. 
In order to decrease toxicity and risk of adverse events, 
molecules were additionally obliged to have a low affinity 
for hERG in both cases. It is worth noting that generated 
molecules should also be chemically diverse and have 
similar physico-chemical properties to known ligands. 
All python code for this study is freely available at http:// 
github. com/ Xuhan Liu/ DrugEx.

Materials and methods
Data source
Drug like molecules represented in SMILES format were 
downloaded from the ChEMBL database (version 26). 
After data preprocessing, including standardization of 
charges, removing metals and small fragments, we col-
lected 1.7 million molecules and named it the ChEMBL 
set, used for SMILES syntax learning. This data preproc-
essing step was implemented in RDKit [21]. Furthermore, 
25,731 ligands were extracted from the ChEMBL data-
base to construct the LIGAND set, which had bioactiv-
ity measurements towards the human  A1AR,  A2AAR, 
and hERG. The LIGAND set was used for constructing 
prediction models for each target and for fine-tuning the 
generative models. The number of ligands and bioactivi-
ties for these three targets in the LIGAND set is repre-
sented in Table  1. Duplicate items were removed and if 
multiple measurements for the same ligands existed, 
the average pChEMBL value (pX, including pKi, pKd, 
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pIC50, or pEC50) was calculated. To judge if a molecule 
is active or not, we defined the threshold of bioactivity as 
pX = 6.5[19]. If pX < 6.5, the compound was predicted as 
undesired (low affinity to the given target); otherwise, it 
was regarded as desired (having high affinity).

Prediction model
In order to predict the pX for each generated molecule 
for a given target, regression QSAR models were con-
structed with different machine learning algorithms. To 
increase the chemical diversity available for the QSAR 
model we included lower quality data without pChEMBL 
value, i.e. molecules that were labeled as “Not Active” 
or without a defined pX value. For these data points we 
defined a pX value of 3.99 (slightly smaller than 4.0) to 
eliminate the imbalance of the dataset and guarantee 
the model being able to predict negative samples. Dur-
ing the training process, sample weights for low quality 
data were set at 0.1, while for data with an exact pX these 
were set at 1.0. This allowed us to incorporate chemical 
diversity, while avoiding degradation of model quality. 
Descriptors used as input were ECFP6 fingerprints [22] 
with 2048 bits (2048 dimensions, or 2048D) calculated 
by the RDKit Morgan Fingerprint algorithm (using a 
three-bond radius). Moreover, the following 19D phys-
ico-chemical descriptors were used: molecular weight, 
logP, number of H bond acceptors and donors, number 
of rotatable bonds, number of amide bonds, number of 
bridge head atoms, number of hetero atoms, number 
of spiro atoms, number of heavy atoms, the fraction of 
SP3 hybridized carbon atoms, number of aliphatic rings, 
number of saturated rings, number of total rings, num-
ber of aromatic rings, number of heterocycles, number 
of valence electrons, polar surface area and Wildman-
Crippen MR value. Hence, each molecule in the dataset 
was transformed into a 2067D vector. Before being input 
into the model, the value of input vectors were normal-
ized to the range of [0, 1] by the MinMax method. Model 

output value is the probability whether a given chemical 
compound was active based on this vector.

Four algorithms were benchmarked for QSAR model 
construction, Random Forest (RF), Support Vector 
Machine (SVM), Partial Least Squares regression (PLS), 
and Multi-task Deep Neural Network (MT-DNN). RF, 
SVM and PLS models were implemented through Scikit-
Learn [23], and the MT-DNN model through PyTorch 
[24]. In the RF, the number of trees was set as 1000 and 
split criterion was “gini”. In the SVM, a radial basis func-
tion (RBF) kernel was used and the parameter space of 
C and γ were set as [2–5] and [2–15, 25], respectively. In 
the MT-DNN, the architecture contained three hidden 
layers activated by a rectified linear unit (ReLU) between 
input and output layers, and the number of neurons were 
2048, 4000, 2000, 1000 and 3 in these subsequent layers. 
The training process consisted of 100 epochs with 20% 
of hidden neurons randomly dropped out between each 
layer. The mean squared error was used to construct the 
loss function and was optimized by the Adam algorithm 
[25] with a learning rate of  10–3.

Generative model
As in DrugEx v1, we organized the vocabulary for 
SMILES construction. Each SMILES-format mole-
cule in the ChEMBL and LIGAND sets was split into a 
series of tokens. Then all tokens existing in this dataset 
were collected to construct the SMILES vocabulary. The 
final vocabulary contained 84 tokens (Additional file  1: 
Table S1) which were selected and arranged sequentially 
into valid SMILES sequences through correct grammar.

The RNN model constructed for sequence generation 
contained six layers: one input layer, one embedding 
layer, three recurrent layers and one output layer. After 
being represented by a sequence of tokens, molecules 
can be received as categorical features by the input layer. 
In the embedding layer, vocabulary size, and embedding 
dimension were set to 84 and 128, meaning each token 
could be transformed into a 128 dimensional vector. For a 
recurrent layer, the long-short term memory (LSTM) was 
used as recurrent cell with 512 hidden neurons instead of 
the gated recurrent unit (GRU) [26] which was employed 
only in DrugEx v1. The output at each position was the 
probability that determined which token in the vocabu-
lary would be chosen to grow the SMILES string.

During the training process we put a start token (GO) 
at the beginning of a batch of data as input and an end 
token (END) at the end of the same batch of data as 
output. This ensures that our generative network could 
choose correct tokens each time based on the sequence it 
had generated previously. A negative log likelihood func-
tion was used to construct the loss function to guaran-
tee that the token in the output sequence had the largest 

Table 1 The number of ligands and bioactivities for each of the 
human protein targets  A1AR,  A2AAR and hERG in the LIGAND set

A1AR A2AAR hERG

Total ligands 7700 8406 16,733

Bioactivities 13,100 12,129 22,156

Active ligands
(pX ≥ 6.5)

1990 2511 924

Inactive ligands
(pX < 6.5)

1859 1709 6438

Inactive ligands
(No pX)

1764 1993 1275

Other ligands 2087 4704 8906
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probability to be chosen after being trained. In order to 
optimize the parameters of the model, the Adam algo-
rithm [25] was used for the optimization of the loss func-
tion. Here, the learning rate was set at  10–3, the batch size 
was 512, and training steps were set to 1000 epochs.

Reinforcement learning
SMILES sequence construction under the RL frame-
work can be viewed as a series of decision-making 
steps (Fig.  1). The generator (G) and the predictors (Q) 
are regarded as the policy and reward function, respec-
tively. In this study we used multi-objective optimization 
(MOO) and the aim is to maximize each objective for 
each scenario, albeit with differences in desirability. Our 
aim was defined by the following problem statement:

Here, n equals the number of objectives (n = 3 in this 
study), and Ri, the score for each objective i, was calcu-
lated as follows:

maximizeR1,maximizeR2, . . . ,maximizeRn

Ri =







minmax
�

pXi

�

, if high affinity required
1−minmax(pXi), if low affinity required
0, if SMILES invalid

Here the pXi (the range from 3.0 to 10.0) was the pre-
diction score given by each predictor for the ith target, 
which was normalized to the interval [0, 1] as the reward 
score. If having no or low affinity for a target was required 
(off-target) this score would be subtracted from 1 (invert-
ing it).

For the multi-target case, the objective function is:

while the objective function for the target-specific case, 
is:

In order to evaluate the performance of the genera-
tors, three coefficients are calculated with the generated 
molecules, including validity, desirability, and uniqueness 
which are defined as:







RA1 = minmax
�

pXA1

�

RA2A = minmax(pXA2A)

RhERG = 1−minmax(pXhERG)







RA1 = 1−minmax
�

pXA1

�

RA2A = minmax(pXA2A)

RhERG = 1−minmax(pXhERG)

Validity =

Nvalid

Ntotal

Fig. 1 The workflow of the training process of our deep learning-based molecule generator DrugEx2 utilizing reinforcement learning. After 
the generator has been pre-trained/fine-tuned, (1) a batch of SMILES are generated by sampling tokens step by step based on the probability 
calculated by the generator; (2) These valid SMILES are parsed to be molecules and encoded into descriptors to get the predicted pXs with 
predictors; (3) The predicted pXs are transformed into a single value as the reward for each molecule based on Pareto optimization; (4) These SMILES 
sequences and their rewards are sent back to the generator for training with policy gradient methods. These four steps constitute the training loop 
of reinforcement learning
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where Ntotal is the total number of molecules, Nvalid is 
the number of the molecules parsed by the valid SMILES 
sequences, Nunique is the number of molecules which 
are different from others in the dataset, and Ndesired is 
the number of desired molecules. Here, we determine 
whether generated molecules are desired based on the 
reward Ri if all of them are larger than the threshold (0.5 
by default when pX = 6.5). In addition, we calculated the 
SA score (from 1 to 10) for each molecule to measure the 
synthesizability of which larger value means more dif-
ficult to be synthesized [27]. And we also computed the 
QED (from 0 to 1) score to evaluate the drug-likeness of 
which larger value means more drug-like for each mol-
ecule [28]. The calculation of both SA and QED scores 
were implemented by RDKit. To orchestrate and com-
bine these different objectives, we compared two differ-
ent reward schemes: the Pareto front (PF) scheme and 
the weighted sum (WS) scheme. These were defined as 
follows:

Weighted sum (WS) scheme: the weight for each 
function is not fixed but dynamic, and depends on the 
desired ratio for each objective, which is defined as:

Here for objective i the Ns i and Nl i are the number of 
generated molecules which have a score smaller or larger 
than the threshold. Moreover, the weight is normalized 
ratio defined as:

and the final reward R* was calculated by

Pareto front (PF) scheme: operates on the desirability 
score, which is defined as

where ti is the threshold of the ith objective, and we set 
all of objectives had the same threshold as 0.5 as stated in 
the methods. Given two solutions m1 and m2 with their 

Desirability =

Ndesired

Ntotal

Uniqueness =
Nunique

Ntotal

ri =
Ns
i

N l
i

wi =
ri

∑M
k=1rk

R∗

=

n
∑

i=1

wiRi,

Di =

{

1, if Ri > ti
Ri
/

ti, if Ri ≤ ti

scores (x1, x2, …, xn) and (y1, y2, …, yn), then m1 is said to 
Pareto dominate m2 if and only if:

otherwise, m1 and m2 are non-dominated with each 
other. After the dominance between all pair of solutions 
being determined, the non-dominated scoring algorithm 
[29] is exploited to obtain different layers of Pareto fron-
tiers which consist of a set of solutions. The solutions in 
the top layer are dominated by the other solutions in the 
lower layer [30]. In order to speed up the non-dominated 
sorting algorithm, we employed PyTorch to implement 
this procedure with GPU acceleration. After obtaining 
the frontiers ranking from dominated solutions to domi-
nant solutions, the molecules were ranked based on the 
average of Tanimoto-distance instead of crowding dis-
tance with other molecules in the same frontier, and mol-
ecules with larger distances were ranked on the top. The 
final reward R* is defined as:

Here the parameter k is the index of the solution in the 
Pareto rank, and rewards of undesired and desired solu-
tions will be evenly distributed in (0, 0.5] and (0.5, 0.1], 
respectively.

During the generation process, for each step, G deter-
mines the probability of each token from the vocabulary 
to be chosen based on the generated sequence in previ-
ous steps. Its parameters are updated by employing a pol-
icy gradient based on the expected end reward received 
from the predictor. The objective function is designated 
as follows:

By maximizing this function, the parameters θ in G 
can be optimized to ensure that G can construct desired 
SMILES sequences which can obtain the highest reward 
scores judged by all the Qs.

Algorithm extrapolation
Evolutionary algorithms (EAs) are common methods 
used in drug discovery [31]. For example, Molecule Evol-
uator is one of EAs, with mutation and crossover opera-
tions based on SMILES representation [32] for drug de 
novo design. In addition, some groups also proposed 
other variations of EAs [33], e.g., estimation of distribu-
tion algorithm (EDA) which is a model-based method 
and replaces the mutation and crossover operations 

∀j ∈ {1, . . . , n} : xj ≥ yj and ∃j ∈ {1, . . . , n} : xj > yj

R
∗

i =

{

0.5+
k−Nundesired
2Ndesired

, if desired
k

2Nundesired
, if undesired

J (θ) = E
[

R∗(y1:T )|θ
]

=

T
∑

t=1

logG
(

yt |y1:t−1

)

· R∗

(

y1:T
)
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with probability distribution estimation and sampling of 
new individuals (Fig. 2) [34]. Similar to EDA, DrugEx is 
a model-based method too, in which the deep learning 
model was employed to estimate the probability distribu-
tion of sequential decision making. However, we used a 
DL method to define model-based mutation and crosso-
ver operations. Moreover, we employed an RL method to 
replace the sample selection step for the update of model 
or population in EDA or EA, respectively.

Exploration strategy
In our previous study, we had implemented the explora-
tion strategy through importing a fixed exploration net to 
enlarge the diversity of the generated molecules during 
the training loops. In this study, we continued to extend 
the methods of this exploration strategy, which resemble 
the crossover and mutation operations from evolutionary 
algorithms (EAs). Here, besides the agent net (GA), we 
also defined exploration strategy with two other DL mod-
els: crossover net (GC) and mutation net (GM), which have 
the same RNN architecture (Fig. 3). The pseudo code of 
the exploration strategy is described in Additional file 1: 
Table S2. Before the training process, GM was initialized 
by the pre-trained model while GA and GC were started 
from the fine-tuned model. The GM was the basic strategy 
employed in the previous version and its parameters were 
fixed and not updated during the whole training process. 
The GC implemented in this work was an extended strat-
egy whose parameters were updated iteratively based 
on the  GA. During the training process, each SMILES 
sequence was generated through combining these three 

RNNs: for each step, a random number from 0 to 1 is 
generated. If it is larger than the mutation rate (ε), the 
probability for token sampling is controlled by the com-
bination of GA and GC, otherwise, it is determined by GM. 
For each training loop, only the parameters in GA were 
updated instantly based on the gradient of the RL objec-
tive function. An iteration was defined as the period of 
epochs after the desirability score of molecules generated 
by GA did not increase. Subsequently the parameters of 
GC were updated with GA directly and the training pro-
cess continued for the next iteration. The training process 
would continue till the percentage of desired molecules 
in the current iteration was not better than in the previ-
ous iterations.

Molecular diversity
To measure molecular diversity, we adopted the metric 
proposed by Solow and Polasky in 1994 to estimate the 
diversity of a biological population in an eco-system [35]. 
It has been shown to be an effective method to measure 
the diversity of drug molecules [36]. The formula to cal-
culate diversity was redefined to normalize the range of 
values from [1, m] to (0, m] as follows:

where A is a set of drug molecules with a size of |A| equal 
to m, e is an m-vector of 1’s and F(s) = [f(dij))] is a non-
singular m × m distance matrix, in which f(dij) stands for 

I(A) =
1

|A|
e
⊺F(s)−1

e

Fig. 2 Flowchart comparison of evolutionary algorithms. A Estimation of distribution algorithm (B) and our proposed method (C)
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the distance function of each pair of molecule provided 
as follows:

here we defined the distance dij of molecules si and sj by 
using the Tanimoto-distance with ECFP6 fingerprints as 
follows:

where | si ∩ sj | represents the number of common finger-
print bits, and | si ∪ sj | is the number of union fingerprint 
bits.

f (d) = e−θdij

dij = d
(

si, sj
)

= 1−

∣

∣si ∩ sj
∣

∣

∣

∣si ∪ sj
∣

∣

,

Results and discussion
Performance of predictors
All molecules in the LIGAND set were used to train 
the QSAR models, after being transformed into prede-
fined descriptors (2048D ECFP6 fingerprints and 19D 
physicochemical properties). We then tested the per-
formance of these different algorithms with five-fold 
cross validation and an independent test of which the 
performances are shown in Fig. 4A–B. Here, the data-
set was randomly split into five folds in cross valida-
tion, while a temporal split with a cut-off at the year of 
2015 was used for the independent test. In the cross-
validation test, the MT-DNN model achieved the high-
est value for  R2 and the lowest RMSE value for  A1AR 

Fig. 3 The mechanism of the updated exploration strategy. Shown are the agent net GA, mutation net GM (red) and crossover net GC (blue). In the 
training loop, GM is fixed, Gc is updated iteratively and GA is trained at each epoch. For each position, a random number from 0 to 1 is generated. If it 
is larger than the mutation rate (ε), the probability for token sampling is controlled by the combination of GA and GC, otherwise, it is determined by 
GM
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and  A2AAR, but the RF model had the best perfor-
mance for hERG based on  R2 and RMSE. However, for 
the independent test the RF model reached the highest 
 R2 and lowest RMSE across the board, although it was 
slightly worse than the performance in the cross-vali-
dation test. A detailed performance overview of the RF 
model is shown in Fig.  4C–E. Because the generative 

model might create a large number of novel molecules, 
which would not be similar to the molecules in the 
training set, we took the robustness of the predictor 
into consideration. In this situation the temporal split 
has been shown to be more robust [19, 37]. Hence 
the RF algorithm was chosen for constructing our 

Fig. 4 Performance comparison of different machine learning regression models. In these two histograms (A, B), the results were obtained based 
on five-fold cross validation (A) and independent test (B) for the three targets. The  R2 and RMSE scores were used to evaluate the performance of 
different machine learning models including DNN, KNN, PLS, SVM RF and MT-DNN. In the scatter plots (C–E), each point stands for one molecule 
with its real pX (x-axis) and the predicted pX (y-axis) by the RF model which was chosen as the final predictors for  A1AR (C),  A2AAR (D) and hERG (E) 
based on five-fold cross validation (blue) and independent test (orange)
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environment which provides the final reward to guide 
the training of the generator in RL.

Model optimization
As in our previous work in DrugEx v1, we firstly pre-
trained and fine-tuned the generator with the ChEMBL 
and LIGAND set, respectively. When testing the different 
types of RNNs, we analyzed the performance of the pre-
trained model with 10,000 SMILES generated, and found 
that the LSTM generated more valid SMILES (97.5%) 
than the GRU (93.1%) which had been adopted in our 
previous work. Moreover, for the fine-tuning process, 
we split the LIGAND set into two subsets: training set 
and validation set; the validation set was not involved in 
parameters updating but it was essential to avoid model 
overfitting and to improve uniqueness of generated mol-
ecules. Subsequently 10,000 SMILES were sampled for 
performance evaluation. We found that the percentage 
valid SMILES in fine tuning were again larger for LSTM 
with 97.9% valid SMILES compared to GRU with 95.7% 
valid SMILES, a slight improvement compared to the 
pre-trained model. In the end, we employed the LSTM-
based pre-trained/fine-tuned models for the following 
investigation.

We employed the models for two cases (multi-tar-
get and target-specific) of multi-objective drug design 
towards three protein targets. During the training loop 
of DrugEx v2, the parameter of ε was set to different 
values:  10–2,  10–3,  10–4 and we also tested it without the 
mutation net, i.e. the value of ε was set to 0. Generators 
were trained by using a policy gradient with two different 
rewarding schemes. After the training process converged, 
10,000 SMILES were generated for each model for per-
formance evaluation. The percentage of valid, desired, 
unique desired SMILES and the diversity were calculated 
(Table  2). Furthermore, we also compared the chemical 

space of these generated molecules with known ligands 
in the LIGAND set. Here, we employed the first two 
components of a t-SNE of these molecules using ECFP6 
descriptors to visualize the chemical space.

Performance comparisons
We compared the performance of DrugEx v2 with Dru-
gEx v1 and two other DL-based de novo drug design 
methods: REINVENT [38] and ORGANIC [39]. In order 
to make a fair benchmark, we trained these four methods 
with the same environments to provide the unified pre-
dicted bioactivity scores for each of the generated mol-
ecules. It should be mentioned that these methods are 
all SMILES-based RNNs generators but trained under 
different RL frameworks. Therefore, these generators 
were constructed with the same RNN structures of and 
initialized with the same pre-trained/fine-tuned models. 
We also tested REINVENT 2.0 [40] but found the train-
ing loop did not converge in the PF scheme. We speculate 
this is due to the number of desired molecules gener-
ated by the initial state of the model being too small, not 
containing enough information. Moreover, addition of 
a scaffold filter is repetitive when integrated into the PF 
scheme as it is similar to the similarity-based crowding 
distance algorithm employed in the PF scheme. Finally, 
a scaffold filter is a hard condition, because it directly 
penalizes the score of similar molecules to 0 while the PF 
scheme decreased the similar molecules. Hence, we have 
not shown these results here.

In the WS scheme we did not choose fixed weights 
for objectives but dynamic values which can be adjusted 
automatically during the training process. The reason 
for this is that if the fixed weights should be optimized 
as the hyperparameters, which would be more time con-
suming. Moreover, the distribution of scores for each 
objective was not comparable. If the affinity score was 

Table 2 Comparison of the performance of the different methods in the multi-target case

Shown are validity, desirability, uniqueness, and substructure distributions of SMILES generated by four different methods in the multi-target case with PF and WS 
rewarding schemes. For the validity, desirability and uniqueness, the highest values are bold, while for the distribution of substructures, the bold data are labeled as 
the closest to the values in the LIGAND set

Rewarding 
scheme

Dataset Validity Desirability Uniqueness Diversity Purine ring Furan ring Benzene ring

LIGAND 100.00% 12.40% 100.00% 0.66 21.30% 35.44% 79.24%

PF DrugEx v1 98.28% 43.27% 88.96% 0.71 17.37% 41.05% 80.95%

DrugEx v2 99.57% 80.81% 87.29% 0.7 13.97% 32.01% 80.26%
ORGANIC 98.84% 66.01% 82.67% 0.65 17.27% 56.38% 68.87%

REINVENT 99.54% 57.43% 98.84% 0.77 0.64% 40.38% 92.05%

WS DrugEx v1 97.76% 38.44% 93.44% 0.71 10.76% 36.42% 86.99%

DrugEx v2 99.80% 97.45% 89.08% 0.49 3.63% 21.06% 96.18%

ORGANIC 99.08% 61.10% 77.65% 0.68 9.08% 70.99% 83.91%
REINVENT 99.54% 70.98% 99.11% 0.71 0.04% 23.23% 96.28%
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required to be higher, few of the molecules generated by 
the model with the initial state were satisfactory, but if a 
lower affinity score was required, most of the generated 
molecules by the pre-trained/fine-tuned model met this 
need without further training of RL. Therefore, weights 
were set as dynamic parameters and determined by the 
ratio between desired and undesired molecules generated 
by the model at the current training step. This approach 
ensures that the objectives with lower scores would get 
more importance than others during the training loop 
to balance the different objectives and generate more 
desired molecules.

The performance of the model with different values of 
ε is shown in Additional file 1: Table S3. A higher ε gen-
erates molecules with larger diversity but low desirability 
compared to a lower ε in both multi-target and target-
specific cases. In addition, an appropriate ε guarantees 
that the model generates molecules which have a more 
similar distribution of important substructures with the 
desired ligands in the LIGAND set (Additional file 1: Fig. 
S1). With the WS scheme, the model generates molecules 
with a high desirability, but the diversity is lower than the 
desired ligands in the training set. On the contrary, the 
PF scheme helped the model generate molecules with a 
larger diversity than the ligands in the training set, but 
the desirability was not as high as in the WS rewarding 
scheme. Importantly, the generated molecules in the PF 
scheme have a more similar distribution of substructures 
to the LIGAND set than in the WS scheme.

In the multi-target case, these four methods with dif-
ferent rewarding schemes show similar performance, i.e. 
the WS scheme can help models improve the desirabil-
ity while the PF scheme assists models to achieve bet-
ter diversity and distribution of substructures (Table  2). 
Here, REINVENT with the PF scheme achieved the 
largest diversity, whereas DrugEx v1 had the most 

similar substructure distribution to the molecules in the 
LIGAND set, and DrugEx v2 achieved the best desirabil-
ity with both PR and WS schemes compared to the three 
other algorithms. The diversity and distribution of sub-
structures were also most similar to the best results. In 
addition, in the target-specific case results were similar 
to the multi-target case, (Table  3), and for the distribu-
tion of purine and furan rings, DrugEx v2 surpassed v1 to 
be most similar to the LIGAND set. When investigating 
the SA and QED scores, we observed that the PF scheme 
helped to make all generated molecules more drug-like 
because of higher QED scores than the molecules gener-
ated by the WS scheme in both multi-target (Fig. 5A–D) 
and target-specific cases (Fig.  5E–H). Comparing these 
methods, the molecules generated by REINVENT were 
supposedly easier to synthesize and more drug-like than 
others, but the molecules of DrugEx v1 had more similar 
distributions with the molecules in the LIGAND set.

With respect to chemical space, we employed t-SNE 
with the ECFP6 descriptors of all molecules for both 
multi-target (Fig.  6A–H) and target-specific cases 
(Fig. 6I–P). In the multi-target case, most of the desired 
ligands in the LIGAND set were distributed in the mar-
gin region of the plot and the PF scheme could guide all 
of the generators to better cover chemical space than 
the WS scheme. In the target-specific case, the desired 
ligands in the LIGAND set were distributed more dis-
persed in both of the margin and the center regions. In 
this application case only part of the region occupied by 
desired ligands in the LIGAND set overlapped with mole-
cules generated by REINVENT and ORGANIC. However, 
almost all of the space is covered by DrugEx v1 and v2. 
Especially, in contrast to the WS scheme DrugEx v2 had a 
significant improvement of chemical space coverage with 
the PF scheme. Hence in this target-specific case, the PF 
scheme could not guide all generators for better coverage 

Table 3 Comparison of the performance of the different methods in the target-specific case

Shown are validity, desirability, uniqueness, and substructure distributions of SMILES generated by four different methods in the target-specific case with PF and WS 
rewarding schemes. For the validity, desirability and uniqueness, the highest values are bold, while for the distribution of substructures, the bold data are labeled as 
the most closed to the values in the LIGAND set

Rewarding 
scheme

Dataset Validity Desirability Uniqueness Diversity Purine ring Furan ring Benzene ring

LIGAND 100.00% 14.63% 100.00% 0.67 28.27% 50.61% 71.84%

PF DrugEx v1 98.07% 48.42% 87.32% 0.73 29.65% 61.61% 70.99%
DrugEx v2 99.53% 89.49% 90.55% 0.73 23.73% 56.23% 67.40%

ORGANIC 98.29% 86.98% 80.30% 0.64 10.60% 89.27% 65.28%

REINVENT 99.59% 70.66% 99.33% 0.79 3.85% 33.82% 92.53%

WS DrugEx v1 97.61% 44.96% 95.89% 0.68 78.92% 80.21% 68.02%

DrugEx v2 99.62% 97.86% 90.54% 0.31 19.58% 98.56% 51.87%

ORGANIC 98.97% 88.14% 84.13% 0.49 9.68%% 96.66% 71.48%
REINVENT 99.55% 81.27% 98.87% 0.34 25.13% 97.52% 74.61%
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compared to WS scheme, except for DrugEx v2. A pos-
sible reason is that the molecules generated by DrugEx v1 
and v2 offer a more similar distribution of substructures 
to desired ligands in the LIGAND set than REINVENT 
and ORGANIC do.

As an example, 16 possible antagonists (without ribose 
moiety and with a molecular weight < 500) generated 
by DrugEx v2 with the PF scheme were selected as can-
didates for both multi-target cases and target specific 
case, respectively. These molecules were ordered by the 
selectivity which was calculated as the difference of pXs 
between two different protein targets. In the multi-target 
case (Fig.  7A) rows and columns are sorted by selectiv-
ity for the  A2AAR and  A1AR over hERG respectively, 
because the desired ligands prefer  A1AR and  A2AAR to 
hERG. Conversely in the target-specific case the gener-
ated molecules are required to bind only  A2AAR rather 
than  A1AR and hERG (Fig.  7B). Hence, here selectivity 
for the  A2AAR over  A1AR and hERG were represented by 
the rows and columns respectively.

In order to prove the effectiveness of our proposed 
method, we tested it with 20 goal-directed molecule gen-
eration tasks on the GuacaMol benchmark platform [41]. 
These tasks contain different requirements, including 

similarity, physicochemical properties, isomerism, scaf-
fold matching, etc. The detailed description of these tasks 
is provided in ref. [41] and our results are shown in Addi-
tional file 1: Table S4. We pre-trained our model with the 
dataset provided by the GuacaMol platform, in which all 
molecules from the ChEMBL database are included and 
similar molecules to the target ligands in the tasks were 
removed. Then we choose the top 1024 molecules in the 
training set to fine-tune our model for each task, before 
reinforcement learning was started. Our method scores 
the best in 12 out of 20 tasks compared with the base-
line models provided by the GuacaMol platform, leading 
to an overall second place. Moreover, the performance 
between the LSTM benchmark method and our meth-
ods were similar in these tasks, possibly because they 
have similar architectures of neural networks. All in all, 
this benchmark demonstrated that our proposed method 
provides improved performance in de novo design tasks. 
It is worth mentioning that our method is not effective 
enough yet for some tasks with contradictory objectives 
in a narrow chemical space. The main reason is that our 
method emphasizes to obtain a large number of feasi-
ble molecules to cover a diverse chemical space rather 
than a small number of optimal molecules to achieve the 

Fig. 5 The distribution of SA score and QED score of desired ligands and generated ligands. Shown are the distribution in the LIGAND set and 
of molecules generated by four different methods with PR (A, B, E and F) and WS (C, D, G and H) rewarding schemes in the multi-target case 
(A–D) and target-specific case (E–H). The molecules from the LIGAND set were shown in orange, and the molecules generated by DrugEx v1, v2, 
ORGANIC and REINVENT were shown in blue, green, red, and purple, respectively. Overall DrugEx v1 and v2 are better able to emulate the observed 
distributions in the training set compared to ORGANIC and REINVENT 
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Fig. 6 Comparison of the chemical space of the LIGAND set and generated molecules. Shown are all known ligands (orange) and desired 
molecules (black). Moreover shown are generated molecules by DrugEx v1 (A, E, I, M, blue), v2 (B, F, J, N, red), ORGANIC (C, G, K, O, green) and 
REINVENT (D, H, L, P, purple). A distinction can be made between the multi-target case (A–H) and target specific case (I–P). Additionally a distinction 
can be made between PF scheme based scoring (A–D and I–L) and WS scheme based scoring (E–H and M–P). Chemical space is represented by 
the first two components in t-SNE with ECFP6 descriptors of molecules. Similar to our previous work it can be seen that DrugEx better covers the 
whole chemical space of the input data. In particular in the multi-target case with a Pareto optimization based scoring function (E–H) the improved 
coverage in all sections, including isolated active ligands, becomes clear
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highest score. For example, in the Sitagliptin MPO task, 
the aim is finding molecules which are dissimilar to sitag-
liptin but have a similar molecular formula to sitagliptin, 
and our method was not as good as Graph GA, which is a 
graph-based genetic algorithm.

Conclusions and future prospects
In this work, we proposed a Pareto-based multi-objective 
learning algorithm for drug de novo design towards mul-
tiple targets based on different requirements of affinity 
scores for multiple targets. We transferred the concept of an 

evolutionary algorithm (including mutation and crossover 
operations) into RL to update DrugEx for multi-objective 
optimization. In addition, Pareto ranking algorithms were 
also integrated into our model to handle the contradictory 
objectives common in drug discovery and enlarge the chemi-
cal diversity. In order to prove the effectiveness, we tested the 
performance of DrugEx v2 in both multi-target and target-
specific cases. We found that a large percentage of gener-
ated SMILES were valid and represented desired molecules 
without many duplications. Moreover, generated molecules 
were also similar to known ligands and covered almost every 

Fig. 7 Example molecules generated by DrugEx v2 with the PF scheme for both multi-target case and target-specific case. In the multi-target case 
(A), these molecules were ordered by selectivity for  A1AR and  A2AAR over hERG as x-axis and y-axis, respectively. In the target-specific case (B), these 
molecules were ordered by selectivity for  A2AAR over the  A1AR and hERG as x and y-axis, respectively. For each cell, the structure at the left is the 
generated molecule labeled with its similarity to the most similar ligands in the LIGAND set, located at the right and labeled with their ChEMBL ID
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corner of the chemical space that known ligands occupy, 
which could not be repeated by tested competing methods. 
In addition to our work here other methods to improve the 
diversity of generated molecules were proposed such as 
REINVENT 2.0 [40]. In addition, other teams also trained 
new deep learning models (e.g. BERT, Transformer, GPT2) 
with a larger dataset and achieved good results [42, 43]. In 
future work, we will continue to update DrugEx with these 
new deep learning models to deal with different molecular 
representations, such as graphs or fragments [31]. We will 
also integrate more objectives (e.g. stability, synthesizability), 
especially when these objectives are contradictory, such that 
the model allows user-defined weights for each objective to 
generate more reliable candidate ligands and better steer the 
generative process.
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