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Abstract 

In the process of drug discovery, the optimization of lead compounds has always been a challenge faced by pharma‑
ceutical chemists. Matched molecular pair analysis (MMPA), a promising tool to efficiently extract and summarize the 
relationship between structural transformation and property change, is suitable for local structural optimization tasks. 
Especially, the integration of MMPA with QSAR modeling can further strengthen the utility of MMPA in molecular 
optimization navigation. In this study, a new semi‑automated procedure based on KNIME was developed to support 
MMPA on both large‑ and small‑scale datasets, including molecular preparation, QSAR model construction, applica‑
bility domain evaluation, and MMP calculation and application. Two examples covering regression and classification 
tasks were provided to gain a better understanding of the importance of MMPA, which has also shown the reliability 
and utility of this MMPA‑by‑QSAR pipeline.
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Introduction
The discovery of drug candidates capable of blocking or 
activating the desired target proteins involves extensive 
virtual and experimental screening that accounts for 
30–40% of the total time invested in drug development 
[1]. Given the difficulty of directly finding an optimal 
drug candidate with desirable therapeutic potency, and 
absorption, distribution, metabolism and elimination 
(ADME) and toxicity profile [2], the success of a drug 
discovery campaign is strongly affected by the efficiency 
of lead optimization. Traditionally, lead optimization 
largely relies on heuristic approaches adopted by medici-
nal chemists, who draw inspiration from their limited 

experience and synthetic guidelines [3]. Recently, the 
development of machine learning (ML) methods has ena-
bled the application of deep learning (DL) techniques to 
lead optimization [4, 5]. Some novel DL algorithms such 
as variational autoencoders (VAE), recurrent neural net-
works (RNN), generative adversarial networks (GAN), 
and graph convolutional networks (GNN) have been 
utilized to generate novel molecules and optimize their 
ADMET properties and binding affinity [6–8]. However, 
the limitations related to interpretability and the optimal-
ity of multiple parameters still impede efficient lead opti-
mization [9].

The molecular matched pair (MMP) approach, first 
proposed by Kenny and Sadowski in 2005, has rapidly 
become a popular method for the extraction of medici-
nal chemistry knowledge from large compound/prop-
erty databases, which can be used in a variety of practical 
applications, such as compound optimization [10, 11]. 
An MMP is generally defined as a pair of compounds 
that can be interconverted by a well-defined chemical 
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transformation at a single site, with the change between 
the pair elements referring to the transformation, and the 
invariant feature referring to the context [12]. The sys-
tematic extraction and summarization of the MMPs from 
a large chemical database possess analytical and genera-
tive characteristics, which is called matched molecular 
pair analysis (MMPA) [13, 14]. Compared with DL mod-
els, the MMP approach directly deals with measured 
chemical data and provides a clear interpretation of the 
results. Moreover, this method allows researchers to 
directly and easily extract/summarize information from 
chemical data and thus provides a wide range of func-
tions, including suggestions on what compound should 
be prepared next, compound property prediction, iden-
tification of cases where structural changes have minimal 
effects on key properties (e.g., bioisosteres), and the sim-
ple deepening of our understanding of the links between 
biology and chemistry [15–18]. Finally, MMPA focuses 
on local structural transformations rather than the whole 
molecule and is therefore more suitable for optimization 
tasks [13].

The fundamental hypothesis of the MMP approach is 
that a particular change of pharmaceutical properties is 
contributed from a small structural change. However, 
in practice, substructural changes are more complex, 
e.g., the distribution of property changes with respect to 
transformation rules is often nearly symmetrical and cen-
tered at or near zero, which results in a similar likelihood 
of causing potency gains or losses [19]. Therefore, the 
inclusion of statistical tests is of utmost importance for 
further MMP evaluation because it helps to ensure the 
efficiency and accuracy of MMPA in molecular optimi-
zation [20–22]. The application of statistical significance 
brings the benefit of reduced variation and enhanced 
credibility of MMPA. However, such measure also pro-
poses the necessary request for dataset size. Unfortu-
nately, most experimental datasets used in drug research 
are small-scale, which has greatly restricted the scope 
and utility of chemical transformation mining. To better 
tackle the limited experimental data problem in MMPA, 
the MMPA-by-QSAR paradigm was proposed. In this 
paradigm, QSAR modeling is firstly employed to make 
predictions for unlabeled data, and MMPA is subse-
quently used for chemical transformation analysis based 
on the predicted activities/properties of compounds [23, 
24]. The results showed that a large number of useful 
transformations can be detected by the MMPA-by-QSAR 
paradigm for driving molecular optimization based on 
accurate QSAR model predictions. Recently, our research 
group has taken logD7.4 as an example to show how 
accurate the predicted results can be gained through the 
appropriate application of consensus QSAR modeling 
and applicability domain evaluation [25]. A comparison 

of the magnitude and directionality of the rules derived 
from the predicted data with those derived from the 
experimental data revealed that the mixed data covering 
credible predicted data and experimental data allow one 
to generate more design ideas without introducing much 
noise [25]. Considering the utility of MMPA in molecu-
lar optimization, several tools have been developed for 
MMP construction and aggregation. In 2018, Dalke 
et  al. presented an open-source MMP platform called 
mmpdb, which applies a fragment-and-index engine 
with the use of fingerprints for environment capturing 
[26]. In 2020, Lumley et al. developed the LillyMol toolkit 
which includes the methods for aggregating MMPs into 
summarized transformations [27]. However, the above 
MMP calculation tools are quite difficult to be used for 
researchers with poor programming background, thus 
impeding the achievement of more meaningful MMPA. 
More importantly, none of the above tools is specifically 
designed for MMPA-by-QSAR manipulation, which has 
largely limited the chemical exploration of experimental 
datasets, especially for small datasets.

Herein, we developed a new semi-automated pipe-
line based on the KNIME platform to support chemical 
transformation mining for either large- or small-scale 
experimental datasets. For large datasets, the integral 
compilation of MMP calculation, chemical context clus-
tering, statistical test and transformation application can 
aid an understanding of the structural changes that drive 
the optimization of key pharmacological properties. 
More importantly, this work also accomplishes a com-
prehensive MMPA-by-QSAR pipeline for small datasets, 
including molecular preparation, QSAR model construc-
tion, applicability domain evaluation, MMP calculation, 
and transformation generation and application. The 
combination of QSAR and MMPA enables not only the 
discovery of new transformations but also the amplifica-
tion of existing ones by providing more evidence of the 
observed effects. It is believed that the reasonable appli-
cation of this pipeline can be beneficial to the automated 
optimization of suboptimal molecular properties during 
the early stages of drug discovery and development.

Materials and methods
Computational tools
This study was performed using the open-source KNIME 
v. 4.1.2 software available free of charge at https:// www. 
knime. com [28]. The related extensions were automati-
cally installed after KNIME import. Before the above 
program was executed, the Python environment and R 
path were correctly configured, as seen in “File>>>Prefe
rences>>>KNIME>>>Python” and “File>>>Preferences
>>>KNIME>>>R,” respectively. The R version should be 
higher than 3.6.0. We used Python 3, and the downloaded 

https://www.knime.com
https://www.knime.com
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RDKit, pandas, sklearn, numpy, matplotlib and Scopy 
(https:// github. com/ kotori- y/ Scopy) modules [29]. More 
details about the dependencies in the pipeline are sum-
marized in Additional file 4: Table S1.

Workflow description
The procedure described below was implemented as a 
KNIME workflow. To benefit the utilization, the guidance 
for users on how to install and use the workflow is pro-
vided in Additional file  3. This pipeline is called “semi-
automated” because the most parts can be achieved with 
a click of mouse. However, expert judgment and manual 
inspection are needed and even necessary in the whole 
process, since some errors are obvious to a human, but 
are still not obvious for computers. Therefore, a final 
manual intervention is required to check the presence 
of errors that cannot be identified by a completely auto-
mated procedure. The whole workflow includes three 
main parts, namely data preparation, model construction 
and evaluation, and MMP calculation (Fig. 1).

Data preparation
The checking and preparation of molecular structures 
are the necessary prerequisites for the subsequent struc-
tural analysis. For QSAR model derivation, data quality is 
extremely important, as it strongly affects the robustness 

of and predictive power of the final model [30]. For 
MMPA, the compounds used for analysis must be in a 
consistent salt, charge, and tautomeric state [31]. Con-
sidering the requirements of QSAR analysis and MMPA, 
the molecular preparation module was designed as fol-
lows: (1) inspection of broken bonds, dummy atoms, and 
charges; (2) salt and mixture removal; (3) normalization 
of functional groups to a consistent format and tautomer 
enumeration; (4) labeling of uncommon element and chi-
rality information; and (5) normalization and duplicate 
deletion [32]. It is believed that, through the systematic 
data curation, the analysis and summary of chemical 
transformation will be more reliable.

Model construction and evaluation
The construction of accurate and credible prediction 
models is of utmost importance for MMPA-by-QSAR. 
To achieve the expansion of credible prediction results, 
this pipeline provides a convenient and comprehensive 
module for model construction and evaluation, including 
descriptor calculation and selection, model construction 
and evaluation, and the selection of accurate prediction 
results.

For descriptor calculation, the MMPA-by-QSAR pipe-
line provides 17 frequently used descriptors and finger-
prints, including MOE2D, RDKit, Morgan fingerprints, 

Fig. 1 Representation of MMPA and QSAR‑assisted‑MMPA pipeline

https://github.com/kotori-y/Scopy
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etc. The QSAR models based on these descriptors and 
fingerprints that represent comprehensive structural and 
physicochemical information tend to have good predic-
tive performance. In addition, this pipeline also sup-
ports the calculation of two types of molecular scaffolds, 
namely Murcko scaffolds and carbon skeletons, for the 
exploration of chemical diversity and further data group-
ing [32, 33]. To remove irrelevant variables, the feature 
selection process is provided as the following steps: (1) 
the descriptors with a variance of zero or close to zero 
are deleted; (2) if the correlation coefficient between two 
descriptors exceeds 0.95, only one descriptor is selected; 
(3) the recursive feature elimination algorithm is used for 
variable selection [34]. Such detailed settings allow both 
efficient molecular feature extraction and credible model 
construction.

In addition to descriptor calculation, the choice of an 
appropriate ML algorithm is also important for the effec-
tiveness of prediction models. Based on our previous 
experiences, four effective ML algorithms, namely ran-
dom forest (RF), extreme gradient boosting (XGBoost), 
support vector machine (SVM), and gradient boosting 
(GB), are provided in this pipeline for model construc-
tion [35–37]. According to our previous studies, a con-
sensus model constructed by averaging the outputs of 
multiple individual models is recommended for the final 

predictions in this pipeline [38–41]. Considering the 
importance of model hyper-parameters, the MMPA-by-
QSAR pipeline uses the grid search method and a valida-
tion set to optimize model hyper-parameters. To benefit 
the efficiency of model construction, the common scopes 
of important parameters of different algorithms were 
summarized in Additional file 3.

To ensure that the prediction models are qualified for 
MMPA-by-QSAR, fivefold cross-validation and test sets 
were used for evaluation. For classification models, the 
evaluation statistics include overall prediction accuracy, 
prediction accuracy of the positive set (sensitivity), pre-
diction accuracy of the negative set (specificity), F-index, 
precision and recall (Table 1). In addition, receiver oper-
ating characteristic curve and area under the receiver 
operating characteristic curve (AUC) were used to 
evaluate the comprehensive performance of classifica-
tion models. For regression models, three main statisti-
cal parameters, including squared correlation coefficient 
(Q2/R2), root mean squared error (RMSE) and mean 
absolute error (MAE), were applied to evaluate models.

Except integral model evaluation, detection of the 
accurate results for the predicted molecules is even more 
important, since the QSAR-based prediction of phar-
macological or physicochemical properties is of limited 
value without an estimated model applicability domain 

Table 1 The statistical parameters of model prediction performance

Category Parameters Definition Meaning

Classification prediction models True positive (TP) Real label = 1 and predicted label = 1 Number of correctly classified positive 
results

True negative (TN) Real label = 0 and predicted label = 0 Number of correctly classified negative 
results

False positive (FP) Real label = 0 and predicted label = 1 Number of misclassified positive 
results

False negative (FN) Real label = 1 and predicted label = 0 Number of misclassified negative 
results

Accuracy (ACC) ACC = (TP + TN)/(TP + TN + FP + FN) Overall prediction accuracy

Sensitivity (SE) SE = TP/(TP + FN) Prediction accuracy of the positive set

Specificity (SP) SP = TN/(TN + FP) Prediction accuracy of the negative set

Precision Precision = TP/(TP + FP) Efficiency of positive results prediction

Recall Recall = TP/(TP + FN) Coverage of positive results prediction

Index F (F1) F1 = 2Precison * Recall/(Preci‑
sion + Recall)

Evaluation of the comprehensive 
performance of the models

Receiver operating characteristic 
(ROC) curve area under the Roc 
curve (AUC)

The probability that a randomly 
chosen positive example is ranked 
higher than a randomly chosen 
negative example

The performance of the classification 
model as its discrimination threshold 
is varied

Regression prediction model Squared correlation coefficient  (Q2/
R2) Q2/R2 = 

1−

∑m
i=1 (yi−ŷi)

2

∑m
i=1 (yi−yi)

2

Squared correlation coefficient

Mean absolute error of cross valida‑
tion (MAE) MAE = 

1

m

m∑
i=1

(
yi − ŷi

)2 Mean absolute error of cross validation

Root mean squared error (RMSE) RMSE = 
√
(MAE) Root mean squared error
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(AD). Therefore, AD evaluation was provided in this 
pipeline for accurate prediction selection and credible 
expanded dataset construction. CONCORDANCE, a 
parameter which reflects the number of models that pro-
vide the same prediction result of the current models to 
consensus model, was mainly used for classification pre-
diction accuracy assessment (Formula 1) [42].

where y(M) and  yi(M) are the predicted results of com-
pound M, given by the consensus model and single mod-
els, N is the number of all models (includes the consensus 
model), and eq is equality indicator (equal to 1 if the 
arguments are equal and to 0 otherwise). In addition, the 
predicted score of the consensus model was also used as 
a supplement, since compounds with higher (or lower) 
prediction scores are more likely to be positive-label data 
(for negative-label data) [38, 40].

For regression models, the standard derivation of the 
ensemble members (Ensemble_SD) was used for the 
model AD evaluation, which is defined as follows:

where Xi and X  are the predicted results of a model and 
the final consensus model, respectively, and N is the 
number of models. The standard deviation of the ensem-
ble members’ output can be viewed as a way to charac-
terize the reliability of predictions in regression problems 
[43]. Therefore, Ensemble_SD is a measure of the vari-
ability of the prediction, where the less variation is more 
likely to get more accurate prediction [44, 45].

However, it should be noted that though the applica-
tion of the above methods can be beneficial for discrimi-
nating reliable prediction results, the current state of 
AD evaluation is still under exploration. Therefore, it is 
suggested to use a stringent threshold for AD coverage 
to detect accurately predicted molecules to avoid noise 
introduction. Only the predicted compounds meeting 
the stringent AD requirement can be used for the con-
struction of reliable chemical transformation rules.

MMP analysis
In the present pipeline, MMPs were generated using an 
implementation of the Hussain and Rea algorithm, which 
identifies shared substructures by fragmenting each 
molecule and then storing and indexing all enumerated 
fragments in an inverted-file-like structure [46]. Several 
parameters can be adjusted during the fragmenting pro-
cess, such as fragmentation type, hydrogen manipulation, 

(1)CONCORDANCE =

N
∑

i=1

eq
(

y(M), yi(M)
)

,

(2)Ensemble_SD =

√

√

√

√
1

N − 1

N
∑

i=1

(

Xi − X
)2

,

maximum number of cuts, maximum number of heavy 
atoms in fragments, and the ratio of changing to 
unchanging parts (for details, see Additional file  3), to 
meet the need of different research tasks. To ensure the 
credibility of the compiled chemical transformation, the 
requirement for the minimum number of MMPs and 
statistical significance tests were also integrated into this 
pipeline. The Wilcoxon signed rank test for continuous 
variables (alpha = 0.05) and the binomial distribution 
test for discrete variables (probability of success = 0.5, 
alpha = 0.05) were used to evaluate the statistical signifi-
cance of continuous and binomial values, respectively. 
In this study, the term of “rule” refers to the chemical 
transformation leading to a change in a pharmacologi-
cal or physiochemical endpoint which passes the statis-
tical significance test with enough MMPs. As the rules 
are generalized over many compound pairs, the context 
information of a specific MMP is important for detecting 
the specificity and generalizability of structural changes 
[12]. Therefore, in this pipeline, the Morgan fingerprint 
of the entire molecular context was used for the corre-
sponding clustering, which enables the detection of the 
chemotype diversity of the summarized rules. Actually, it 
is suggested that at least five clusters are needed for the 
generality of a chemical transformation [47]. After MMP 
calculation and rule compilation, the final rules can be 
applied to optimize the properties of initial molecules, 
and the optimized molecules can be further evaluated 
according to the drug-likeness index and substructural 
rules [29, 48]. The comprehensive workflow of MMP cal-
culation and application has benefited the efficiency of 
chemical transformation discovery that can be used for 
the property optimization of lead molecules.

Results and discussion
To better understand the utility and advantages of the 
MMPA-by-QSAR pipeline, we selected the MMPA of 
logP and human hERG (including both regression and 
classification prediction models) as two examples for fur-
ther explanation [49, 50]. Two commercial compound 
libraries, ChemBridge (1,595,088 molecules) and Chem-
Div (1,962,494 molecules), were selected as the external 
datasets for model prediction.

MMPA of logP dataset
logP, representing molecular lipophilicity, significantly 
influences drug potency, ADME and toxicity. Com-
pounds with high lipophilicity are more likely to bind 
multiple targets, which increases the probability of high 
promiscuity [48]. Whereas compounds with low lipophi-
licity are more likely to exhibit problematic permeability 
and renal clearance. Therefore, the optimal lipophilic-
ity range is highlighted in drug design and optimization 
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phases. For a better understanding of the effective sub-
structural transformation rules of logP, 16,146 com-
pounds with experimental logP values were collected 
from ADMETlab [49, 50]. Two molecular representa-
tions (MACCS and MOE2D descriptors) and four ML 
algorithms were used to construct the logP prediction 
models. The consensus model was finally constructed by 
averaging the prediction values of eight individual mod-
els (based on the combination of four ML algorithms 
and two sets of molecular descriptors). To verify the reli-
ability and predictive ability of the prediction models, 
according to the calculated chemical scaffolds, all the 
compounds were divided into the training set (12,916 
compounds, 80%), validation set (1615 compounds, 10%), 
and test set (1615 compounds, 10%), which were used for 
model construction, hyper-parameter optimization, and 
model evaluation, respectively. The statistical results of 
the 10 fivefold cross-validations and test set predictions 
are summarized in Table 2.

As shown in Table 2, all the nine ML models performed 
well for both the fivefold cross-validation and test sets, 
featuring average  Q2 and  Rtest

2 of 0.921 and 0.939, respec-
tively, and thus having high prediction capability. Among 
the nine ML models, the consensus model showed the 
best prediction ability, as revealed by its high  Q2 (0.943) 
and  Rtest

2 (0.957), and was therefore applied to predict the 
unknown molecules in the two commercial compound 
libraries.

After constructing the reliable models, the next step is 
to determine the appropriate AD threshold for the detec-
tion of accurately predicted molecules. To achieve it, we 
collected the standard deviation of the fivefold cross-val-
idation and test set prediction results and then calculated 
the RMSEs of the molecules separately by the stepwise 

addition of molecules with larger prediction variance val-
ues (Fig. 2).

It can be seen from Fig. 2 that with the stepwise addi-
tion of molecules with large prediction variance, the pre-
diction performance defined by the RMSE continuously 
deteriorated, suggesting that the prediction accuracy of 
each molecule could indeed be reflected by the predic-
tion variance values to some extent, which indicated the 
utility and credibility of the AD method applied in this 
pipeline. Finally, taking RMSE = 0.300 as a threshold, we 
chose the compounds with an average prediction vari-
ance of less than 0.6 as the accurate prediction results. 
After the removal of the duplicates, 16,821 molecules 
from the ChemBridge and ChemDiv databases were 
compiled for the subsequent MMP calculation, and they 
substantially expanded the data size for further MMPA.

For the MMP calculation, both the experimental and 
accurately predicted data used the configuration of cut-
ting all acyclic single bonds and a maximum of three cuts. 
Only the transformations containing more than 10 pairs 
and passing the Wilcoxon signed rank test (alpha = 0.05) 
were regarded as the final rules (see Additional file 1). For 
the experimental dataset, 1,367,650 MMPs and 10,650 
unique transformations with more than 10 groups were 
generated, of which 8728 rules were obtained. During the 
detection of experimental rules, the standard deviation 
(SD) and standard error of mean (SEM) of different rules 
were calculated and summarized. As shown in Additional 
file 4: Fig. S1, with the increase of chemical clusters (cal-
culated by the combination of Morgan fingerprint and a 
Tanimoto cut-off of 0.7), the SD of rules mean value first 
increased, but after a point, it became stable and almost 
unchanged. For the value of SEM, it firstly increased 
and then became stable, which is followed by a decrease 

Table 2 Performance of the logP prediction models derived from different combinations of ML algorithms and descriptor sets

a The squared correlation coefficient of the cross-validation and test set prediction  (Q2 and  Rtest
2), the mean absolute error of the cross-validation and test set 

prediction  (MAEcv and  MAEtest), and the root mean squared error of the cross-validation and test set prediction  (RMSEcv and  RMSEtest)

Fivefold cross-validation Test set

Q2a MAEcv
a RMSEcv

a Rtest
2a MAEtest

a RMSEtest
a

MACCS

 GB 0.931 0.338 0.471 0.950 0.294 0.410

 RF 0.873 0.470 0.640 0.907 0.405 0.561

 SVM 0.882 0.458 0.616 0.905 0.419 0.567

 XGBoost 0.931 0.333 0.470 0.955 0.279 0.388

MOE2D

 GB 0.944 0.292 0.423 0.954 0.264 0.395

 RF 0.922 0.358 0.501 0.937 0.320 0.461

 SVM 0.922 0.346 0.500 0.937 0.309 0.464

 XGBoost 0.946 0.289 0.417 0.956 0.263 0.386

Consensus model 0.943 0.304 0.426 0.957 0.267 0.382
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finally. Such results have shown that transformation rules 
with more MMPs and chemical clusters are more likely 
to be generalized and credible, which have also indicated 
the importance of data expansion. For the accurately pre-
dicted dataset, 75,872 rules were finally obtained. After 
the combination of experimental and predicted data, the 
numbers of the unique transformations with more than 
10 groups (104,336) and rules (91,510) were approxi-
mately ten times larger than those obtained from the 
experimental dataset, illustrating that the scale of MMPs 
can be significantly expanded by the application of the 
MMPA-by-QSAR pipeline.

In addition to the expansion of the whole rules, 
MMPA-by-QSAR enables the amplification of exist-
ing ones by providing more evidence of the observed 
effect. As shown in Fig.  3A, a total of 23,680 transfor-
mations which haven’t passed the statistical test in the 
experimental dataset analysis have been amplified, of 
which 76.3% (18,069) were converted into rules in the 
expanded dataset analysis. For existing rules, 5574 rules 
from the experimental dataset analysis have also been 
amplified according to the increase of both MMPs and 
chemical clusters. To demonstrate the reliability of the 
MMP rules generated by the MMPA-by-QSAR pipeline, 
we continued to compare the magnitude and direction-
ality of the rules from the expanded dataset with those 
from the experimental set. As shown in Fig.  3B, C, the 

rules derived from the expanded dataset well agreed with 
those derived from the experimental dataset with an  R2 
of 0.986, while the agreement between the expanded 
rules and experimental transformations which did not 
pass the statistical test was slightly lower with an  R2 of 
0.916. These results are not surprising because the num-
ber limitation of the initial groups can also negatively 
affect the accuracy of property change estimation.

To further demonstrate the credibility of the rules pro-
posed by prediction models, we applied the newly pre-
dicted rules (which have never been derived from the 
experimental data) to the experimental data for compari-
son (Table 3). Clearly, our predicted rules are in qualita-
tive agreement with these actual experimental data. The 
above results have indicated that to some extent, the 
MMPs calculated from MMPA-by-QSAR pipeline are 
useful for rules expansion and amplification, which is 
valuable for lead optimization. In general, more design 
principles for lead optimization and modification can 
be extracted through the application of this MMPA-by-
QSAR pipeline by combining experimental and accu-
rately predicted data, which greatly increases the scope 
and efficiency of MMPA.

MMPA of hERG dataset
The human ether-à-go-go-related gene (hERG) 
codes a protein known as Kv11.1, the α-subunit of a 

Fig. 2 The application domain for LogP prediction model. The x‑axis represents the standard derivation of the predicted data and the y‑axis 
represents the value of RMSE, which is calculated by stepwise adding molecules with large prediction variance. Above figure has indicated that with 
the increase of variance threshold, the accuracy of predicted data will improve
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potassium-ion channel that mediates the inward repolar-
izing current as a part of the voltage cycle displayed in 
the electrocardiogram and is closely related to cardio-
toxicity. Several drugs, such as terfenadine, astemizole, 
and cisapride, have been withdrawn because of their 
ability to inhibit hERG and thus induce QT-interval 
prolongation [48]. Therefore, the early-phase optimiza-
tion of potential hERG inhibitors is highly important. 
To construct reliable hERG chemical transformation 
rules, 13,384 compounds containing 6736 hERG block-
ers (IC50 ≤ 10  μM or ≥ 50% inhibition at 10  μM) and 
6,648 non-inhibitors (IC50 > 10  μM or < 50% inhibition 

at 10 μM) were collected from the ADMETlab webserver 
[49, 50]. The MACCS and MOE2D descriptors and four 
ML algorithms were used to construct the hERG predic-
tion models, and the consensus model was also estab-
lished to further improve the prediction performance. 
The compounds through the molecular preparation pro-
cess were partitioned into the training set (4321 hERG 
inhibitors and 4254 non-inhibitors), the validation set 
(1078 hERG inhibitors and 1063 non-inhibitors), and the 
test set (1346 hERG inhibitors and 1331 non-inhibitors), 
which were used for model construction, hyper-parame-
ter optimization, and model evaluation, respectively. The 

Fig. 3 The relationship between the rules from expanded dataset and experimental dataset. A The composition and amplification effect of 
rules and transformations by expanded dataset. B The plots of the extended rules versus the measured magnitude of the property change for 
experimental transformations. C The plots of the extended rules versus the measured magnitude of the property change for experimental rules. 
Above figures have that MMPA‑by‑QSAR method can be used for transformation and rules amplification, where the expanded rules also agree well 
with the magnitude and directionality of the experimental rules
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statistical results of the 10 fivefold cross-validation and 
test set predictions are summarized in Table 4.

Table  4 reveals that most prediction models per-
formed well for both the training and test sets, with an 
average accuracy of 0.858 and an average AUC of 0.925 
for the fivefold cross-validation, and an average accu-
racy of 0.864 and an average AUC of 0.934 for the test 
set. As the prediction performance of the consensus 
model (accuracy = 0.874/0.879 and AUC = 0.935/0.946 
for the fivefold cross-validation/test set) is superior to 

those of the individual models, the consensus model 
is used as the final hERG prediction model. Similarly, 
to detect the appropriate AD threshold, we summa-
rized the CONCORDANCE values of the fivefold 
cross-validation and test set predictions, and recorded 
the changes of the values of precision and recall with 
stepwise addition of molecules with larger CONCORD-
ANCE counts (Fig. 4).

Figure  4 shows that with increasing the CONCORD-
ANCE count, the precision value initially remains stable 

Table 3 The application of the novel transformations from predicted data to experimental data

Rules ΔLogP (npairs) ΔPre ± std (npairs) Initial molecule (LogP) Transformed molecule (LogP)

− 0.064 (5) 0.026 (216) 

(− 0.06)
(− 0.14)

0.273 (4) 0.029 (38) 

(− 0.88)
(− 0.88)

0.280 (1) 0.100 (11) 

(0.81) (1.09)

− 0.015 (2) 0.063 (12) 

(2.28)
(2.37)

− 0.040 (6) − 0.146 (16) 

(3.82) (3.66)

− 0.050 (4) − 0.287 (10) 

(0.91)

(0.58)
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and then increases, indicating that the prediction results 
agree upon by most models are more reliable than those 
with low approval. It is also not surprising to see that the 
recall value slightly decreases with the increase of the 
CONCORDANCE count, as the high limitation implies 
strict screening and possible loss. The above results have 
indicated the utility of the AD evaluation of this pipeline 
for the classification task, which also enhances the cred-
ibility for further MMP calculation and analysis. Taking 
the full CONCORDANCE score as the final limitation, 

the potential hERG inhibitors predicted with a probabil-
ity of more than 0.95 and non-inhibitors predicted with 
a probability of less than 0.025 were compiled for data 
expansion. After such harsh selection, 40,700 non-inhib-
itors and 48,717 potential inhibitors were combined with 
the experimental molecules as the expanded dataset. 
MMPA was performed based on both the experimental 
and expanded datasets with a configuration of cutting 
all acyclic single bonds and a maximum of three cuts. To 
ensure the reliability and utility, the final transformation 

Table 4 Performance of the hERG prediction models derived from different combinations of ML algorithms and descriptor sets

Fivefold cross-validation Test set

SE SP ACC AUC SE SP ACC AUC 

MACCS

 GB 0.873 0.84 0.857 0.925 0.883 0.860 0.871 0.939

 RF 0.857 0.803 0.830 0.902 0.871 0.809 0.840 0.915

 SVM 0.836 0.851 0.843 0.914 0.846 0.861 0.854 0.929

 XGBoost 0.874 0.84 0.857 0.926 0.880 0.863 0.872 0.939

MOE2D

 GB 0.878 0.855 0.866 0.934 0.896 0.865 0.880 0.942

 RF 0.872 0.844 0.858 0.925 0.883 0.839 0.861 0.935

 SVM 0.883 0.856 0.869 0.936 0.854 0.841 0.848 0.920

 XGBoost 0.883 0.856 0.869 0.936 0.887 0.866 0.877 0.945

Consensus model 0.865 0.882 0.874 0.935 0.894 0.865 0.879 0.946

Fig. 4 The AD evaluation of the hERG prediction model. The x‑axis represents the amount of CONCORDANCE and the y‑axis represents the value of 
precision and recall. Above figure has shown that with the increase of CONCORDANCE, the value of precision will increase and recall will decrease
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rules need to satisfy the following requirements: num-
ber of pairs exceeds six, potential hERG inhibition pos-
sibility decreases, and a binomial distribution test for 
discrete variables is passed (probability of success = 0.5, 
alpha = 0.05). The results are summarized in Additional 
file 2.

Compared with the MMPA based on continuous data, 
the analysis of labeled data is much more difficult and 
narrowed. This is also the reason why the comprehensive 
MMPA-by-QSAR pipeline is urgently needed for chemi-
cal transformation mining. For the experimental dataset, 
only 9983 chemical transformations and 99 transforma-
tions with more than six groups were identified, of which 
only three chemical rules passed the statistical signifi-
cance test. Similar to the logP research, more chemical 
transformations have been amplified through the pro-
cess of the MMPA-by-QSAR pipeline. For the expanded 
dataset, 45 chemical rules were generated, of which three 
chemical rules and two transformation conversions from 
the experimental dataset were included.

To explore the credibility of the newly added chemi-
cal rules from the expanded dataset, we compared 
them with the data reported by previous hERG studies. 
As shown in Table 5, most toxic substructures contain 

the piperidine or piperazine moieties with positively 
charged nitrogen atoms. According to previous studies, 
it has been widely accepted that a positively charged 
nitrogen generally increases the likelihood of hERG 
binding due to cation–π interactions with Tyr652. Ter-
tiary amine groups linked by a hydrophobic tail are also 
potential hERG-binding fragments, as the hydrophobic 
part of such fragments may engage in strong van der 
Waals or hydrophobic interactions with hERG residues 
such as Phe656. To avoid potential hERG inhabitation, 
several transformation directions have been proposed 
in the expanded rules, such as the substitution of car-
bonyl linker and methylene linker. The above analysis 
not only shows the utility of MMPA but also indicates 
the advantages of the MMPA-by-QSAR pipeline in the 
chemical transformation mining of small experimental 
datasets. It can achieve both the amplification of exist-
ing rules and the enrichment of newly credible trans-
formations. By rational application of this pipeline, it is 
believed more structural optimization guidance can be 
acknowledged and applied for the promotion of drug 
design and research.

Table 5 The comparison of the hERG rules from experimental data and expanded data

a Toxicity change = (the number of pairs that increase toxicity − the number of pairs that decrease toxicity)/the number of all pairs

Rules Experimental data Expanded data

Toxicity  changea npairs Toxicity  changea npairs

 − 0.026 344 0 22,024

 
− 0.046 322 − 0.001 13,353

 

− 0.040 151 − 0.002 3657

 

None None − 1 9

 

None None − 1 15

 

None None − 1 6

 

None None − 1 8

 

None None − 1 6
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Conclusion
Drug discovery has always been hindered by the problem 
of lead compound optimization. MMPA, a useful tool for 
efficiently extracting and summarizing the relationships 
between structural transformation and property change, 
is suitable for local structural optimization tasks. In par-
ticular, the integration of MMPA with QSAR modeling 
can further strengthen the utility of the former in molec-
ular optimization navigation, especially for small experi-
mental datasets. Herein, an integral and semi-automated 
procedure was constructed for MMPA and MMPA-by-
QSAR construction and application, including molecule 
preparation, QSAR model construction, applicability 
domain evaluation, and MMP calculation and applica-
tion. Easy-management and the integration of QSAR and 
MMPA of this workflow allow medical chemists for wider 
and deeper chemical transformation mining of experi-
mental datasets, in which molecule preparation and AD 
limitation ensure the consistency and credibility of exper-
imental and predicted data, respectively. The systematic 
statistical test and MMP context clustering have further 
guaranteed the efficacy and generality of the summarized 
rules in practical molecular optimization. Furthermore, 
the application of negative design screening tool ben-
efits the quality of optimized molecules by filtering out 
molecules with undesirable properties or substructures. 
To demonstrate the utility of this pipeline, two exam-
ples covering regression and classification tasks were 
provided to better understand the utility of this pipeline 
and demonstrate the efficiency of comprehensive MMP-
based analysis and the reliability of the MMPA-by-QSAR 
method (Additional files 5, 6). The rational application of 
this pipeline should allow chemists to draw more useful 
information on chemical transformations and appropri-
ate optimization navigation across limited datasets, thus 
increasing the efficiency and success rate for the develop-
ment of productive activities.
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