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Abstract 

A key concept in drug design is how natural variants, especially the ones occurring in the binding site of drug targets, 
affect the inter-individual drug response and efficacy by altering binding affinity. These effects have been studied on 
very limited and small datasets while, ideally, a large dataset of binding affinity changes due to binding site single-
nucleotide polymorphisms (SNPs) is needed for evaluation. However, to the best of our knowledge, such a dataset 
does not exist. Thus, a reference dataset of ligands binding affinities to proteins with all their reported binding sites’ 
variants was constructed using a molecular docking approach. Having a large database of protein–ligand complexes 
covering a wide range of binding pocket mutations and a large small molecules’ landscape is of great importance for 
several types of studies. For example, developing machine learning algorithms to predict protein–ligand affinity or a 
SNP effect on it requires an extensive amount of data. In this work, we present PSnpBind: A large database of 0.6 mil-
lion mutated binding site protein–ligand complexes constructed using a multithreaded virtual screening workflow. It 
provides a web interface to explore and visualize the protein–ligand complexes and a REST API to programmatically 
access the different aspects of the database contents. PSnpBind is open source and freely available at https:// psnpb 
ind. org.
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Introduction
Over the last 50 years, pharmacogenomics has stud-
ied the genetic basis for inter-individual drug response 
variability [1]. Many factors are involved in patient-drug 
response, for instance, environmental and behavioral 
factors. At the same time, genetic factors also play an 
essential role [2]. Genetic factors that can have func-
tionally substantial consequences on drug response are 

numerous. For example, they include genetic variants’ 
effects on the protein structure and stability, DNA tran-
scription, and mRNA regulation [1]. Studies have shown 
that 80% of patients carry at least one functional vari-
ant in the drug targets of the top 100 most commonly 
prescribed drugs in the United States [3]. The variation 
in drug-response at the protein level and its underlying 
mechanisms are of a significant interest in developing 
new drugs with an estimate of six single nucleotide poly-
morphisms (SNPs) affecting five different FDA-approved 
drugs carried by every individual [4].

Mutations that occur in the binding site of a target 
protein may change the protein–ligand binding affinity, 
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which can lead to a substantially different phenotype 
resembling lower efficiency of the drug or higher off-
target binding affinity that could lead to side effects [5]. 
Nevertheless, large-scale studies of the effect of SNPs 
occurring at the binding site of proteins on a structural 
level do not exist to the best of our knowledge. Besides, 
studies often focus on one protein with a limited number 
of variants [6–13]. For example, Doss et  al. studied the 
effects of SNPs in the anaplastic lymphoma kinase (ALK) 
protein on the patient’s drug response including 21 bind-
ing site related SNPs. Furthermore, these studies need 
substantial computational power because they mostly 
rely on demanding molecular dynamics simulations. As 
a result, performing such studies on a large-scale, includ-
ing a wide range of proteins and ligands, is expensive and 
laborious.

Several studies [14–23] tackled the topic of creating a 
database or web server for mapping SNPs onto protein 
structures, as shown in Table  1. However, we identified 
several issues after a thorough analysis of these resources. 
For example, none of these projects provide data about 
the binding site residues’ mutations or their effect on 
ligand binding. Besides, most of them [15, 16, 18–20, 22] 
are either no longer available or outdated. Others [14, 17, 
21, 23] are not downloadable and do not provide appli-
cation programming interfaces (APIs) for programmatic 
access. Having a large database of protein-ligand com-
plexes covering a wide range of binding pocket muta-
tions and a large small molecules’ landscape is of great 
importance for several types of studies. For example, 

developing machine learning algorithms to predict pro-
tein–ligand affinity or a SNP effect on it requires an 
extensive amount of data with a wide coverage of muta-
tion types and small molecules. Also, studies of protein–
ligand interactions and conformer orientation changes 
across different mutated versions of a protein require 
such a database.

For those reasons, we decided to develop the PSnpBind 
database (https:// psnpb ind. org) to address the lack of 
large datasets about the binding affinity of binding site 
mutated protein-ligand complexes and to provide a base 
for new studies in related fields like drug discovery, phar-
macogenomics, and structural bioinformatics.

Construction and content
Figure  1 shows the methodology of PSnpBind database 
construction. The methodology is composed of 7 steps 
targeting three main processes: protein structures prepa-
ration, ligand structures preparation and protein–ligand 
docking. The following subsections explains in detail 
each step of the methodology.

Data sources
Several data sources were used to integrate the informa-
tion about proteins (structures, sequences, and variants), 
ligands structures and protein-ligand complexes struc-
tures and relevant information. Figure 1 shows the main 
data sources used and the filtering criteria applied on 
each one.

Table 1 List of databases related to SNPs effect analysis and visualization

Database Last update Comment

MSV3d [14] 2016, Not downloadable, (web only) Mutated structures built using MODELLER. The website also contains conservation and 
physio-chemical changes. SwissVar and dbSNP are the main sources of SNPs

PinSnps [15] 2013 Exploring the impact of SNPs on Protein Domains and Complexes

LS-SNP/PDB [16] 2009, Not available anymore

G23D [17] 2016, Not downloadable, (web only) Used software: SCCCOMP and SCWRL for Side chain modeling, JSmol for molecular graphics, 
I-mutant and FoldX for thermostability prediction

SNPs3D [18] 2008, Not downloadable SNP impact on protein structure and function. A Support Vector Machine (SVM) model was 
used to find the separation pattern between a set of diseases and non-deleterious SNPs. The 
resulting pattern was then validated using a different set of diseases and non-deleterious 
SNPs.

SAAPdb [19] No longer maintained A newer project SAAPdap/SAAPpred is available - analysis pipeline for examining the struc-
tural effects of mutations/prediction of pathogenicity.

SNP2Structure [20] Not available anymore

PhyreRisk [24] 2019, Not downloadable (web only) A dynamic web application to bridge genomics, proteomics and 3D structural data to guide 
interpretation of human genetic variants.

toposnp [21] 2019, Databases are up to date, Not 
downloadable, (web only)

Topographic mapping of Single Nucleotide Polymorphism

coliSNP [22] Not available anymore

StructMAn [23] 2016, Not downloadable (web only) Annotation of non-synonymous single-nucleotide polymorphisms (nsSNPs) in the context 
of the structural neighbourhood of the resulting amino acid variations in the protein.

https://psnpbind.org
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PDBbind
PDBbind [25] provides a comprehensive collection of 
the experimentally measured binding affinity data for all 
types of biomolecular complexes deposited in the Protein 
Data Bank [26]. The entire PDB was screened to identify 
complexes and build the PDBbind database. This data 
source provides the biomolecular complexes grouped 
into four groups (protein–ligand, protein-nucleic acid, 
nucleic acid-ligand, and protein-protein complexes). For 
our project, we were only interested in protein-ligand 
complexes which are also distributed over three datasets:

• General set: all protein–ligand complexes from PDB.
• Refined set: a standard data set for docking and scor-

ing studies.
• Core set: includes high-resolution crystal structures 

and reliable binding constants.

Building the PDBbind database included collecting all 
the complexes from PDB without performing struc-
tural optimization or any type of transformation on the 
coordinates. Binding affinity data (dissociation constant 
 (Kd), inhibition constant  (Ki), and concentration at 50% 
inhibition  (IC50)) were collected from the primary refer-
ences of the deposited entries. The authors applied a pri-
ority order of  Kd >  Ki >  IC50 when more than one value 
appeared in the references, and they only recorded the 
data with the highest priority. Also, in case of binding 
affinities measured under different conditions (tempera-
ture and pH) for any complex, only the results measured 
at neutral pH and room temperature or in assay condi-
tions close to that were recorded.

PDBbind also provides a residue-level annotation for 
the amino acids involved in the binding pockets of the 
protein-ligand complexes. It is a crucial piece of informa-
tion for our project to map the missense SNPs onto the 
binding pocket residues.

Fig. 1 Methodology workflow. Steps 1, 2 and 3 filter the data from the main sources and map them together. Step 4 and 5 prepare the selected 
protein PDBs and their mutated versions for docking. Step 6 prepares the ligands. Step 7 performs the docking
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We chose to use the PDBbind core set version 2016 
(also called Comparative Assessment of Scoring Func-
tions “CASF” dataset) in this work mainly because it is a 
concise version of the refined set where all redundancy is 
eliminated. Besides, the size of the dataset is smaller and 
more practical to work with. CASF 2016 was downloaded 
on October 6th, 2019, from the PDBbind website, and 
contained 285 high-quality protein–ligand complexes, 
out of which 123 complexes are for human proteins.

UniProt
UniProt [27] was used as a source for protein sequences 
and human protein variants. The human variants data-
set from UniProt contained the amino acid substitu-
tions resulting from missense SNPs in the protein-coding 
regions in the human genome. UniProt provides manu-
ally reviewed protein-altering natural variants imported 
from the publicly accessible variant resources such as 
Ensembl Variation [28] and ClinVar [29] databases. Four 
types of variants are included in this dataset annotated 
with Sequence Ontology (SO) identifiers: missense vari-
ants (SO:0001582), stop lost (SO:0001578), stop gained 
(SO:0001587), and initiator codon variants (SO:0001582). 
The version released on October 16th, 2019 was used and 
only the missense variants were considered. The used 
version contains about 29 million variants occurring in 
about 19000 human genes.

SIFTS
SIFTS (Structure Integration with Function, Taxonomy, 
and Sequence) is a project in the PDBe-KB resource for 
residue-level mapping between UniProt and PDB entries 
[30]. It is a close collaboration between the Protein Data 
Bank in Europe (PDBe) and UniProt. It uses NCBI taxo-
nomic identifiers as a standard way of representing taxo-
nomic information for all PDB entries within the PDBe 
database. For all the protein sequences in the PDB that 
are present in the UniProt database, cross-references to 
UniProtKB are added in SIFTS. SIFTS provides an accu-
rate mapping of the sequences from PDB entries on to 
corresponding UniProt entries. It also contains a map-
ping to both:

• SEQRES record in the PDB entry: the complete 
sequence of the protein used in the experiment.

• ATOM record in the PDB entry: the observed resi-
dues in the crystal structure.

This dataset is a vital resource in this project in order to 
be able to map the protein-altering variants in the protein 
sequence to the binding pocket residues in the crystal 
structure.

ChEMBL
ChEMBL is an open database that contains functional, 
binding, and ADMET information for many drug-like 
bio-active compounds (about two million compounds) 
[31]. It is maintained by the European Bioinformatics 
Institute (EBI), of the European Molecular Biology Labo-
ratory (EMBL), based at the Wellcome Trust Genome 
Campus, Hinxton, UK. The data in ChEMBL is manually 
curated from thousands of publications and dozens of 
deposited datasets. The need for a chemical compounds 
dataset is to create a chemical library from similar com-
pounds to the ones selected from PDBbind.

The created library was used to perform molecular 
docking against the proteins selected from PDBbind 
with their mutated version to obtain a reference dataset 
large enough to train a machine learning model on it. 
ChEMBL version 25, released on February 1st, 2019, was 
used in this work.

Dataset construction
To build the dataset of mutated protein-ligand com-
plexes, we needed to identify the natural mutations 
occurring in binding pockets of human proteins selected 
from CASF. The next sections describe the process in 
detail.

Steps 1, 2, and 3: obtaining the list of CASF human proteins 
binding pockets missense variants
First, the PDBbind dataset was downloaded and filtered 
to include only high-resolution structures obtained with 
X-ray crystallography (resolution ≤ 2.5 Å). Even though 
PDBbind contains structures obtained by both X-ray 
and NMR, we only selected the X-ray based structures 
as the number of NMR structures is tiny compared to 
X-ray. There are differences between the two approaches 
with effects on the obtained structures like the number 
of inter-residue contacts and the main-chain hydrogen 
bonds [32]. These differences will, therefore, require 
performing different kinds of preprocessing and analy-
sis, and since the number of NMR structures is low, we 
decided to ignore them.

In X-ray crystallography, heavy atoms scatter the 
X-rays resulting in a diffraction pattern. This pattern can 
be computationally converted back to a detailed protein 
structure. Resolution is a measure of the level of detail 
present in the diffraction pattern. A threshold of 2.5 Å 
for structure resolution was used [33, 34] to ensure that 
atomic details can be seen, while in structures with low 
resolution, only the basic contours of the protein chain 
can be seen.

The entries of PDBbind were also filtered to include 
only the ones with a UniProt ID. The dataset included 
multiple complex structures for the same UniProt 
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proteins (i.e., proteins complexed with more than one 
ligand). Therefore, entries were aggregated by UniProt 
ID, and the proteins with the highest resolution were 
selected from each group. Each ligand that shares a com-
plex with those proteins was also stored.

Next, the variant data from UniProt was downloaded 
and filtered to only include missense variants. Then, 
by doing an “inner join” over the UniProt ID column 
between the UniProt variants and the PDBbind entries 

selected from the previous step, only those missense vari-
ants occurring in the proteins of the PDBbind entries list 
were selected. All the duplicates were removed, and the 
joining resulted in 11749 missense variants belonging to 
26 proteins (26 unique UniProt IDs). Since the variants 
dataset only contains human variants, the resulting data-
set only contained human proteins with their variants. 
Table 2 shows an example list of filtered variants from the 
UniProt variant dataset.

Table 2 Example list of CASF human proteins variants selected from the UniProt variants dataset

Uniprot ID Missense SNP PDB ID Source AA Target AA Residue Num. Chain

O14757 p.Leu92Phe 3jvr L F 92 A

O14757 p.Phe93Val 3jvr F V 93 A

O14757 p.Ile96Val 3jvr I V 96 A

O14757 p.Gly101Cys 3jvr G C 101 A

O14965 p.Gly140Ala 3up2 G A 140 A

After that, the SIFTS mappings for the 26 human pro-
teins were downloaded from the PDB website. Next, the 
BioJava [35] library was used to parse the SIFTS map-
pings. In conjunction with the binding pocket annota-
tions (binding pockets residue numbers) of the PDBbind 
entries, only those variants occurring in the binding 
pocket were retained. All the duplicates were removed, 
and the joining resulted in 705 missense variants 

belonging to 26 protein binding pockets (26 unique Uni-
Prot IDs). Algorithm 1 shows pseudocode for the match-
ing between variants sequence location and pocket 
residues in the PDB structure.

The residues where the mutations occurred were fur-
ther analyzed to understand their nature by assigning 
the wildtype and the mutation amino acids in each resi-
due location to one of the seven functional categories 
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(polar, non-polar, neutral polar, charged polar, nega-
tively charged, positively charged). Next, an UpSet plot 
was generated to quantify the frequency of the mutation 
types (transition from one group to another) across the 
26 proteins in the dataset. The UpSet plot was generated 
using the ComplexHeatmap R package [36] as shown in 
Fig. 2.

Figure 2 shows, on the X-axis, the mutation types inter-
sections reported in the obtained dataset (steps 1,2 and 
3). For example, on the far left, there is one protein hav-
ing binding pocket mutations from all the seven muta-
tion types. Similarly, on the far right, there is one protein 
with only one type of mutation (same functional group, 
in this case). Also, a third example from the middle, there 
are 6 proteins having mutations belonging to four types 
(same functional group, polar to non-polar, non-polar to 
polar and charged to neutral). On the other hand, on the 
Y-axis, it shows the number of proteins having a certain 
type of mutation. For example, on top, there are 24 pro-
teins having mutations from the “Same functional group” 
type. Another example, the last row, there are five pro-
teins having mutations of the type “positive to negative”.

Step 4: Introducing the missense variants to the protein 
structures
After finding the missense variants in the binding pock-
ets of the selected proteins, mutations were introduced 
to the protein structures using FoldX version 5.0 [37], one 
of the best stability predictors upon mutation [38, 39]. In 
this process, the targeted amino acid needs to be replaced 
with the mutated amino acid, and a proper side chain must 
be determined. Also, the structure needs to be optimized 
to incorporate the physio-chemical changes resulting 
from substituting the amino acid, and FoldX takes care of 
modeling these changes. FoldX is an empirical force field 
developed to evaluate the effect of mutations on the fold-
ing, stability, and dynamics of proteins and nucleic acids 
in a fast manner. FoldX identifies the most likely mutant 
residue side-chain rotamers taking into consideration the 
laws governing preserved angle conservation. FoldX uti-
lizes a linear combination of empirical terms to calculate 
the energy fold change upon inducing the mutation, repre-
senting the effect of mutations on the protein structure in 
kcal/mol as described in its main work [37].

The FoldX “BuildModel” command takes the 
PDB structure file as input besides a text file named 

Fig. 2 UpSet plot showing the availability of mutation types across the selected PSnpBind proteins. X-axis shows the number of proteins having 
the corresponding intersection between the mutation types. Y-axis shows the number of proteins having each mutation type
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“individual_list.txt” containing the mutations wanted to 
be introduced to the structure separated by a comma. 
The syntax of representing the mutation in FoldX is (WT 
residue, chain, residue number, mutant residue). In our 
case, we only need to introduce a single mutation at a 
time, so we do not have comma-separated values. For 
example, using the variant information from Table 2, the 
mutations list would be as follows:

• LA92F;
• FA93V;
• IA96V;
• GA101C;
• GA101S;
• RA137C;
• RA137G;
• RA137H;
• GA140A;

Step 5: Energy minimization for the protein structures
The next step is energy minimization (EM) on the 
mutated protein structures. Gromacs version 2019.3 [40] 
with CHARMM27 force field (which is CHARMM22 
that is revised to include CMAP corrections and bundled 
with the CHARMM program version 27) [41] and the 
TIP3P water model [42] were used to remove bad con-
tacts, hindrance-causing torsion angles, etc.

The protein structures were solvated in a cubic box of 
TIP3P water molecules at a distance of 1.2 nm (12 Å) 
from the solvent. The system’s net charge was neutralized 
by adding enough ions in correspondence to the type and 
amount of the protein charge. A cutoff of 1.2 nm for both 
short-range van der Waals and electrostatic interactions 
was used, and PME (Particle Mesh Ewald) was used for 
long-range interactions in all minimizations.

For structures that contained ions in the binding site, 
those ions were added and position restraints were 
applied to the protein structure. Metal ions play impor-
tant roles in biological processes like respiration and the 
structural stability of protein folds [43]. For example, one 
or two zinc ions  (Zn2+) can be coordinated in a small 
protein structural motif, called “zinc finger,” which can be 
found in protein binding pockets in order to stabilize the 
fold.

Energy minimization was performed using the steep-
est descent algorithm. A maximum force of 100 kJ/mol/
nm on any atom of the system was set as the end goal 
for convergence. A maximum number of 50000 steps of 
minimization was used. After EM, a potential energy plot 
was generated for each simulation to examine how the 
minimization went.

Lastly, simulation trajectories were exported to the final 
PDB files using the “trjconv” program in Gromacs. Fig-
ure 3 shows a flowchart of Gromacs EM and MD simula-
tions redrawn from [44]. Gromacs energy minimization 
protocol was followed from [44, 45], and the Gromacs 
manual (http:// manual. groma cs. org/ docum entat ion/ 
2019/ manual- 2019. pdf ), and several settings and config-
urations were examined from the literature [46–48].

Step 6: Obtaining similar ligands for docking
A library of chemical compounds needs to be created 
to carry out a docking experiment against the mutated 
proteins. This library needs to be large enough to build 
a reference dataset of mutated protein–ligand binding 
affinities. Since the set of ligands binding to the selected 
proteins from PDBbind is too small to train a robust 
machine learning model that covers a wide range of 
ligands, such a library is needed.

ChEMBL [31] was chosen as a source for chemical 
compounds because it only contains bio-active com-
pounds, and that aligns with the protein-ligand docking 
use case, the aim of the work. OpenBabel toolbox version 
2.3.2 was used to prepare the chemical compounds sets 
[49] as in the following paragraphs. The ChEMBL dataset 
was downloaded in structure-data file format (SDF), and 
OpenBabel was used to create a fast search index. The 
index is a new file that stores a database of fingerprints 
for the molecules indexed. However, the index will allow 
significantly faster searching and similarity comparisons. 
The default fingerprint in OpenBabel was used to per-
form similarity search which is FP2, a path-based finger-
print which indexes small molecule fragments based on 
linear segments of up to 7 atoms.

Next, for each group of ligands belonging to a selected 
PDBbind entry, a similarity search was performed against 
ChEMBL to select similar compounds to each one of 
them. A similarity threshold (Tanimoto index) of 0.6 
was chosen. The rationale behind choosing a low thresh-
old is the need for compounds with a low similarity that 
will probably result in a low binding affinity. Including 
low binding affinities helps to cover a wider distribution 
of binding affinities which can be used to train machine 
learning models for binding affinity prediction applica-
tions. The Tanimoto index is a popular similarity coef-
ficient used to measure the similarity between pairs of 
molecules [50]. The Tanimoto Similarity Coefficient is a 
generalization of Jaccard similarity, which is applicable 
only for binary data. In the case of OpenBabel, Tanimoto 
similarity is applied to fingerprints generated for mol-
ecules as vectors of binary values. The Tanimoto coeffi-
cient takes values between 0 and 1 (where 1 is the highest 
similarity).

http://manual.gromacs.org/documentation/2019/manual-2019.pdf
http://manual.gromacs.org/documentation/2019/manual-2019.pdf
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Next, the similar molecules collected as a single file 
were split into one file per molecule, and converted to 
mol2 format needed for molecular docking. After that, 
the resulting molecules were energy minimized with 
OpenBabel using the MMFF94 force field [51]. The 
energy minimization of the ligands was performed using 
the steepest descent algorithm with a maximum step 
count of 2500. The molecules that failed the minimiza-
tion were excluded from docking experiments.

Step 7: protein–ligand docking using AutoDock Vina
Modulating the function of proteins by small molecules 
has been an active research area with applications in 
drug design and development. To quantify the binding of 
a ligand to its target protein, a commonly used measure 

is their binding affinity, which describes how strongly 
the ligand binds to its biological counterpart. Binding 
strength can be measured experimentally by Microscale 
thermophoresis (MST, labelled and unlabeled proteins) 
[52, 53], Nuclear Magnetic Resonance techniques (NMR) 
[54–56], Isothermal Titration Calorimetry (ITC), Surface 
Plasmon Resonance (SPR), and Fluorescence Polarization 
(FP) methods [57]. Computational methods for the cal-
culation of binding affinity range from rough estimates 
as in molecular docking, to more rigorous force fields 
in molecular dynamics (MD) simulations and Quantum 
Mechanical (QM) calculation [57].

Predicting interactions between ligands and proteins 
is a crucial element in the drug discovery process [57, 
58]. In order to perform a quick search for molecules 

Fig. 3 Gromacs energy minimization flowchart
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that may bind to targets of biological interest, computa-
tional techniques such as structure-based drug designing 
(SBDD) are carried out. SBDD includes structure-based 
virtual screening (SBVS) or molecular docking, followed 
by Molecular Dynamics [58]. Due to its ability to pre-
dict the ligand-binding affinity and conformation inside 
the receptor binding site with high accuracy, molecu-
lar docking is one of the most frequently used methods 
in SBDD [58]. A thorough search in three-dimensional 
spaces is performed by docking methods to find probable 
interactions, and a scoring function is used to rank the 
candidates correctly.

The molecular docking was performed using Auto-
Dock Vina software [59]. AutoDock Vina was developed 
with ease of use in mind. It fulfills the need of a full-stack 
docking method that requires no expert knowledge to 
perform. It is freely available and uses well-tested default 
methods to perform highly optimized docking experi-
ments. AutoDock Vina provides the binding affintiy as an 
approximation of the change in Gibbs free energy ( �G or 
delta G), which is a negative number when the protein-
ligand system reaches an equilibrium state.The magni-
tude of the negative �G determines the protein–ligand 
stability, or alternatively, the binding affinity. AutoDock 
Vina computationally calculate the �G using a scoring 
function to obtain the lowest-scoring conformation and 
reports the binding affinity using kcal/mol as the unit of 
binding affinity. The docking requires two main inputs, 
coordinates for receptor and ligand, to find the ideal 
docking poses. Receptor coordinates can be obtained 
from crystallography or NMR spectroscopy, while ligand 
coordinates are usually generated from SMILES [60] 
(Simplified Molecular-Input Line-Entry System) strings.

The docking protocol was followed from [61]. First, 
the protein structures as PDB files were prepared using 
AutoDockTools 1.5.6 (ADT). In this step, atom coordi-
nates were parsed, and “autodock type” was assigned to 
each atom by ADT. Next, all hydrogens were added, non-
polar hydrogens were merged, and the formatted recep-
tor was written to a ’pdbqt’ file. A similar process was 
performed for the ligands, which were provided as mol2 
files. Ligands files were parsed, and atom types were 
assigned to each atom. Next, all hydrogens were added, 
non-polar hydrogens were merged, rotatable bonds were 
defined, and the formatted ligands were written to a 
’pdbqt’ file. Autodock Vina still needs a configuration file 
besides the receptor and ligand files.

The configuration file contains coordinates and dimen-
sions of the grid box where the docking will take place. 
The grid box, when the binding pocket is known, should 
encapsulate the binding pocket and cover the entire cav-
ity to where the ligand may bind. Defining the grid box 
was implemented programmatically by reading the 

coordinates of the binding pocket residues (since the 
pocket is annotated in PDBbind). Next, the coordinates 
of the grid box corners were defined to include all the 
atoms of all pocket residues. The center of the search 
space was set to be the center of the grid box. None of 
the grid boxes exceeded 27000 Å3 of volume, which is 
the recommended threshold by Autodock Vina, where 
large search spaces increase the docking time and require 
a more exhaustive search. The number of poses to be 
returned was set to 3, and the search exhaustiveness 
was set to 12 (default 8) to ensure better coverage of the 
search space and the binding poses. The docking experi-
ment’s implementation used both internal and external 
parallelization by utilizing multiple cores (12 cores) for 
the single docking experiment provided by the “cpu” 
configuration parameter, and running multiple dockings 
in parallel at the time as recommended by an extensive 
study on AutoDock Vina in [62].

Since Vina uses a stochastic search method, random 
numbers are used in the process. Therefore, a seed was 
used to allow reproducibility. Also, the same seed was 
used for all performed docking experiments. The same 
parameters were also unified to ensure maximum repro-
ducibility on the computing platform used for conduct-
ing the experiment. To test if the seed has an effect on 
the docking results, 10 random seeds were tested by per-
forming the docking on the 26 selected protein–ligand 
CASF entries and calculating the correlation with the 
experimental values for each docking set. The evaluation 
didn’t result a considerable change in the docking behav-
iour. The dockings were performed using ten nodes in 
the data science research infrastructure provided by our 
institution (DSRI, https:// maast richtu- ids. github. io/ dsri- 
docum entat ion/) (128  CPUs each). The time required 
for each docking was recorded along with CPU usage. 
Table  3 shows a summary of the proteins, mutations, 
ligand, and dockings performed to obtain a reference 
data set for binding affinities. The docking experiments 
result logs were parsed and aggregated for further analy-
sis of the docking performance.

The duration of each docking experiment and the CPU 
usage was recorded. Twelve cores were allocated for 
each docking, so the CPU usage value is a percentage 
of 1200%. The CPU usage and docking durations were 
grouped by the number of torsion angles of the ligands, 
respectively, and the median was calculated for each 
group. Figure 4 shows the relation between the number of 
torsion angles and the docking duration. Similarly, Fig. 5 
shows the relation between the number of torsion angles 
and CPU usage. A linear relation was observed between 
the number of torsion angles and CPU usage. Both fig-
ures clearly show a direct relationship where the increase 
in the number of torsion angles leads to an increase in 

https://maastrichtu-ids.github.io/dsri-documentation/
https://maastrichtu-ids.github.io/dsri-documentation/
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both docking duration and CPU usage. These results 
were expected because AutoDock Vina generates con-
formations by rotating each rotatable bond by a certain 
interval. For example, if a ligand has one torsion angle 
and Vina samples conformations at 10Å interval, then 
the number of possible conformations is 360/10 = 36 . 
In another example where the ligand has five torsion 
angles, the number of generated conformations would 
be (360/10)5 = 60466176 conformations. The number of 
computations is proportional to the number of torsional 
angles, which is reflected in a longer duration and higher 
CPU usage. AutoDock Vina allows no more than 32 tor-
sion angles, where a larger number of torsion angles leads 
to impractical time-wise calculations.

The median duration of the total docking experiments 
is 57.54 seconds, with a 1st quartile duration of 32.74 
seconds and a 3rd quartile duration of 97.19 seconds. 
The median CPU usage of the total docking experiments 
is 398% ( ∼ 4 out of 12 cores) with a 1st quartile CPU 
usage of 213% ( ∼ 2 out of 12 cores) and a 3rd quartile 
CPU usage of 699% ( ∼ 7 out of 12 cores). The CPU usage 
results show that the docking performance could be opti-
mized better by allocating a smaller number of cores per 
docking (7 cores, for example), which allows more dock-
ings to be performed in parallel.

Dataset construction implementation
All tools and packages used and developed for this pro-
ject were encapsulated in independent Docker contain-
ers. The Docker containers were deployed on a cluster 
infrastructure running OpenShift, a container-orches-
tration system based on Kubernetes [63]. The code and 
the Docker images used in this project can be found in 
this GitHub repository: https:// github. com/ BiGCAT- 
UM/ PSnpB ind- Build. The GitHub repository describes 
the individual steps for building the PSnpBind database 

Table 3 Summary of selected protein structures, mutations, 
ChEMBL selected ligands, and the number of dockings ordered 
by the PDB ID

UniProt ID PDB ID #  of protein 
structures

# of ligands #  of dockings

P00749 1owh 38 1901 72225

P11309 2c3i 18 1240 22316

P18031 2hb1 18 419 7531

P03372 2pog 13 7017 91214

P00918 2weg 22 1013 22281

P00742 2y5h 33 667 22010

P07900 3b27 21 1954 41023

P10275 3b5r 83 466 38671

P39086 3fv1 43 345 14782

O14757 3jvr 11 631 6933

P24941 3pxf 10 505 5044

P37231 3u9q 20 606 12114

P56817 3udh 5 2127 10635

O14965 3up2 18 895 16109

P00734 3utu 27 1796 48492

P03951 4crc 50 690 34496

Q16539 4dli 9 1320 11878

P23458 4e5w 9 1090 9801

P39900 4gr0 38 1090 41419

Q9H2K2 4j21 17 3295 56001

O60674 4jia 7 848 5930

Q08881 4m0y 19 169 3197

P00519 4twp 26 795 20662

O60885 4wiv 3 917 2747

P04637 5a7b 160 113 17996

Q9Y233 5c28 13 352 4567

Total 731 32261 640074

Fig. 4 Docking performance—Duration versus number of torsion angles

https://github.com/BiGCAT-UM/PSnpBind-Build
https://github.com/BiGCAT-UM/PSnpBind-Build
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where each tool involved has its own repository. The 
GitHub repositories are linked to DockerHub, a cloud-
based repository for automatic building, storing and dis-
tributing container images. DockerHub automatically 
rebuilds the Docker image after each commit to the cor-
responding GitHub repository. Hence, it saves time and 
effort. For deployment, the DSRI available at Maastricht 
University was used to deploy the dockerized tools used 
in this research. DSRI through OpenShift platform can 
deploy Docker images by grabbing them from Docker-
Hub which also facilitates the integration between the 
source projects on GitHub and the production deploy-
ments. Ten nodes from DSRI were utilized to perform 
the calculations in the different steps of the methodology. 
Each node provides 128 cores to perform computations 
in parallel. That adds up to 1280 cores that were used 
to perform the most computationally-extensive steps: 
energy minimization and docking. Finally, all the reposi-
tories where preserved through Zenodo [64] and a DOI 
was minted for each one of them.

Web application implementation
The PSnpBind front-end (Fig.  6) is implemented using 
modern web standards and tools (HTML5 [65], CSS3 
[66], JQuery1 and Bootstrap2) and responsive web 
designs were adopted. Thus, the website can automati-
cally adapt and resize the page layout depending on the 
screen sizes of a variety of devices. The back-end, allow-
ing communication with the database and handling of 
the front-end requests was written in Java and used the 
Spring framework. For the database, MySQL community 
edition was used to store information about the proteins, 

mutations, ligands and dockings, and their correspond-
ing folder names in the constructed dataset. The SQL 
database allows to explore the dataset metadata and links 
the docking conformers and protein structures files on 
the disk to the web interface in order to be visualized 
in the browser. The Jmol molecular visualization library 
[67] was used to visualize protein-ligand complexes with 
highlighting the mutations and identifying the close con-
tacts of the drug. The Chemistry Develpment Kit (CDK) 
[68] library v2.3 is used to generate ligands descriptors. 
The PSnpBind web application is wrapped in a Docker 
image, allowing quick and easy deployment on local serv-
ers and the cloud. All the code, for both front-end and 
back-end, is available on GitHub (https:// github. com/ 
BiGCAT- UM/ psnpb ind- webapp).

Utility and discussion
Simple search
The search function aims at enabling the user to find or 
filter the ligands bound to one of the PSnpBind database 
protein structures based on an input string. The users 
can search using criteria like CHEMBL ID (of the ligand). 
String search uses native MySQL regex matching func-
tionality, allowing flexible search in all the columns cor-
responding to the search criteria. The input string is first 
wrapped in a regular expression, then the DB is queried 
against the appropriate fields, and the results, if exists, 
are sent back to the front-end.

PSnpBind REST API
A RESTful API is also provided to the users of PSnpBind 
web application to obtain information about proteins, 
mutations, ligands and binding complexes (dockings) 
that are hosted in the database. The API returns JSON 

Fig. 5 Docking performance—CPU usage versus number of torsion angles

1 https:// jquery. com/.
2 https:// getbo otstr ap. com/.

https://github.com/BiGCAT-UM/psnpbind-webapp
https://github.com/BiGCAT-UM/psnpbind-webapp
https://jquery.com/
https://getbootstrap.com/
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objects with a structure corresponding to the entity in 
question. The API follows the OpenAPI3 specification 
v3, a standardization for how REST APIs are described. 
A Swagger4 UI has been implemented to provide docu-
mentation, an interface for users, with little or no pro-
gramming experience, to ‘talk’ to the services, to quickly 
and easily formulate queries with the services and 
obtain dynamically generated source code for popular 

programming languages, such as Java, Perl, Python and 
Ruby. The full documentation of the API can be found on 
(https:// psnpb ind. org/ swagg er- ui. html). The PSnpBind 
supports the following endpoints:

/api/v1/protein/list
/api/v1/protein/PDB_ID
/api/v1/protein/uuid/PROTEIN_UUID
/api/v1/protein/PDB_ID/variants
/api/v1/variant/VARIANT_ID
/api/v1/variant/uuid/VARIANT_UUID
/api/v1/ligand/CHEMBL_ID

Fig. 6 PSnpBind web interface

3 https:// www. opena pis. org.
4 https:// swagg er. io/.

https://psnpbind.org/swagger-ui.html
https://www.openapis.org
https://swagger.io/
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/api/v1/ligand/uuid/CHEMBL_UUID
/api/v1/variant/VARIANT_ID/ligand/CHEMBL_ID
/api/v1/docking/VARIANT_LIGAND_UUID

Molecular visualization
PSnpBind web interface gives users the ability to visual-
ize every protein–ligand docking complex from the con-
structed dataset using Jmol [67], an open-source Java 
viewer for chemical structures in 3D. In order to visualize 

the molecules in the browser, JSmol [69], the HTML5 
modality of Jmol, was used which is embeddable in the 
browser and has all the functionalities of Jmol (the stan-
dalone application). The JSmol panel in the web interface 
(Fig. 7) gives a full visualization experience to explore the 
protein-ligand complex including: mutation highlight, 
five different protein representation styles (stick, ball 
and stick, wireframe, space-filling and cartoon models), 
molecular surface display and ligand contacts highlights. 
The nearest contacts of the ligand are visualized using 
colored disks. The disks indicate where the van der Waals 
radii of atoms overlaps. The colors indicate how close the 
contact is: yellow = close, orange = touching, and red = 
overlapping.

Structured data (Bioschemas.org) and FAIR 
implementation
PSnpBind was built with FAIR principles in mind from 
the ground up. All the FAIR principles were addressed as 
far as possible. Also, structured markup using JSON-LD 
is provided for all the pages of proteins and ligands in the 
web interface. The Bioschemas.org vocabulary [70] was 
used to annotate the protein information and provide 
links to PDB, NCBI Taxon and UniProt. Figure 8 shows 
an example of the JSON-LD generated for one of the pro-
tein pages. Also, Table 4 shows a summary of the FAIR 
principles and their implementation status in PSnpBind.

Fig. 7 ligand contacts visualization using Jmol. The figure shows 
the nearest contacts of the ligand. The disks indicate where the van 
der Waals radii of atoms overlaps. The colors indicate how close the 
contact is: yellow = close, orange = touching, and red = overlapping

Fig. 8 JSON-LD markup example for a PSnpBind protein page, the shemas.org and bioschemas.org vocabularies are used to describe the protein, 
providing information about the structure, sequence, taxon and IDs
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Conclusion
PSnpBind is a large database of protein–ligand com-
plexes covering a wide range of binding pocket mutations 
and a large small molecules’ landscape. This database can 
be used as a source of data for different types of studies, 
for example, developing machine learning algorithms to 
predict protein–ligand affinity or SNPs effect on it which 
requires an extensive amount of data with a wide cover-
age of mutation types and small molecules. Also, studies 
of protein-ligand interactions and conformer orientation 
changes across different mutated versions of a protein 
can be established using data from PSnpBind. Further-
more, it provides multiple ways of accessing the data 
through direct download, a web application and a REST 
API, all provided in compliance with the FAIR principles. 
PSnpBind is a valuable resource for new studies in related 
fields like drug discovery, pharmacogenomics, and struc-
tural bioinformatics.
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