
Terlouw et al. Journal of Cheminformatics (2022) 14:34
https://doi.org/10.1186/s13321-022-00616-5

SOFTWARE

PIKAChU: a Python-based informatics kit
for analysing chemical units
Barbara R. Terlouw*, Sophie P. J. M. Vromans and Marnix H. Medema*

Abstract

As efforts to computationally describe and simulate the biochemical world become more commonplace, computer
programs that are capable of in silico chemistry play an increasingly important role in biochemical research. While
such programs exist, they are often dependency-heavy, difficult to navigate, or not written in Python, the program-
ming language of choice for bioinformaticians. Here, we introduce PIKAChU (Python-based Informatics Kit for Analys-
ing CHemical Units): a cheminformatics toolbox with few dependencies implemented in Python. PIKAChU builds
comprehensive molecular graphs from SMILES strings, which allow for easy downstream analysis and visualisation of
molecules. While the molecular graphs PIKAChU generates are extensive, storing and inferring information on aroma-
ticity, chirality, charge, hybridisation and electron orbitals, PIKAChU limits itself to applications that will be sufficient
for most casual users and downstream Python-based tools and databases, such as Morgan fingerprinting, similarity
scoring, substructure matching and customisable visualisation. In addition, it comes with a set of functions that assists
in the easy implementation of reaction mechanisms. Its minimalistic design makes PIKAChU straightforward to use
and install, in stark contrast to many existing toolkits, which are more difficult to navigate and come with a plethora
of dependencies that may cause compatibility issues with downstream tools. As such, PIKAChU provides an alterna-
tive for researchers for whom basic cheminformatic processing suffices, and can be easily integrated into downstream
bioinformatics and cheminformatics tools. PIKAChU is available at https:// github. com/ BTheD ragon Master/ pikac hu.

Keywords: Cheminformatics kit, Python, Structure visualisation, In silico chemistry, Molecular fingerprinting

Graphical Abstract

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Journal of Cheminformatics

*Correspondence: barbara.terlouw@wur.nl; marnix.medema@wur.nl

Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708
PB Wageningen, The Netherlands

http://orcid.org/0000-0002-2191-2821
https://github.com/BTheDragonMaster/pikachu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-022-00616-5&domain=pdf

Page 2 of 17Terlouw et al. Journal of Cheminformatics (2022) 14:34

Introduction
In a data-driven world where the discovery of novel natu-
ral and synthetic molecules is increasingly necessary, in
silico chemical processing has become an essential part
of biological and chemical research. Novel metabolites
are compared or added to searchable chemical data-
bases such as ChEBI [6], PubChem [10], NP Atlas [20],
and COCONUT [17]; molecular structures are predicted
from biological pathways [3, 16]; and bioactivities and
pharmaceutical properties are predicted from chemical
structure [1, 18, 21]. Such analyses rely on robust chem-
informatics kits that can perform basic chemical pro-
cessing, such as fingerprint-based similarity searches,
substructure matching, molecule visualisation and chem-
ical featurisation for machine learning purposes.

Typically, molecular processing by cheminformatics
kits begins with the reading in of molecular data from
chemical data formats, ranging from one-dimensional to
three-dimensional molecular representations. One such
formats is the SMILES (Simplified Molecular-Input Line
Entry System) format, which represents a molecule as a
one-dimensional string, describing atom composition,
connectivity, stereochemistry, and charge. More elabo-
rate formats such as PDB and MOL use text files to store
not just the abovementioned properties but also atom
coordinates in three-dimensional space.

Depending on the application, different formats and
subsequent processing are appropriate. Due to the vast
number of possible chemical analyses, exhaustive chem-
informatics kits have accumulated into software librar-
ies that are so large that they can be hard to navigate,
and rely on so many dependencies that they can be dif-
ficult to implement in software packages. As a result,
the trade-off between time spent accessing and integrat-
ing these cheminformatics kits into a codebase and time
spent on actual analyses is disproportionate for users

that need to perform simple in silico analyses such as
reading in SMILES, drawing a molecule, or visualising
a substructure. One popular open-source cheminfor-
matics kit that suffers from this problem is RDKit [11].
While RDKit is an incredibly fast and powerful library
that supports an immense variety of possible chemical
operations, its use of both Python and C++ as program-
ming languages as well as the sheer number of depend-
encies it relies on frequently causes compatibility issues
when integrating RDKit into other programs, and dis-
proportionately increases the number of libraries that
need to be installed. Therefore, while RDKit is great for
heavy-duty in silico analyses such as computing 3D con-
formers for a compound or constructing electron density
maps, it is a bit heavyweight for the basic operations that
most researchers in bioinformatics and cheminformatics
require.

A second widely-used cheminformatics kit is CDK
[22]. Written in Java, it is well-suited for implementa-
tion in web applications, and has successfully been used
for molecular processing in the COCONUT database
[17], the Cytoscape application chemViz2 [13], and the
scientific workflow platform KNIME (Konstanz Infor-
mation Miner) [2]. However, with Python becoming the
programming language of choice for many scientists [4],
especially those working in the growing field of (deep)
neural networks, CDK is not always an ideal fit.

To make basic cheminformatics processing more acces-
sible for Python programmers, we therefore introduce
PIKAChU: a Python-based Informatics Kit for Analysing
Chemical Units. PIKAChU is a flexible cheminformatics
tool with few dependencies. It can parse molecules from
SMILES, visualise chemical structures and substructures
in matplotlib, perform Extended Connectivity Finger-
Printing (ECFP) [15] and Tanimoto similarity searches,
and execute basic reactions with a focus on natural

Page 3 of 17Terlouw et al. Journal of Cheminformatics (2022) 14:34

product chemistry. Therefore, we hope that PIKAChU
can provide a convenient alternative for many Python-
based bio- and cheminformatics tools and databases that
only demand basic chemical processing.

Methods and implementation
Software description
PIKAChU is implemented in Python (v3.9.7). Its only
dependency is the common Python package matplotlib
(v3.4.3). PIKAChU can be run on Windows, MacOS, and
Linux systems.

Parsing molecules from SMILES
PIKAChU takes a SMILES string as input and from it
builds a graph object, in which nodes represent atoms
and edges represent bonds (Fig. 1). For each atom, PIKA-
ChU initially stores information on chirality, aromatic-
ity, charge, and connectivity. For each bond, it stores
bond type (single, double, triple, quadruple, or aromatic),
neighbouring atoms, and cis–trans stereochemistry for
double bonds. Once all atoms, bonds, and their con-
nectivities have been stored, electron shells and orbit-
als are constructed for each non-hydrogen atom. Next,
we determine the valency for each non-hydrogen atom,
taking into account atom charge. For atoms of variable
valency such as sulphur (2, 4 or 6) and phosphorus (3
or 5), we select a valency that is equal to or higher than
the sum of non-hydrogen bonds and explicit hydro-
gen bonds, prioritising smaller valencies. Double, triple,
quadruple and aromatic bonds contribute proportion-
ally to this sum. If insufficient bonding orbitals are avail-
able to achieve the desired valency, the electrons in the
valence shell are excited to higher-energy orbitals, such
that each orbital contains at most one electron. Implicit
hydrogens are then added to the structure such that the
pre-determined valencies are obeyed.

An exception is made for nitrogens of valency 5, which
are not chemically possible due to insufficient bonding
orbitals but can sometimes be encountered in SMILES
strings, especially in those describing compounds con-
taining nitro groups. If such a valency 5 nitrogen is
attached to at least one oxygen through a double bond,
this double bond is interpreted as a single bond instead,
the oxygen’s charge is set to − 1 and the nitrogen’s charge
is set to 1, such that the nitrogen’s valency becomes 4 and
bonding laws are obeyed.

Subsequently, electrons are allocated to the p-orbit-
als of π bonds in double, triple and quadruple bonds,
and atom hybridisation is determined from steric num-
ber. Then, all cycles in the graph are detected using an
open-source Python implementation [12] of the sim-
ple cycle detection algorithm described by D. Johnson
in 1975 [8]. PIKAChU removes all cycles smaller than

three atoms and identifies the smallest set of unique
smallest rings (SSSR).

Next, the SSSR is used for aromaticity detection.
This is done recursively: in each round, each cycle that
has not yet been added to the set of aromatic cycles is
evaluated with Hückel’s 4n + 2 rule on planar rings. We
chose to assess aromatic cycles rather than systems as
Hückel’s rule is not always reliable for cyclic systems
[7]. First, the hybridisation of all atoms in the cycle is
examined. All atoms must be sp2-hybridised, or sp3-
hybridised with a delocalisable lone pair that can be
promoted to a p-orbital. If the cycle is planar and the
sum of double bonds and lone pairs is odd, the cycle
is considered aromatic. Aromatic bond stretches are
locally kekulised, and double bonds are subsequently
counted. When a cycle is considered aromatic, bonds
and atoms in the cycle are set to aromatic, and lone
pairs of sp3-hybridised atoms are promoted to p-orbit-
als such that the new hybridisation is sp2. Recursion
is needed in case double bonds in cyclic systems are
defined in such a way that not all sub-cycles contain
the required number of bonds to obey Hückel’s rule:
when adjacent bonds are updated to aromatic, they will
be counted in the next round of aromaticity detection
(Additional file 2: Fig. S1). When, after an iteration, the
number of aromatic cycles no longer changes, all aro-
matic cycles have been detected. From these cycles,
PIKAChU defines aromatic systems, where aromatic
cycles are considered part of an aromatic system if they
share a bond with at least one other aromatic cycle in
the system.

Electrons involved in σ bonds and aromatic bonds are
only allocated after aromaticity detection. As electrons
involved in aromatic systems are not localised to specific
atoms or bonds, the p-orbitals of atoms in aromatic sys-
tems are emptied and their electrons stored in an Aro-
maticSystem object.

Finally, any unpaired electrons are dropped back to
lower-energy orbitals. A structure object is returned
which can be visualised, kekulised, analysed through sub-
structure matching and molecular fingerprinting, and
altered through an assortment of built-in and custom
chemical reactions.

If a SMILES string yields a structure object that is
chemically incorrect due to too many or too few bonds
being attached to an atom or valence shells not being
filled appropriately in the case of organic atoms, PIKA-
ChU gives a StructureError, informing the user that
the parsed structure is chemically incorrect and gives a
rough indication of why. Two examples of such Structu-
reError messages are ‘Error parsing "F/C(\Cl)=C(F)/Cl":
Conflicting double bond stereochemistry’ and ‘Error pars-
ing "CN(=O)=O": Basic bonding laws have been violated’.

Page 4 of 17Terlouw et al. Journal of Cheminformatics (2022) 14:34

C[C@@H](C(=O)O)N

0 1 2 3 4 5 6

C0

C1

C3

O4

O5

N6

H10

H7 H8

H9

H11

H2
H12

Class: Atom
atom.type = ‘C’
atom.nr = 1

atom.hybridisation = ‘sp3’
atom.neighbours = [C_0, H_2, C_3, N_6]
atom.bonds = [single_0:C_1_H_2,
 single_1:C_0_C_1,
 single_2:C_1_C_3,
 single_5:C_1_N_6,]
atom.chiral = ‘clockwise’
atom.aromatic = False
atom.lone_pairs = []

Class: Electron
electron.atom = O_4
electron.shell_nr = 2
electron.orbital_type = ‘sp2’
electron.orbital_nr = 2
electron.spin = 0.5
electron.paired = True
electron.partner = C_3_2sp22_-0.5
electron.aromatic = False

Class: Bond
bond.atom_1 = C_0
bond.atom_2 = H_7
bond.type = ‘single’
bond.neighbours = [C_0, H_7]
bond.nr = 6
bond.chiral = False
bond.electrons = [C_0_2sp33_-0.5, H_7_1s_0.5]

Class: Structure
structure.graph = {C_0: [C_1, H_7, H_8, H_9], ... }

structure.bonds = {0: single_0:C_1_H_2,
 1: single_1:C_0_C_1, ...}

structure.bond_lookup = {C_0: {C_1: single_1:C_0_C_1,
 H_7: single_6:C_0_H_7,
 H_8: single_7: C_0_H_8,
 H_9: single_8: C_0_H_9}, ...}

Alanine SMILES string

Fig. 1 Overview of the internal structure of PIKAChU’s structure graphs. This example uses L-alanine, a small amino acid. The four bottom boxes in
grey indicate attributes for each of PIKAChU’s major classes: Structure, Atom, Bond and Electron.

Page 5 of 17Terlouw et al. Journal of Cheminformatics (2022) 14:34

Visualisation and kekulisation
Prior to visualisation, aromatic systems within a struc-
ture are kekulised so that aromatic systems can be repre-
sented by alternating single and double bonds. PIKAChU
kekulises aromatic systems using a Python implemen-
tation [23] of Edmonds’ Blossom Algorithm for maxi-
mum matching [5]. Next, atoms are positioned using
PIKAChU’s drawing software. PIKAChU’s python-based
drawing algorithm was adapted and improved from
SmilesDrawer [14], an open-source JavaScript library
for molecular visualisation. While written in different
programming languages, the algorithms underlying the
drawing software of PIKAChU and SmilesDrawer are
largely identical. We will briefly recap this algorithm
below; more detailed descriptions of the algorithm’s ele-
ments can be found in the SmilesDrawer paper [14].

First, if indicated, PIKAChU’s drawing algorithm
removes hydrogens from the graph. Next, it finds the
smallest set of smallest rings in the structure graph. As
SmilesDrawer’s SSSR implementation sometimes failed
to detect some rings, leading to unreadable structure
renderings (Additional file 2: Fig. S2), we implemented
the SSSR algorithm ourselves. Next, like SmilesDrawer,
PIKAChU classifies all rings into one of three groups:
simple rings, overlapping rings, and bridged rings. Sim-
ple rings are standalone rings that do not have any over-
lapping atoms with any other rings. Overlapping rings
are rings that overlap with one or more other rings,
where the overlap between any two rings can comprise
at most two atoms, any atom in the overlap is part of at
most two rings, and no atoms in the ring overlap with
bridged rings. Finally, bridged rings are rings that share
more than two atoms with another ring, contain atoms
that are part of three or more rings, or share atoms with
another bridged ring (Fig. 2A).

After ring systems have been identified, atoms are
placed onto a 2D coordinate system. If the molecule con-
tains rings, positioning starts with the placement of an
atom in a ring, prioritising bridged rings over simple and
overlapping rings. Then, the graph is traversed one atom
at a time in depth-first fashion. If an atom is part of a
ring, the entire ring or ring system get placed at once. In
the case of simple and overlapping rings, ring placement
can be done using simple polygon geometry. For bridged
rings, atoms are positioned using the force-spring model
described by Kamada and Kawai [9], where all atoms of
the bridged system are initially placed in a circle, and then
pulled towards their optimal positions by minimising
the difference between the desired bond length and the
distance between neighbouring atoms, and maximising
distances between non-neighbouring atoms. Non-ring
atoms are positioned a bond length away from the previ-
ous atom, where the angle with respect to the previous

atom is determined by the number of neighbours the
atom has (Fig. 2C), and the size of the molecular subtree
behind each neighbouring atom (Fig. 2D). Stereochemi-
cally restricted double bonds are always forced into the
appropriate cis- or trans conformation. Unlike Smiles-
Drawer, which directly infers bond stereochemistry from
the SMILES string, PIKAChU draws this information
from bond objects stored in the molecular graph. As an
improvement on SmilesDrawer, PIKAChU attempts to
resolve wrongly depicted stereobonds in rings by mirror-
ing one of the neighbouring atoms into the ring. PIKA-
ChU always selects the atom with the smallest protruding
side chain for this purpose (Additional file 2: Fig. S3).
When multiple consecutive stereobonds are found in a
ring, PIKAChU adjusts them in order, never rotating a
neighbour of the same bond twice.

Once all atoms have been assigned initial coordinates,
atoms adjacent to rings are flipped outside of their ring
where possible. Then, the drawing is checked for overlaps
between atoms, and these overlaps are resolved by rotat-
ing branches of the molecule around single bonds. In
PIKAChU, we have included an extra ‘finetuning’ option
that is not present in SmilesDrawer. When the finetuning
flag is set to True, all pairs of clashing atoms are detected.
Then, the shortest path is calculated between all clash-
ing atoms. First, PIKAChU determines which bonds are
rotatable: bonds are considered unrotatable when they
are a chiral bond, are adjacent to a chiral bond, or are in a
cycle. As rotations around bonds located equally far away
from two clashing atoms likely have the greatest impact
on clash resolution, PIKAChU selects the rotatable bond
that is positioned as close to the centre of the shortest
path as possible. Next, PIKAChU takes the resulting set
of bonds found for all clashes, and rotates each at 30°
intervals, assessing and storing the number of clashes in
the drawing after each iteration. The angle for which the
number of steric clashes is minimised is chosen (Fig. 2B).

Finally, some bonds adjacent to chiral centres are
replaced with backward and forward wedges. They are
placed such that they do not neighbour more than one
chiral centre where possible, they are not part of a ring,
and point in the direction of the shortest branch leading
from a chiral centre, in that order of priority. The result-
ing image is subsequently written to a.svg or.png file or
displayed directly in matplotlib.

Structure annotation
PIKAChU provides the option to add custom annotations
to structures. Each Atom instance contains an ‘annota-
tions’ attribute, which points to an AtomAnnotation
instance. An AtomAnnotations instance can contain as
many annotations as the user requires. Annotations can
be added to all atoms in a structure at once by defining

Page 6 of 17Terlouw et al. Journal of Cheminformatics (2022) 14:34

b

Determination of bond angles Prioritisation of branches

Simple ring

Overlapping ring

Bridged ring

a

Ring detection

c d

0
1

2

1

2
3 3

44

00
1

2

Fine-tune overlap resolution

Detect clashes Find shortest path Find rotatable bonds Select bond Find best rotation

Fig. 2 PIKAChU’s drawing algorithm. A Examples of simple (blue), overlapping (red) and bridged (pink) rings. Note that the aromatic rings in pink
become part of the bridged ring system because they overlap with bridged rings. B PIKAChU’s ‘finetuning’ algorithm. First, clashes are detected and
the shortest path between them is found. The rotatable bond with the shortest distance to the centre of the shortest path is chosen (indicated with
numbers). 12 rotations at incremental angles of 30° are evaluated for clashes. The best rotation is chosen. C Determination of bond angles based
on neighbouring atoms. If an atom has 3 or fewer non-hydrogen neighbours, the angles default to 120° (yellow). If an atom has 4 non-hydrogen
neighbours, angles default to 90° if three or more of the branches have a depth more than 1, or three or four branches have a depth of exactly 1
(red). If however two of the branches have a depth of exactly 1 (blue), the angle is set to 120° between the two longest branches, 90° between any
short branch and any long branch, and 60° between the shortest branches. D Positioning of neighbouring branches depends on the depth of each
branch: the two longest branches (red and dark yellow, depths 7 and 6 respectively) are always placed opposite one another.

Page 7 of 17Terlouw et al. Journal of Cheminformatics (2022) 14:34

the name of the attribute with a string, and optionally
providing a default value for the attribute. Subsequently,
specific values can be added and retrieved for specific
atoms or atom sets. A manual providing an example can
be found on the PIKAChU wiki.

Substructure matching
PIKAChU detects occurrences of a substructure in a
superstructure in five steps. In all steps, hydrogens are
ignored. First, PIKAChU checks for each atom type
in the substructure if enough atoms of these types are
accounted for in the superstructure. Second, it assesses
for each atom in the substructure whether an atom exists
in the superstructure with the same connectivity, look-
ing at directly neighbouring bonds and atoms. Third,
using the atom with the most diverse connectivity as a
seed, it finds matches of the substructure in the super-
structure using a depth-first search algorithm, ignoring
stereochemistry. By first looking at atom type and atom
connectivity, and by using atoms of diverse connectivity
as seeds for substructure matching, the number of calls
to the computationally expensive depth-first search func-
tion is minimised. Fourth, for each match, it determines
if all chiral centres in the substructure have the same
orientation as corresponding chiral centres in the super-
structure. Fifth, PIKAChU checks if cis–trans orientation
of double bonds in the substructure matches that of dou-
ble bonds in the superstructure. Chiral centre and dou-
ble bond stereochemistry checks can be toggled by the
user independently of one another. If chirality of bonds
and atoms are considered, substructures with undefined
stereochemistry will still match to parent structures with
defined stereochemistry. This does not apply in reverse:
if a stereocentre or stereobond is defined for a substruc-
ture, it will not match to parent structures with unde-
fined stereochemistry.

The algorithm described is somewhat similar to the
Ullmann algorithm [19], which first assesses if a can-
didate subgraph contains enough nodes of the correct
degree prior to substructure matching and selects nodes
of the most unique degree as seeds. A key difference is
that PIKAChU’s substructure matching algorithm also
takes into account the identity of a node’s neighbours,
not just a node’s degree.

Substructures can be easily visualised through a range
of functions in PIKAChU’s ‘general’ ’library.

Fingerprinting
PIKAChU uses ECFP [15], which is an improved version
of the classical Morgan fingerprinting also taking into
account cycle membership, to perform similarity searches
and convert molecules to bit vectors for machine learn-
ing featurisation. Using Python’s inbuilt hashlib library,

PIKAChU initialises each atom to a 32-bit hash, derived
from a tuple containing information on heavy neigh-
bours, valence, atomic number, atomic weight, charge,
hydrogen neighbours, and ring membership. Then, each
atom hash is iteratively updated with hashes from its
neighbours, as well as the distance from the neighbour
to the atom and stereochemical information if the atom
is a chiral centre. The number of iterations depends on
a radius which can be set to any number (default = 2
for ECFP-4 fingerprinting). The ECFP algorithm was
described in detail by Rogers and Hahn in 2010 [15].
Finally, duplicate hashes are removed, as well as different
hashes representing the same substructure, yielding a set
of 32-bit hashes that constitutes a molecule’s fingerprint.

Using ECFP fingerprinting, PIKAChU can calculate
Jaccard/Tanimoto distance and/or similarity between
any two molecules. Furthermore, PIKAChU can con-
vert molecule libraries into bit vectors of varying lengths
(default = 1024) and an accompanying list of substruc-
tures represented by those bit vectors that can be used in
downstream machine learning algorithms.

Defining reaction targets
In order to facilitate implementation of reactions and
reaction pathways, PIKAChU lets users define target
bonds or atoms within substructures with a set of dedi-
cated functions. These functions take a SMILES string
representing a substructure, and either one or two inte-
gers that define an atom or a bond between two atoms
respectively. For example, the SMILES string ‘C(= O)
NC’, accompanied by the integers 0 (pointing to the first
C atom) and 2 (pointing to the N atom), represents a
peptide bond. The occurrences of these bonds/atoms
are then detected within a superstructure through a
substructure search and are returned as a list of bonds/
atoms. Subsequently, the returned bonds/atoms can be
used as reaction targets, for instance for bond hydroly-
sis or atom methylation, using functions in PIKAChU
for breaking or creating bonds and adding or removing
atoms. Reactions currently have to be encoded manually
using a library of functions included in PIKAChU, which
include functions for creating bonds, breaking bonds,
adding and removing atoms, and splitting disconnected
graphs into separate structures. We provided in-built
condensation and hydrolysis functions, as well as a more
elaborate ketoreductase function, as examples on our
GitHub page.

Page 8 of 17Terlouw et al. Journal of Cheminformatics (2022) 14:34

Characterisation and visualisation of the polyketide
ketoreduction reaction
We demonstrated the implementation of reactions using
PIKAChU by characterising and visualising a polyketide
ketoreduction reaction. We built the ketoreduction reac-
tion by first defining a reaction target as described above,
in this case a β-keto bond, and detecting its position in a
polyketide chain. Next, we wrote a function that reduces
the double carbonyl bond to a single bond, which iden-
tifies and removes the π-electrons in the double bond,
sets the bond type to single, adjusts the hybridisation
of the atoms involved and finally updates the structure
object through PIKAChU’s refresh functions. To final-
ize the reaction, two hydrogen atoms were added to the
carbon and oxygen atoms of the former carbonyl bond
using PIKAChU’s add_atom function. Finally, to visual-
ise the reaction, we highlighted the atoms and bonds of
the newly formed hydroxyl group in red and drew the
molecule.

Detailed instructions on how to make full use of PIKA-
ChU’s range of functionalities, as well as the script used
to implement the ketoreduction reaction, can be found in
the online documentation.

Validation
To assess the correctness of PIKAChU’s SMILES reading
and writing software, we converted all SMILES strings
from the NP Atlas database into PIKAChU Structure
instances. Subsequently, we converted these structure
instances back to SMILES strings. Next, we canonical-
ized the PIKAChU-generated SMILES and the original
SMILES using RDKit (v2020.09.1.0), setting the ‘isomer-
icSmiles’ flag to ‘True’ such that correct interpretation of
cis–trans bond configuration and the stereochemistry of
chiral centres could also be assessed. If the two canoni-
calized SMILES were identical, a SMILES to structure to
SMILES conversion was considered correct.

To measure PIKAChU’s drawing readability, atom
coordinates were computed with PIKAChU and RDKit’s
rdCoordGen module (v2020.09.1.0) for the 32,552 mole-
cules in the NPAtlas database (v2021_08) and the 100,000
smallest molecules from the ChEMBL database (release
30). Next, all drawings were assessed for clashes. A clash
was defined as two non-neighbouring atoms sitting at
less than half an average bond length distance from each
other in Euclidean space. Total number of clashes, num-
ber of structures containing clashes, and the number of
structures that gave drawing errors were recorded.

To assess PIKAChU’s drawing accuracy, we included
a MOL file writer into PIKAChU, which stores PIKA-
ChU-computed atom coordinates and connectivities as
a MOL file. We generated such MOL files for the entire
NP Atlas database and the 100,000 smallest molecules

from the ChEMBL database, read the resulting MOL files
with RDKit’s rdMolFiles module (v2020.09.1.0), stored
the resulting molecules as SMILES strings, and using
RDKit canonicalized both the original input SMILES and
the SMILES produced from the PIKAChU-generated
MOL files setting the ‘isomericSmiles’ flag to ‘True’. If the
SMILES were identical, a PIKAChU-generated drawing
was considered ‘correct’.

Speed assessment
PIKAChU’s speed was assessed with Python’s ‘time’
module. As we particularly designed PIKAChU with
natural product chemistry in mind, which typically
involves larger and more heavily cyclised compounds
than most molecules stored in small-molecule databases,
we decided to test drawing speed on two different data-
bases: the NP Atlas database and the ChEMBL database.
For each database, we randomly selected 10,000 mol-
ecules and timed drawing speed at 10, 20, 50, 100, 200,
500, 1000, 2000, 5000 and 10,000 drawn structures using
Python’s ‘time’ module.

Results and discussion
PIKAChU is a dependency-light cheminformatics kit
implemented entirely in Python. With only matplotlib
as dependency and an extensive readme, wiki, tutorials,
and example scripts on its GitHub page, PIKAChU is
easy to run and install, and suitable for integration into
bioinformatics and cheminformatics pipelines. Below, we
will first assess PIKAChU’s ability to correctly interpret
SMILES, draw structures accurately and readably, detect
and visualize substructures, and perform ECFP finger-
printing. We also measured PIKAChU’s SMILES read-
ing and structure drawing speed. Next, we demonstrate
how PIKAChU can be used to implement and visualise
reactions. Finally, we compare PIKAChU to the state-of-
the-art cheminformatics kits/chemical drawing libraries
RDKit, ChemDraw and SmilesDrawer.

SMILES reading and writing
We assessed PIKAChU’s ability to parse and generate
correct SMILES syntax by comparing the SMILES it con-
verts to SMILES generated by RDKit, a well-established
cheminformatics package. As PIKAChU was created
with natural product chemistry in mind, which typically
involves large and heavily cyclised molecules the func-
tion of which depends heavily on stereochemistry, we
performed our validation with the NP Atlas database.
This database contains 32,552 manually curated natu-
ral product structures and their corresponding isomeric
SMILES strings. PIKAChU failed to convert 1 SMILES
from NP Atlas (~ 0.003%) to structure graphs, which was

Page 9 of 17Terlouw et al. Journal of Cheminformatics (2022) 14:34

an erroneous SMILES describing a nitrogen atom with a
valency of 5, which is impossible considering that nitro-
gen only has four electron orbitals available for bonding
in its valence shell. This SMILES attempted to describe a
nitro group, which PIKAChU tolerates even for valency 5
nitrogens. However, this representation of a nitro group
was unconventional and incorrect, with two superflu-
ous hydrogen atoms attached to the nitrogen. This dem-
onstrates how the detailed graph-based, object-oriented
encoding of chemical structures down to the electron
level in PIKACHU intrinsically ensures that all structures
that are loaded are chemically valid. Of the remaining
32,551 SMILES-to-structure-graph-to-SMILES conver-
sions, only one yielded a SMILES string that described
different chemistry than the original: three carbon-13
atoms were interpreted as carbon-12 (Additional file 2:
Table S1, third row). As PIKAChU does not yet support
isotopic differentiation, this is not unexpected.

Additionally, we manually assessed the correctness of
22 SMILES-to-graph conversions by reading in and sub-
sequently drawing the SMILES in PIKAChU. We chose
the SMILES such that a variety of syntax representations
and chemistries were represented, including rings, aro-
matic systems, charge, stereocentres and bond stereo-
chemistry. Some SMILES describe the same structures
but use a different syntax. PIKAChU handled all SMILES
correctly, accurately detecting and visualising all afore-
mentioned chemical properties (Fig. 3).

PIKAChU is not suitable for reading in molecules with
a high number of recursive cycles, such as buckminster-
fullerene. As PIKAChU detects all possible cycles within
a molecule to determine aromaticity of cyclic systems,
this step takes so long to compute that the program
appears to get ‘stuck’. However, there exist only a handful
of examples of such molecules, none of which have any
real practical biological or chemical relevance.

Structure visualisation
Another key feature of PIKAChU is molecular visualisa-
tion from SMILES. PIKAChU’s drawing software relies
on similar logic to that of SmilesDrawer, a JavaScript
SMILES drawing library. In our software, we added a few
improvements: we fixed cis–trans stereochemistry detec-
tion (Additional file 2: Fig. S3), included an extra overlap
resolution step (Fig. 2B), and implemented an improved
version for finding the smallest subset of smallest rings,
a key step in correctly depicting cycles. There is always
a bit of debate regarding the visualisation of molecu-
lar macrocycles. Many organic chemists opt for a ‘hon-
eycomb’ architecture, as employed by ChemDraw and
CDK, to better represent the 3D architecture of a mol-
ecule, hinting at long-distance interactions that may take
place within the compound (Additional file 2: Fig. S4B).

However, this representation does not instantly draw the
eye to sites of cyclisation, a drawback for natural prod-
uct biologists and bioinformaticians who are often inter-
ested in the biosynthetic steps involved in a compound’s
assembly. As PIKAChU was created with natural product
chemistry in mind, we chose to use a polygon represen-
tation for macrocycles, which clearly shows cyclisation
sites (Additional file 2: Fig. S4A).

While PIKAChU always detects and interprets aroma-
ticity internally, it currently only supports drawing struc-
tures in a kekulised format.

The most important aspect of automated molecular
visualisation is accuracy: users need to be able to rely
on the correctness of drawing software, especially when
processing a large number of structures at once making it
impossible to inspect each image independently. To this
purpose, we visualised a chemically diverse set of struc-
tures from the ChEMBL and NP Atlas databases, and
tested if RDKit could interpret correct chemistry from
PIKAChU-generated atom coordinates. Out of the 32,552
structures in the NP Atlas database, only 40 (~ 0.12%)
were drawn incorrectly. Of these, 33 were drawn wrongly
due to incorrect depiction of cis–trans chemistry of
double bonds adjacent to nested rings (Additional file 2:
Table S1). Additionally, PIKAChU failed to convert 8
structures to drawings (~ 0.02%). One of these was the
same incorrectly defined SMILES describing the valency
5 nitrogen that was found previously. The remaining fail-
ures largely resulted from ChiralityErrors: errors raised
by PIKAChU when it cannot correctly depict cis/trans
chemistry of a double bond. With 32,504 correctly drawn
structures, PIKAChU achieves a drawing accuracy of
99.85%. PIKAChU performed comparably on the 100,000
smallest molecules from the ChEMBL database (99.21%
accuracy, 0.16% incorrect drawings, 0.63% unsuccessful
conversions; Fig. 4A). Comprehensive lists and example
depictions of SMILES leading to incorrect interpretations
can be found in Additional file 2: Table S1 and Additional
file 1.

We additionally assessed the readability of these PIKA-
ChU-rendered drawings by automatically detecting steric
clashes from PIKAChU-generated atom coordinate sets.
Only 4.95% of NP Atlas SMILES renderings contained
steric clashes, with ~ 1.62 clashes per clashing structure.
PIKAChU was better at processing the ChEMBL data-
base, with only ~ 0.30% of drawings containing clashing
atoms. This makes sense, as NP Atlas contains a higher
proportion of highly cyclised systems and large mole-
cules, properties which make it more difficult to readably
depict a molecule in a plane. As the honeycomb approach
of depicting molecules solves some of these issues, we
hope to implement the option to visualise molecules

Page 10 of 17Terlouw et al. Journal of Cheminformatics (2022) 14:34

L-Tryptophan

D-Tryptophan

L-Tryptophan zwitterion

cis-difluoromethylethylene

trans-difluoromethylethylene

benzene

C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)O)N c1[nH]c2ccccc2c1C[C@H](N)C(=O)O NC(Cc1c[nH]c2ccccc12)C(O)=O

C1=CC=C2C(=C1)C(=CN2)C[C@H](C(=O)O)N c1[nH]c2ccccc2c1C[C@@H](N)C(=O)O NC(Cc1c[nH]c2ccccc12)C(O)=O

c1[nH]c2ccccc2c1C[C@H]([NH3+])C(=O)[O-]

F/C=C(\F)/C F/C=C(\F)C F/C=C(F)/C C/C(F)=C/F F/C(C)=C\F

F\C=C(\F)/C F\C=C(\F)C F\C=C(F)/C C\C(F)=C/F F\C(C)=C\F

c1ccccc1 C1C=CC=CC=1 C1=CC=CC=C1 C=1C=CC=CC1 C=1C=CC=CC=1

Fig. 3 Assessment of PIKAChU’s SMILES reader. Structures were drawn from the SMILES written beneath the molecule depictions. All 22 structures
were correctly drawn.

Page 11 of 17Terlouw et al. Journal of Cheminformatics (2022) 14:34

using either the honeycomb or the polygon strategy in
the future.

In Fig. 5, we show nine examples of structures ren-
dered by PIKAChU. Due to the drawing algorithm that
PIKAChU employs for complex ring systems, 5-mem-
bered and 6-membered rings often appear distorted, as
observed for vancomycin and aplasmomycin B. Addition-
ally, PIKAChU’s overlap resolution step, while resolving
a lot of steric clashes, sometimes results in carbon–car-
bon bonds being placed at an 180° angle which makes
the structure less interpretable, as seen for PIKAChU’s
depiction of the molecule nanokid.

Speed assessment
We assessed PIKAChU’s SMILES reading and structure
drawing speed by drawing 10,000 random molecules
from the NP Atlas database and the ChEMBL data-
base (Fig. 4C). With an average reading speed of ~ 2,874
SMILES per minute and an average drawing speed
of ~ 279 molecules per minute for the NP Atlas database
and ~ 375 molecules per minute for the ChEMBL data-
base on a single laptop core, it is clear that PIKAChU
spends the bulk of its time rendering an image on atom
positioning, not on SMILES reading. The discrepancy

between the two databases can be explained by the
nature of the molecules contained within them: typically,
natural products are larger and more cyclised than the
average small molecule. This makes PIKAChU’s drawing
speed one order of magnitude slower than RDKit’s (Addi-
tional file 2: Table S2), which is expected considering that
PIKAChU is a pure Python package while RDKit gener-
ates drawings with pre-compiled C++ code. Also, PIKA-
ChU’s finetuning step is computationally expensive, likely
leading to an increase in computational time. Still, PIKA-
ChU is fast enough for integration into pure-Python bio-
informatics and cheminformatics pipelines.

Substructure detection
A dedicated set of functions ensures that performing
substructure searches using PIKAChU is straightforward.
With a single line of code, users can visualise a single
occurrence of a substructure, all occurrences of a sub-
structure, or all occurrences of a range of substructures
in a chemical compound (Fig. 6A). Substructure searches
are fast due to several pre-processing steps, ensuring that
the expensive graph matching algorithm is only executed

NP Atlas

Total=32552

ChEMBL

Total=100000

Structures without clashes
Structures with clashes
Failed structures

0 5000 10000
0

1

2

3

4

molecules

tim
e

(m
)

SMILES reading
NP Atlas

ChEMBL

0 5000 10000
0

10

20

30

40
SMILES drawing

molecules

tim
e

(m
)

NP Atlas

ChEMBL

NP Atlas

Total=32552

ChEMBL

Total=100000

Correct drawings
Incorrect drawings
Failed drawings

Readability

Speep d

Accuracya b

c

Fig. 4 PIKAChU’s performance tested on the NP Atlas and ChEMBL databases. For drawing readability and accuracy assessment, the entire NPAtlas
database and the 100,000 smallest molecules of the ChEMBL database were tested. For speed assessment, 10,000 random molecules from each
database were used. A Structure readability expressed as the percentage of molecules with steric clashes. B Drawing accuracy expressed as the
percentage of drawings correctly interpreted by RDKit upon writing PIKAChU-calculated atom coordinates to a .mol file. C PIKAChU’s SMILES
reading speed and drawing speed in molecules per minute.

Page 12 of 17Terlouw et al. Journal of Cheminformatics (2022) 14:34

Vancomycin

NanoKid

Aplasmomycin B

Sulflower

Epicolactone

AHB-6-Methylneamine

Hypocrenone A

Maitotoxin

Paclitaxel

Fig. 5 Various molecules rendered by PIKAChU

Page 13 of 17Terlouw et al. Journal of Cheminformatics (2022) 14:34

when a match is likely. Stereochemistry matching, acti-
vated by default, can be toggled on and off.

With PIKAChU’s substructure matching algorithm, we
visualised the amino acid composition of the cyclic pep-
tides daptomycin and vancomycin, using only a single
line of code for each (Fig. 6B). Colours are fully and easily

customisable, and can be provided as hex codes or as col-
our names.

ECFP fingerprinting
To quickly determine the approximate similarity between
two molecules, PIKAChU employs ECFP fingerprinting

a

b

Single All Multiple

Daptomycin Vancomycin

> daptomycin = smiles_from_file(’daptomycin.smi’)
> aspartate = r"N[C@H](C=O)CC(O)=O"
> tryptophan = r"N[C@H](C=O)CC1=CNC2=CC=CC=C21"

> highlight_substructure(aspartate, daptomycin, search_mode='single', colour='light blue')
> highlight_substructure(aspartate, daptomycin, search_mode='all', colour='light blue')
> highlight_substructure([aspartate, tryptophan], daptomycin, search_mode='multiple', colour=['red', 'blue'])

Fig. 6 Substructure matching with PIKAChU. A From left to right: examples of highlighting a single instance of a substructure, all instances
of a substructure, or all instances of multiple substructures. In the example, occurrences of aspartic acid and tryptophan were searched in the
superstructure daptomycin. The code used to generate the images is displayed underneath the panels. B PIKAChU’s substructure matching
algorithm using to visualise all amino acid components of the antibiotics daptomycin (left) and vancomycin (right). Code can be found at https://
github. com/ BTheD ragon Master/ pikac hu/ blob/ main/ examp le_ scrip ts/ amino_ acid_ compo sition. py

https://github.com/BTheDragonMaster/pikachu/blob/main/example_scripts/amino_acid_composition.py
https://github.com/BTheDragonMaster/pikachu/blob/main/example_scripts/amino_acid_composition.py

Page 14 of 17Terlouw et al. Journal of Cheminformatics (2022) 14:34

[15]. PIKAChU hashes each molecule into a set of unique
identifiers, each of which represents a substructure. Col-
lectively, these identifiers make up a molecule’s finger-
print. Then, PIKAChU calculates the Jaccard/Tanimoto
similarity between two molecules by comparing their fin-
gerprints, giving a measure of molecular similarity and/
or distance.

Here, we showcase PIKAChU’s ECFP fingerprinting by
calculating and subsequently constructing a tSNE plot of
the molecular distances between 36 calcium-dependent
lipopeptides. Lipopeptides of the same family grouped
together (Additional file 2: Fig. S5), confirming that PIKA-
ChU’s ECFP fingerprinting yields reliable measures of
chemical similarity.

Additionally, PIKAChU’s ECFP fingerprinting makes it
possible to generate bit vectors from molecule sets, where
each element in the vector represents the presence/absence
of a specific substructure. These can subsequently be used
as interpretable molecular featurisations for machine
learning.

Building in silico reactions using PIKAChU
PIKAChU provides a platform for the creation and visuali-
sation of reaction mechanisms by providing a range of reac-
tion functions that can be used to make or break molecular
bonds, add or remove atoms and alter the chirality of ste-
reocentres. In addition to these built-in reaction build-
ing blocks, PIKAChU allows users to easily define more
complex reactions through the manipulation of atom and
bond object attributes. Additionally, PIKAChU supports
fully customisable structure annotation, which is useful for
keeping track of reaction steps, reaction targets, or atom
origin. As a proof of principle, we used PIKAChU to define
and visualise a polyketide ketoreduction reaction, catalysed
by a ketoreductase polyketide synthase domain during
polyketide synthesis, employing both built-in and custom
reaction functions (Additional file 2: Fig. S6). This example,
as well as a comprehensive guide containing instructions
on how to build reaction mechanisms using PIKAChU, can
be found in the online documentation.

While creating reaction pathways with PIKAChU
enforces chemically correct conversions by checking at
each step if a structure is chemically correct, it is more
laborious than similar functionalities in other cheminfor-
matics kits such as RDKit, which use reaction SMILES and

atom mapping to perform chemical reactions. We intend
to implement reaction SMILES and atom mapping into
PIKAChU in the future.

PIKAChU compared to state‑of‑the‑art chemical drawing
software
Finally, we assessed how PIKAChU performs compared to
existing chemical drawing software. To this purpose, we
visualised various structures in PIKAChU (v1.0.5), RDKit
(v2020.09.1.0), ChemDraw (v20.1.0.112) and SmilesDrawer
(v1,2.0), and manually assessed drawing quality and cor-
rectness (Fig. 7). Only SmilesDrawer occasionally produced
an incorrect structure, confusing cis–trans stereochem-
istry when stereochemistry is defined in or after a branch
(Fig. 7A). For heavily cyclised molecules (Fig. 7B–E), we see
a difference between the ‘honeycomb’ (RDKit and Chem-
Draw) and the ‘polygon’ (PIKAChU and SmilesDrawer)
approaches of cycle positioning. The honeycomb approach
ensures minimal distortion of microcycles, even when
they are part of larger systems; as such, RDKit and Chem-
Draw render molecules such as vancomycin with fewer
distortions than SmilesDrawer and PIKAChU (Fig. 7B).
However, when the honeycomb approach does not work
because of steric constraints, forcing microcycles into reg-
ular polygons can distort the macrocyclic structure to the
extent that the drawing becomes unreadable. This is the
case for aplasmomycin B (Fig. 7C), which is drawn with
fewer bond overlaps by SmilesDrawer and PIKAChU. In
structures where microcycles and macrocycles are sepa-
rate, there is little difference in structure rendering between
the two approaches (Fig. 7D, E). It must be said that while
readable, these depictions are still far from optimal, and
chemists could produce better diagrams by manually
tweaking the drawings of these molecules in ChemDraw.
This demonstrates that even with state-of-the-art software,
2-dimensional automatic visualisation remains a challenge,
particularly for constrained ring systems.

PIKAChU has a slight advantage over RDKit in draw-
ing molecules of varying sizes, automatically adjusting the
canvas size based on the size of the molecule to be drawn.
This also means that PIKAChU’s font size, bond length
and bond thickness maintain a constant ratio across differ-
ent drawings, which is not the case for RDKit (Fig. 7D, E).
While it is possible to manually adjust canvas size in RDKit,
some extra coding steps are required to achieve this.

Fig. 7 Comparison of PIKAChU to various other chemical drawing software packages. A SmilesDrawer, ChemDraw, RDKit and PIKAChU drawings
given the SMILES string ‘C/C=C(\N)/C’. While ChemDraw, RDKit and PIKAChU all draw the cis–trans stereochemistry of the double bond correctly,
with the amino group cis of the methyl group, SmilesDrawer draws the stereobond in the wrong orientation. B SmilesDrawer, ChemDraw, RDKit
and PIKAChU drawings of the heavily cyclised molecule vancomycin. C SmilesDrawer, ChemDraw, RDKit and PIKAChU drawings of the molecule
aplasmomycin B, D epicolactone, and E paclitaxel.

(See figure on next page.)

Page 15 of 17Terlouw et al. Journal of Cheminformatics (2022) 14:34

NH2

SmilesDrawer ChemDraw

b

O

O

O O

O

O

N
H

O
H
N

O

N
H

HO
HO

OH

HN

O

O

Cl

OH

H
N

O

O

OH
O

NH2

H
N

O

NH

HO

Cl

HO

HO

OH

H2N

OH

RDKit PIKAChU

PIKAChU

O

O

O

O

O

O

B-

O

O

O

O

O

O
O

O

O

O

a

c
SmilesDrawer ChemDraw

RDKit PIKAChU

SmilesDrawer ChemDraw

RDKit

PIKAChU

e
SmilesDrawer ChemDraw

RDKit PIKAChU

SmilesDrawer ChemDraw

RDKit

d

O

O

O

O

O

OH

HO

OH

O

O

O

H
N

O

OHHOO

O

O
O

O

OH O

O

Fig. 7 (See legend on previous page.)

Page 16 of 17Terlouw et al. Journal of Cheminformatics (2022) 14:34

PIKAChU’s visual output is far more customizable than
that of SmilesDrawer, allowing for molecule rotation, draw-
ing multiple molecules on a single canvas, and custom
colouring of each individual bond and atom, supporting
hex-codes as well as a range of descriptive strings.

While ChemDraw accommodates high-quality and
highly customisable visualisation, it is not open-source.
This makes PIKAChU more suitable for integration into
automated open-source pipelines required by many
projects.

Conclusions
We developed PIKAChU, a dependency-light chem-
informatics library implemented entirely in Python.
Having extensively validated our software, we conclude
that, while RDKit heavily outperforms PIKAChU in
terms of speed, PIKAChU performs sufficiently fast and
reliably to be suitable for cheminformatics and bioin-
formatics pipelines. Backed by extensive online docu-
mentation, easy and straightforward installation, and
state-of-the-art automated visualisation software, we
hope that PIKAChU can provide a convenient alterna-
tive for chem- and bioinformaticians programming in
Python.

Abbreviations
PIKAChU: Python-based Informatics Kit for Analysing Chemical Units; SMILES:
Simplified Molecular-Input Line Entry System; ECFP: Extended Connectivity
FingerPrinting.

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s13321- 022- 00616-5.

Additional file 1: True failed SMILES. SMILES failed because of incorrect
chemistry.

Additional file 2: Figure S1. PIKAChU’s recursive aromaticity detection.
Aromatic cycles are individually and recursively detected and later joined
into cyclic systems. Figure S2. Faulty ring detection by SmilesDrawer
leads to unreadable structure renderings. SmilesDrawer’s SSSR implemen-
tation fails to detect one of the macrocycles, leading to the unreadable
structure shown on the right. PIKAChU’s SSSR implementation (left) does
recognise this ring, and therefore renders the structure correctly. Figure
S3. PIKAChU resolves incorrectly drawn chiral bonds in rings. PIKAChU
(left) correctly depicts cis-trans chemistry of stereobonds in rings that
SmilesDrawer (right) cannot visualise. Figure S4. Two approaches for
visualising macrocycles. A. Daptomycin visualised using the ’polygon’
approach in PIKAChU. B. Daptomycin visualised using the ’honeycomb’
approach in ChemDraw. Figure S5. tSNE plot of 36 calcium-dependent
lipopeptides drawn in a 2D plane based on the Tanimoto distances
between their structures as computed by PIKAChU. The script and struc-
tures used to draw this figure can be found in the example_scripts and
example_structures folders in GitHub, respectively. Figure S6. Visualisa-
tion of the polyketide ketoreduction reaction, built and visualised by
PIKAChU. The reduced group is highlighted in red. The script performing
this reaction can be found on GitHub. Supplementary Table S1. Examples
of SMILES that PIKAChU does not draw correctly, compared to ChemDraw
drawings drawn from the same SMILES. Table S2. Drawing times of mol-
ecules rendered by RDKit and PIKAChU. Time is indicated in minutes.

Acknowledgements
Daniel Probst for providing an in-depth explanation of the SmilesDrawer
software; Rutger Bosch for reporting software bugs; Zach Reitz, Joris Louwen,
Lotte Pronk, David Meijer, Hannah Augustijn, Kumar Singh, Huali Xie, Jiayi Jing,
Mohammad Alanjary, Chrats Melkonian, Justin van der Hooft, and Catarina
Sales E Santos Loureiro for testing the PIKAChU software.

Author contributions
BRT: Development and testing of the PIKAChU software, wrote the initial
version of the manuscript and further edited it based on the suggestions of
the other authors. SPJMV: Significant contributions to writing the manuscript,
extensive testing and debugging of the PIKAChU software, writing and
executing example scripts. MHM.: Significant contributions to writing the
manuscript, suggestions for software features, research supervision. All the
authors read and approved the final manuscript.

Funding
This work was supported by the Novel Antibacterial Compounds and Thera-
pies Antagonising Resistance program (NACTAR) from the Dutch Research
Council (NWO) [project number 16440].

Availability of data and materials
The PIKAChU software is made available under an open-source (MIT) license
and can be found at https:// github. com/ BTheD ragon Master/ pikac hu. A wiki
can be found at https:// github. com/ BTheD ragon Master/ pikac hu/ wiki. Scripts
used for the results section of this paper are made available at https:// github.
com/ BTheD ragon Master/ pikac hu/ tree/ main/ examp le_ scrip ts. The NPAtlas
database used in our analyses can be downloaded at https:// www. npatl as.
org/ downl oad.

Declarations

Competing interests
M.H.M. is a member of the Scientific Advisory Board of Hexagon Bio and co-
founder of Design Pharmaceuticals.

Received: 8 January 2022 Accepted: 21 May 2022

References
 1. Alvarsson J, Lampa S, Schaal W, Andersson C, Wikberg JES, Spjuth O

(2016) Large-scale ligand-based predictive modelling using support
vector machines. J Cheminform 8(1):1–9. https:// doi. org/ 10. 1186/
s13321- 016- 0151-5

 2. Beisken S, Meinl T, Wiswedel B, De FLF, Berthold M (2013) KNIME-CDK :
Workflow-driven cheminformatics. BMC Bioinform 14(257):2–5

 3. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, Van Wezel GP,
Medema MH, Weber T (2021) AntiSMASH 6.0: improving cluster detection
and comparison capabilities. Nucleic Acids Res 49(W1):W29–W35. https://
doi. org/ 10. 1093/ nar/ gkab3 35

 4. Cass S (2021) Top Programming Languages 2021, IEEE Spectrum. https://
spect rum. ieee. org/ top- progr amming- langu age. Accessed 7 Nov 2021.

 5. Edmonds J (1965) Paths, trees, and flowers. Can J Math 17:449–467
 6. Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner

S, Swainston N, Mendes P, Steinbeck C (2016) ChEBI in 2016: improved
services and an expanding collection of metabolites. Nucleic Acids Res
44(D1):D1214–D1219. https:// doi. org/ 10. 1093/ nar/ gkv10 31

 7. Hückel E (1931) Quantentheoretische Beiträge zum Benzolproblem—I.
Die Elektronenkonfiguration des Benzols und verwandter Verbindungen.
Zeitschrift für Phys 70(3–4):204–286. https:// doi. org/ 10. 1007/ BF013 39530

 8. Johnson D (1975) Finding all the elementary cycles of a digraph. SIAM J
Comput 4(1):77–84

 9. Kamada T, Kawai S (1989) An algorithm for drawing general undirected
graphs. Inf Process Lett 31(1):7–15. https:// doi. org/ 10. 1016/ 0020- 0190(89)
90102-6

 10. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA,
Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2021) PubChem in

https://doi.org/10.1186/s13321-022-00616-5
https://doi.org/10.1186/s13321-022-00616-5
https://github.com/BTheDragonMaster/pikachu
https://github.com/BTheDragonMaster/pikachu/wiki
https://github.com/BTheDragonMaster/pikachu/tree/main/example_scripts
https://github.com/BTheDragonMaster/pikachu/tree/main/example_scripts
https://www.npatlas.org/download
https://www.npatlas.org/download
https://doi.org/10.1186/s13321-016-0151-5
https://doi.org/10.1186/s13321-016-0151-5
https://doi.org/10.1093/nar/gkab335
https://doi.org/10.1093/nar/gkab335
https://spectrum.ieee.org/top-programming-language
https://spectrum.ieee.org/top-programming-language
https://doi.org/10.1093/nar/gkv1031
https://doi.org/10.1007/BF01339530
https://doi.org/10.1016/0020-0190(89)90102-6
https://doi.org/10.1016/0020-0190(89)90102-6

Page 17 of 17Terlouw et al. Journal of Cheminformatics (2022) 14:34

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

2021: New data content and improved web interfaces. Nucleic Acids Res
49(D1):D1388–D1395. https:// doi. org/ 10. 1093/ nar/ gkaa9 71

 11. Landrum G RDKit: open-source cheminformatics. http:// www. rdkit. org.
Accessed 7 Nov 2021.

 12. Miles LH (2019) Cycle detection. https:// github. com/ qpwo/ python- sim-
ple- cycles. Accessed 21 Aug 2021.

 13. Morris J, Jiao D (2016) ChemViz2: cheminformatics App for Cytoscape
http:// www. rbvi. ucsf. edu/ cytos cape/ chemV iz2/. Accessed 7 Nov 2021.

 14. Probst D, Reymond JL (2018) SmilesDrawer: parsing and drawing SMILES-
encoded molecular structures using client-side javascript. J Chem Inf
Model 58(1):1–7. https:// doi. org/ 10. 1021/ acs. jcim. 7b004 25

 15. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf
Model 50:742–754

 16. Skinnider MA, Johnston CW, Gunabalasingam M, Merwin NJ, Kieliszek AM,
MacLellan RJ, Li H, Ranieri MRM, Webster ALH, Cao MPT, Pfeifle A, Spencer
N, To QH, Wallace DP, Dejong CA, Magarvey NA (2020) Comprehensive
prediction of secondary metabolite structure and biological activity from
microbial genome sequences. Nat Commun 11(1):1–9. https:// doi. org/ 10.
1038/ s41467- 020- 19986-1

 17. Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C (2021) COCO-
NUT online: collection of open natural products database. J Cheminform
13(1):1–13. https:// doi. org/ 10. 1186/ s13321- 020- 00478-9

 18. Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, Mac-
Nair CR, French S, Carfrae LA, Bloom-Ackerman Z, Tran VM, Chiappino-
Pepe A, Badran AH, Andrews IW, Chory EJ, Church GM, Brown ED, Jaak-
kola TS, Barzilay R, Collins JJ (2020) A deep learning approach to antibiotic
discovery. Cell 180(4):688-702.e13. https:// doi. org/ 10. 1016/j. cell. 2020. 01.
021

 19. Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM
23(1):31–42. https:// doi. org/ 10. 1145/ 321921. 321925

 20. Van Santen JA, Jacob G, Singh AL, Aniebok V, Balunas MJ, Bunsko D,
Neto FC, Castaño-Espriu L, Chang C, Clark TN, Cleary Little JL, Delgadillo
DA, Dorrestein PC, Duncan KR, Egan JM, Galey MM, Haeckl FPJ, Hua A,
Hughes AH, Iskakova D, Khadilkar A, Lee JH, Lee S, Legrow N, Liu DY,
Macho JM, McCaughey CS, Medema MH, Neupane RP, O’Donnell TJ, Paula
JS, Sanchez LM, Shaikh AF, Soldatou S, Terlouw BR, Tran TA, Valentine M,
Van Der Hooft JJJ, Vo DA, Wang M, Wilson D, Zink KE, Linington RG (2019)
The natural products atlas: an open access knowledge base for microbial
natural products discovery. ACS Cent Sci 5(11):1824–1833. https:// doi.
org/ 10. 1021/ acsce ntsci. 9b008 06

 21. Volkamer A, Kuhn D, Rippmann F, Rarey M (2012) Dogsitescorer: a web
server for automatic binding site prediction, analysis and druggability
assessment. Bioinformatics 28(15):2074–2075. https:// doi. org/ 10. 1093/
bioin forma tics/ bts310

 22. Willighagen EL, Mayfield JW, Alvarsson J, Berg A, Carlsson L, Jeliazkova N,
Kuhn S, Pluskal T, Rojas-Chertó M, Spjuth O, Torrance G, Evelo CT, Guha
R, Steinbeck C (2017) The Chemistry Development Kit (CDK) v2.0: atom
typing, depiction, molecular formulas, and substructure searching. J
Cheminform 9(1):1–19. https:// doi. org/ 10. 1186/ s13321- 017- 0220-4

 23. Yorkyer (2020) Python implementation of Edmonds’ Blossom Algorithm.
https:// github. com/ yorky er/ edmon ds- bloss om. Accessed 24 Aug 2021.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1093/nar/gkaa971
http://www.rdkit.org
https://github.com/qpwo/python-simple-cycles
https://github.com/qpwo/python-simple-cycles
http://www.rbvi.ucsf.edu/cytoscape/chemViz2/
https://doi.org/10.1021/acs.jcim.7b00425
https://doi.org/10.1038/s41467-020-19986-1
https://doi.org/10.1038/s41467-020-19986-1
https://doi.org/10.1186/s13321-020-00478-9
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1145/321921.321925
https://doi.org/10.1021/acscentsci.9b00806
https://doi.org/10.1021/acscentsci.9b00806
https://doi.org/10.1093/bioinformatics/bts310
https://doi.org/10.1093/bioinformatics/bts310
https://doi.org/10.1186/s13321-017-0220-4
https://github.com/yorkyer/edmonds-blossom

	PIKAChU: a Python-based informatics kit for analysing chemical units
	Abstract
	Introduction
	Methods and implementation
	Software description
	Parsing molecules from SMILES
	Visualisation and kekulisation
	Structure annotation
	Substructure matching
	Fingerprinting
	Defining reaction targets
	Characterisation and visualisation of the polyketide ketoreduction reaction
	Validation
	Speed assessment

	Results and discussion
	SMILES reading and writing
	Structure visualisation
	Speed assessment
	Substructure detection
	ECFP fingerprinting
	Building in silico reactions using PIKAChU
	PIKAChU compared to state-of-the-art chemical drawing software

	Conclusions
	Acknowledgements
	References

