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Abstract 

As efforts to computationally describe and simulate the biochemical world become more commonplace, computer 
programs that are capable of in silico chemistry play an increasingly important role in biochemical research. While 
such programs exist, they are often dependency-heavy, difficult to navigate, or not written in Python, the program-
ming language of choice for bioinformaticians. Here, we introduce PIKAChU (Python-based Informatics Kit for Analys-
ing CHemical Units): a cheminformatics toolbox with few dependencies implemented in Python. PIKAChU builds 
comprehensive molecular graphs from SMILES strings, which allow for easy downstream analysis and visualisation of 
molecules. While the molecular graphs PIKAChU generates are extensive, storing and inferring information on aroma-
ticity, chirality, charge, hybridisation and electron orbitals, PIKAChU limits itself to applications that will be sufficient 
for most casual users and downstream Python-based tools and databases, such as Morgan fingerprinting, similarity 
scoring, substructure matching and customisable visualisation. In addition, it comes with a set of functions that assists 
in the easy implementation of reaction mechanisms. Its minimalistic design makes PIKAChU straightforward to use 
and install, in stark contrast to many existing toolkits, which are more difficult to navigate and come with a plethora 
of dependencies that may cause compatibility issues with downstream tools. As such, PIKAChU provides an alterna-
tive for researchers for whom basic cheminformatic processing suffices, and can be easily integrated into downstream 
bioinformatics and cheminformatics tools. PIKAChU is available at https:// github. com/ BTheD ragon Master/ pikac hu.

Keywords: Cheminformatics kit, Python, Structure visualisation, In silico chemistry, Molecular fingerprinting

Graphical Abstract

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Journal of Cheminformatics

*Correspondence:  barbara.terlouw@wur.nl; marnix.medema@wur.nl

Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 
PB Wageningen, The Netherlands

http://orcid.org/0000-0002-2191-2821
https://github.com/BTheDragonMaster/pikachu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-022-00616-5&domain=pdf


Page 2 of 17Terlouw et al. Journal of Cheminformatics           (2022) 14:34 

Introduction
In a data-driven world where the discovery of novel natu-
ral and synthetic molecules is increasingly necessary, in 
silico chemical processing has become an essential part 
of biological and chemical research. Novel metabolites 
are compared or added to searchable chemical data-
bases such as ChEBI [6], PubChem [10], NP Atlas [20], 
and COCONUT [17]; molecular structures are predicted 
from biological pathways [3, 16]; and bioactivities and 
pharmaceutical properties are predicted from chemical 
structure [1, 18, 21]. Such analyses rely on robust chem-
informatics kits that can perform basic chemical pro-
cessing, such as fingerprint-based similarity searches, 
substructure matching, molecule visualisation and chem-
ical featurisation for machine learning purposes.

Typically, molecular processing by cheminformatics 
kits begins with the reading in of molecular data from 
chemical data formats, ranging from one-dimensional to 
three-dimensional molecular representations. One such 
formats is the SMILES (Simplified Molecular-Input Line 
Entry System) format, which represents a molecule as a 
one-dimensional string, describing atom composition, 
connectivity, stereochemistry, and charge. More elabo-
rate formats such as PDB and MOL use text files to store 
not just the abovementioned properties but also atom 
coordinates in three-dimensional space.

Depending on the application, different formats and 
subsequent processing are appropriate. Due to the vast 
number of possible chemical analyses, exhaustive chem-
informatics kits have accumulated into software librar-
ies that are so large that they can be hard to navigate, 
and rely on so many dependencies that they can be dif-
ficult to implement in software packages. As a result, 
the trade-off between time spent accessing and integrat-
ing these cheminformatics kits into a codebase and time 
spent on actual analyses is disproportionate for users 

that need to perform simple in silico analyses such as 
reading in SMILES, drawing a molecule, or visualising 
a substructure. One popular open-source cheminfor-
matics kit that suffers from this problem is RDKit [11]. 
While RDKit is an incredibly fast and powerful library 
that supports an immense variety of possible chemical 
operations, its use of both Python and C++ as program-
ming languages as well as the sheer number of depend-
encies it relies on frequently causes compatibility issues 
when integrating RDKit into other programs, and dis-
proportionately increases the number of libraries that 
need to be installed. Therefore, while RDKit is great for 
heavy-duty in silico analyses such as computing 3D con-
formers for a compound or constructing electron density 
maps, it is a bit heavyweight for the basic operations that 
most researchers in bioinformatics and cheminformatics 
require.

A second widely-used cheminformatics kit is CDK 
[22]. Written in Java, it is well-suited for implementa-
tion in web applications, and has successfully been used 
for molecular processing in the COCONUT database 
[17], the Cytoscape application chemViz2 [13], and the 
scientific workflow platform KNIME (Konstanz Infor-
mation Miner) [2]. However, with Python becoming the 
programming language of choice for many scientists [4], 
especially those working in the growing field of (deep) 
neural networks, CDK is not always an ideal fit.

To make basic cheminformatics processing more acces-
sible for Python programmers, we therefore introduce 
PIKAChU: a Python-based Informatics Kit for Analysing 
Chemical Units. PIKAChU is a flexible cheminformatics 
tool with few dependencies. It can parse molecules from 
SMILES, visualise chemical structures and substructures 
in matplotlib, perform Extended Connectivity Finger-
Printing (ECFP) [15] and Tanimoto similarity searches, 
and execute basic reactions with a focus on natural 
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product chemistry. Therefore, we hope that PIKAChU 
can provide a convenient alternative for many Python-
based bio- and cheminformatics tools and databases that 
only demand basic chemical processing.

Methods and implementation
Software description
PIKAChU is implemented in Python (v3.9.7). Its only 
dependency is the common Python package matplotlib 
(v3.4.3). PIKAChU can be run on Windows, MacOS, and 
Linux systems.

Parsing molecules from SMILES
PIKAChU takes a SMILES string as input and from it 
builds a graph object, in which nodes represent atoms 
and edges represent bonds (Fig. 1). For each atom, PIKA-
ChU initially stores information on chirality, aromatic-
ity, charge, and connectivity. For each bond, it stores 
bond type (single, double, triple, quadruple, or aromatic), 
neighbouring atoms, and cis–trans stereochemistry for 
double bonds. Once all atoms, bonds, and their con-
nectivities have been stored, electron shells and orbit-
als are constructed for each non-hydrogen atom. Next, 
we determine the valency for each non-hydrogen atom, 
taking into account atom charge. For atoms of variable 
valency such as sulphur (2, 4 or 6) and phosphorus (3 
or 5), we select a valency that is equal to or higher than 
the sum of non-hydrogen bonds and explicit hydro-
gen bonds, prioritising smaller valencies. Double, triple, 
quadruple and aromatic bonds contribute proportion-
ally to this sum. If insufficient bonding orbitals are avail-
able to achieve the desired valency, the electrons in the 
valence shell are excited to higher-energy orbitals, such 
that each orbital contains at most one electron. Implicit 
hydrogens are then added to the structure such that the 
pre-determined valencies are obeyed.

An exception is made for nitrogens of valency 5, which 
are not chemically possible due to insufficient bonding 
orbitals but can sometimes be encountered in SMILES 
strings, especially in those describing compounds con-
taining nitro groups. If such a valency 5 nitrogen is 
attached to at least one oxygen through a double bond, 
this double bond is interpreted as a single bond instead, 
the oxygen’s charge is set to − 1 and the nitrogen’s charge 
is set to 1, such that the nitrogen’s valency becomes 4 and 
bonding laws are obeyed.

Subsequently, electrons are allocated to the p-orbit-
als of π bonds in double, triple and quadruple bonds, 
and atom hybridisation is determined from steric num-
ber. Then, all cycles in the graph are detected using an 
open-source Python implementation [12] of the sim-
ple cycle detection algorithm described by D. Johnson 
in 1975 [8]. PIKAChU removes all cycles smaller than 

three atoms and identifies the smallest set of unique 
smallest rings (SSSR).

Next, the SSSR is used for aromaticity detection. 
This is done recursively: in each round, each cycle that 
has not yet been added to the set of aromatic cycles is 
evaluated with Hückel’s 4n + 2 rule on planar rings. We 
chose to assess aromatic cycles rather than systems as 
Hückel’s rule is not always reliable for cyclic systems 
[7]. First, the hybridisation of all atoms in the cycle is 
examined. All atoms must be sp2-hybridised, or sp3-
hybridised with a delocalisable lone pair that can be 
promoted to a p-orbital. If the cycle is planar and the 
sum of double bonds and lone pairs is odd, the cycle 
is considered aromatic. Aromatic bond stretches are 
locally kekulised, and double bonds are subsequently 
counted. When a cycle is considered aromatic, bonds 
and atoms in the cycle are set to aromatic, and lone 
pairs of sp3-hybridised atoms are promoted to p-orbit-
als such that the new hybridisation is sp2. Recursion 
is needed in case double bonds in cyclic systems are 
defined in such a way that not all sub-cycles contain 
the required number of bonds to obey Hückel’s rule: 
when adjacent bonds are updated to aromatic, they will 
be counted in the next round of aromaticity detection 
(Additional file 2: Fig. S1). When, after an iteration, the 
number of aromatic cycles no longer changes, all aro-
matic cycles have been detected. From these cycles, 
PIKAChU defines aromatic systems, where aromatic 
cycles are considered part of an aromatic system if they 
share a bond with at least one other aromatic cycle in 
the system.

Electrons involved in σ bonds and aromatic bonds are 
only allocated after aromaticity detection. As electrons 
involved in aromatic systems are not localised to specific 
atoms or bonds, the p-orbitals of atoms in aromatic sys-
tems are emptied and their electrons stored in an Aro-
maticSystem object.

Finally, any unpaired electrons are dropped back to 
lower-energy orbitals. A structure object is returned 
which can be visualised, kekulised, analysed through sub-
structure matching and molecular fingerprinting, and 
altered through an assortment of built-in and custom 
chemical reactions.

If a SMILES string yields a structure object that is 
chemically incorrect due to too many or too few bonds 
being attached to an atom or valence shells not being 
filled appropriately in the case of organic atoms, PIKA-
ChU gives a StructureError, informing the user that 
the parsed structure is chemically incorrect and gives a 
rough indication of why. Two examples of such Structu-
reError messages are ‘Error parsing "F/C(\Cl)=C(F)/Cl": 
Conflicting double bond stereochemistry’ and ‘Error pars-
ing "CN(=O)=O": Basic bonding laws have been violated’.
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Class: Atom
atom.type = ‘C’
atom.nr = 1

atom.hybridisation = ‘sp3’
atom.neighbours = [C_0, H_2, C_3, N_6]
atom.bonds = [single_0:C_1_H_2,
                        single_1:C_0_C_1,
                        single_2:C_1_C_3,
                        single_5:C_1_N_6,]
atom.chiral = ‘clockwise’
atom.aromatic = False
atom.lone_pairs = [ ]
 

Class: Electron
electron.atom = O_4
electron.shell_nr = 2
electron.orbital_type = ‘sp2’
electron.orbital_nr = 2
electron.spin = 0.5
electron.paired = True
electron.partner = C_3_2sp22_-0.5
electron.aromatic = False
 

Class: Bond
bond.atom_1 = C_0
bond.atom_2 = H_7
bond.type = ‘single’
bond.neighbours = [C_0, H_7]
bond.nr = 6
bond.chiral = False
bond.electrons = [C_0_2sp33_-0.5, H_7_1s_0.5]
 

Class: Structure
structure.graph = {C_0: [C_1, H_7, H_8, H_9], ... }

structure.bonds = {0: single_0:C_1_H_2, 
                              1: single_1:C_0_C_1, ...}

structure.bond_lookup = {C_0: {C_1: single_1:C_0_C_1, 
                                                   H_7: single_6:C_0_H_7, 
                                                   H_8: single_7: C_0_H_8, 
                                                   H_9: single_8: C_0_H_9}, ...}

Alanine SMILES string

Fig. 1 Overview of the internal structure of PIKAChU’s structure graphs. This example uses L-alanine, a small amino acid. The four bottom boxes in 
grey indicate attributes for each of PIKAChU’s major classes: Structure, Atom, Bond and Electron.
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Visualisation and kekulisation
Prior to visualisation, aromatic systems within a struc-
ture are kekulised so that aromatic systems can be repre-
sented by alternating single and double bonds. PIKAChU 
kekulises aromatic systems using a Python implemen-
tation [23] of Edmonds’ Blossom Algorithm for maxi-
mum matching [5]. Next, atoms are positioned using 
PIKAChU’s drawing software. PIKAChU’s python-based 
drawing algorithm was adapted and improved from 
SmilesDrawer [14], an open-source JavaScript library 
for molecular visualisation. While written in different 
programming languages, the algorithms underlying the 
drawing software of PIKAChU and SmilesDrawer are 
largely identical. We will briefly recap this algorithm 
below; more detailed descriptions of the algorithm’s ele-
ments can be found in the SmilesDrawer paper [14].

First, if indicated, PIKAChU’s drawing algorithm 
removes hydrogens from the graph. Next, it finds the 
smallest set of smallest rings in the structure graph. As 
SmilesDrawer’s SSSR implementation sometimes failed 
to detect some rings, leading to unreadable structure 
renderings (Additional file  2: Fig. S2), we implemented 
the SSSR algorithm ourselves. Next, like SmilesDrawer, 
PIKAChU classifies all rings into one of three groups: 
simple rings, overlapping rings, and bridged rings. Sim-
ple rings are standalone rings that do not have any over-
lapping atoms with any other rings. Overlapping rings 
are rings that overlap with one or more other rings, 
where the overlap between any two rings can comprise 
at most two atoms, any atom in the overlap is part of at 
most two rings, and no atoms in the ring overlap with 
bridged rings. Finally, bridged rings are rings that share 
more than two atoms with another ring, contain atoms 
that are part of three or more rings, or share atoms with 
another bridged ring (Fig. 2A).

After ring systems have been identified, atoms are 
placed onto a 2D coordinate system. If the molecule con-
tains rings, positioning starts with the placement of an 
atom in a ring, prioritising bridged rings over simple and 
overlapping rings. Then, the graph is traversed one atom 
at a time in depth-first fashion. If an atom is part of a 
ring, the entire ring or ring system get placed at once. In 
the case of simple and overlapping rings, ring placement 
can be done using simple polygon geometry. For bridged 
rings, atoms are positioned using the force-spring model 
described by Kamada and Kawai [9], where all atoms of 
the bridged system are initially placed in a circle, and then 
pulled towards their optimal positions by minimising 
the difference between the desired bond length and the 
distance between neighbouring atoms, and maximising 
distances between non-neighbouring atoms. Non-ring 
atoms are positioned a bond length away from the previ-
ous atom, where the angle with respect to the previous 

atom is determined by the number of neighbours the 
atom has (Fig. 2C), and the size of the molecular subtree 
behind each neighbouring atom (Fig. 2D). Stereochemi-
cally restricted double bonds are always forced into the 
appropriate cis- or trans conformation. Unlike Smiles-
Drawer, which directly infers bond stereochemistry from 
the SMILES string, PIKAChU draws this information 
from bond objects stored in the molecular graph. As an 
improvement on SmilesDrawer, PIKAChU attempts to 
resolve wrongly depicted stereobonds in rings by mirror-
ing one of the neighbouring atoms into the ring. PIKA-
ChU always selects the atom with the smallest protruding 
side chain for this purpose (Additional file  2: Fig. S3). 
When multiple consecutive stereobonds are found in a 
ring, PIKAChU adjusts them in order, never rotating a 
neighbour of the same bond twice.

Once all atoms have been assigned initial coordinates, 
atoms adjacent to rings are flipped outside of their ring 
where possible. Then, the drawing is checked for overlaps 
between atoms, and these overlaps are resolved by rotat-
ing branches of the molecule around single bonds. In 
PIKAChU, we have included an extra ‘finetuning’ option 
that is not present in SmilesDrawer. When the finetuning 
flag is set to True, all pairs of clashing atoms are detected. 
Then, the shortest path is calculated between all clash-
ing atoms. First, PIKAChU determines which bonds are 
rotatable: bonds are considered unrotatable when they 
are a chiral bond, are adjacent to a chiral bond, or are in a 
cycle. As rotations around bonds located equally far away 
from two clashing atoms likely have the greatest impact 
on clash resolution, PIKAChU selects the rotatable bond 
that is positioned as close to the centre of the shortest 
path as possible. Next, PIKAChU takes the resulting set 
of bonds found for all clashes, and rotates each at 30° 
intervals, assessing and storing the number of clashes in 
the drawing after each iteration. The angle for which the 
number of steric clashes is minimised is chosen (Fig. 2B).

Finally, some bonds adjacent to chiral centres are 
replaced with backward and forward wedges. They are 
placed such that they do not neighbour more than one 
chiral centre where possible, they are not part of a ring, 
and point in the direction of the shortest branch leading 
from a chiral centre, in that order of priority. The result-
ing image is subsequently written to a.svg or.png file or 
displayed directly in matplotlib.

Structure annotation
PIKAChU provides the option to add custom annotations 
to structures. Each Atom instance contains an ‘annota-
tions’ attribute, which points to an AtomAnnotation 
instance. An AtomAnnotations instance can contain as 
many annotations as the user requires. Annotations can 
be added to all atoms in a structure at once by defining 
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Fig. 2 PIKAChU’s drawing algorithm. A Examples of simple (blue), overlapping (red) and bridged (pink) rings. Note that the aromatic rings in pink 
become part of the bridged ring system because they overlap with bridged rings. B PIKAChU’s ‘finetuning’ algorithm. First, clashes are detected and 
the shortest path between them is found. The rotatable bond with the shortest distance to the centre of the shortest path is chosen (indicated with 
numbers). 12 rotations at incremental angles of 30° are evaluated for clashes. The best rotation is chosen. C Determination of bond angles based 
on neighbouring atoms. If an atom has 3 or fewer non-hydrogen neighbours, the angles default to 120° (yellow). If an atom has 4 non-hydrogen 
neighbours, angles default to 90° if three or more of the branches have a depth more than 1, or three or four branches have a depth of exactly 1 
(red). If however two of the branches have a depth of exactly 1 (blue), the angle is set to 120° between the two longest branches, 90° between any 
short branch and any long branch, and 60° between the shortest branches. D Positioning of neighbouring branches depends on the depth of each 
branch: the two longest branches (red and dark yellow, depths 7 and 6 respectively) are always placed opposite one another.
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the name of the attribute with a string, and optionally 
providing a default value for the attribute. Subsequently, 
specific values can be added and retrieved for specific 
atoms or atom sets. A manual providing an example can 
be found on the PIKAChU wiki.

Substructure matching
PIKAChU detects occurrences of a substructure in a 
superstructure in five steps. In all steps, hydrogens are 
ignored. First, PIKAChU checks for each atom type 
in the substructure if enough atoms of these types are 
accounted for in the superstructure. Second, it assesses 
for each atom in the substructure whether an atom exists 
in the superstructure with the same connectivity, look-
ing at directly neighbouring bonds and atoms. Third, 
using the atom with the most diverse connectivity as a 
seed, it finds matches of the substructure in the super-
structure using a depth-first search algorithm, ignoring 
stereochemistry. By first looking at atom type and atom 
connectivity, and by using atoms of diverse connectivity 
as seeds for substructure matching, the number of calls 
to the computationally expensive depth-first search func-
tion is minimised. Fourth, for each match, it determines 
if all chiral centres in the substructure have the same 
orientation as corresponding chiral centres in the super-
structure. Fifth, PIKAChU checks if cis–trans orientation 
of double bonds in the substructure matches that of dou-
ble bonds in the superstructure. Chiral centre and dou-
ble bond stereochemistry checks can be toggled by the 
user independently of one another. If chirality of bonds 
and atoms are considered, substructures with undefined 
stereochemistry will still match to parent structures with 
defined stereochemistry. This does not apply in reverse: 
if a stereocentre or stereobond is defined for a substruc-
ture, it will not match to parent structures with unde-
fined stereochemistry.

The algorithm described is somewhat similar to the 
Ullmann algorithm [19], which first assesses if a can-
didate subgraph contains enough nodes of the correct 
degree prior to substructure matching and selects nodes 
of the most unique degree as seeds. A key difference is 
that PIKAChU’s substructure matching algorithm also 
takes into account the identity of a node’s neighbours, 
not just a node’s degree.

Substructures can be easily visualised through a range 
of functions in PIKAChU’s ‘general’ ’library.

Fingerprinting
PIKAChU uses ECFP [15], which is an improved version 
of the classical Morgan fingerprinting also taking into 
account cycle membership, to perform similarity searches 
and convert molecules to bit vectors for machine learn-
ing featurisation. Using Python’s inbuilt hashlib library, 

PIKAChU initialises each atom to a 32-bit hash, derived 
from a tuple containing information on heavy neigh-
bours, valence, atomic number, atomic weight, charge, 
hydrogen neighbours, and ring membership. Then, each 
atom hash is iteratively updated with hashes from its 
neighbours, as well as the distance from the neighbour 
to the atom and stereochemical information if the atom 
is a chiral centre. The number of iterations depends on 
a radius which can be set to any number (default = 2 
for ECFP-4 fingerprinting). The ECFP algorithm was 
described in detail by Rogers and Hahn in 2010 [15]. 
Finally, duplicate hashes are removed, as well as different 
hashes representing the same substructure, yielding a set 
of 32-bit hashes that constitutes a molecule’s fingerprint.

Using ECFP fingerprinting, PIKAChU can calculate 
Jaccard/Tanimoto distance and/or similarity between 
any two molecules. Furthermore, PIKAChU can con-
vert molecule libraries into bit vectors of varying lengths 
(default = 1024) and an accompanying list of substruc-
tures represented by those bit vectors that can be used in 
downstream machine learning algorithms.

Defining reaction targets
In order to facilitate implementation of reactions and 
reaction pathways, PIKAChU lets users define target 
bonds or atoms within substructures with a set of dedi-
cated functions. These functions take a SMILES string 
representing a substructure, and either one or two inte-
gers that define an atom or a bond between two atoms 
respectively. For example, the SMILES string ‘C(= O)
NC’, accompanied by the integers 0 (pointing to the first 
C atom) and 2 (pointing to the N atom), represents a 
peptide bond. The occurrences of these bonds/atoms 
are then detected within a superstructure through a 
substructure search and are returned as a list of bonds/
atoms. Subsequently, the returned bonds/atoms can be 
used as reaction targets, for instance for bond hydroly-
sis or atom methylation, using functions in PIKAChU 
for breaking or creating bonds and adding or removing 
atoms. Reactions currently have to be encoded manually 
using a library of functions included in PIKAChU, which 
include functions for creating bonds, breaking bonds, 
adding and removing atoms, and splitting disconnected 
graphs into separate structures. We provided in-built 
condensation and hydrolysis functions, as well as a more 
elaborate ketoreductase function, as examples on our 
GitHub page.
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Characterisation and visualisation of the polyketide 
ketoreduction reaction
We demonstrated the implementation of reactions using 
PIKAChU by characterising and visualising a polyketide 
ketoreduction reaction. We built the ketoreduction reac-
tion by first defining a reaction target as described above, 
in this case a β-keto bond, and detecting its position in a 
polyketide chain. Next, we wrote a function that reduces 
the double carbonyl bond to a single bond, which iden-
tifies and removes the π-electrons in the double bond, 
sets the bond type to single, adjusts the hybridisation 
of the atoms involved and finally updates the structure 
object through PIKAChU’s refresh functions. To final-
ize the reaction, two hydrogen atoms were added to the 
carbon and oxygen atoms of the former carbonyl bond 
using PIKAChU’s add_atom function. Finally, to visual-
ise the reaction, we highlighted the atoms and bonds of 
the newly formed hydroxyl group in red and drew the 
molecule.

Detailed instructions on how to make full use of PIKA-
ChU’s range of functionalities, as well as the script used 
to implement the ketoreduction reaction, can be found in 
the online documentation.

Validation
To assess the correctness of PIKAChU’s SMILES reading 
and writing software, we converted all SMILES strings 
from the NP Atlas database into PIKAChU Structure 
instances. Subsequently, we converted these structure 
instances back to SMILES strings. Next, we canonical-
ized the PIKAChU-generated SMILES and the original 
SMILES using RDKit (v2020.09.1.0), setting the ‘isomer-
icSmiles’ flag to ‘True’ such that correct interpretation of 
cis–trans bond configuration and the stereochemistry of 
chiral centres could also be assessed. If the two canoni-
calized SMILES were identical, a SMILES to structure to 
SMILES conversion was considered correct.

To measure PIKAChU’s drawing readability, atom 
coordinates were computed with PIKAChU and RDKit’s 
rdCoordGen module (v2020.09.1.0) for the 32,552 mole-
cules in the NPAtlas database (v2021_08) and the 100,000 
smallest molecules from the ChEMBL database (release 
30). Next, all drawings were assessed for clashes. A clash 
was defined as two non-neighbouring atoms sitting at 
less than half an average bond length distance from each 
other in Euclidean space. Total number of clashes, num-
ber of structures containing clashes, and the number of 
structures that gave drawing errors were recorded.

To assess PIKAChU’s drawing accuracy, we included 
a MOL file writer into PIKAChU, which stores PIKA-
ChU-computed atom coordinates and connectivities as 
a MOL file. We generated such MOL files for the entire 
NP Atlas database and the 100,000 smallest molecules 

from the ChEMBL database, read the resulting MOL files 
with RDKit’s rdMolFiles module (v2020.09.1.0), stored 
the resulting molecules as SMILES strings, and using 
RDKit canonicalized both the original input SMILES and 
the SMILES produced from the PIKAChU-generated 
MOL files setting the ‘isomericSmiles’ flag to ‘True’. If the 
SMILES were identical, a PIKAChU-generated drawing 
was considered ‘correct’.

Speed assessment
PIKAChU’s speed was assessed with Python’s ‘time’ 
module. As we particularly designed PIKAChU with 
natural product chemistry in mind, which typically 
involves larger and more heavily cyclised compounds 
than most molecules stored in small-molecule databases, 
we decided to test drawing speed on two different data-
bases: the NP Atlas database and the ChEMBL database. 
For each database, we randomly selected 10,000 mol-
ecules and timed drawing speed at 10, 20, 50, 100, 200, 
500, 1000, 2000, 5000 and 10,000 drawn structures using 
Python’s ‘time’ module.

Results and discussion
PIKAChU is a dependency-light cheminformatics kit 
implemented entirely in Python. With only matplotlib 
as dependency and an extensive readme, wiki, tutorials, 
and example scripts on its GitHub page, PIKAChU is 
easy to run and install, and suitable for integration into 
bioinformatics and cheminformatics pipelines. Below, we 
will first assess PIKAChU’s ability to correctly interpret 
SMILES, draw structures accurately and readably, detect 
and visualize substructures, and perform ECFP finger-
printing. We also measured PIKAChU’s SMILES read-
ing and structure drawing speed. Next, we demonstrate 
how PIKAChU can be used to implement and visualise 
reactions. Finally, we compare PIKAChU to the state-of-
the-art cheminformatics kits/chemical drawing libraries 
RDKit, ChemDraw and SmilesDrawer.

SMILES reading and writing
We assessed PIKAChU’s ability to parse and generate 
correct SMILES syntax by comparing the SMILES it con-
verts to SMILES generated by RDKit, a well-established 
cheminformatics package. As PIKAChU was created 
with natural product chemistry in mind, which typically 
involves large and heavily cyclised molecules the func-
tion of which depends heavily on stereochemistry, we 
performed our validation with the NP Atlas database. 
This database contains 32,552 manually curated natu-
ral product structures and their corresponding isomeric 
SMILES strings. PIKAChU failed to convert 1 SMILES 
from NP Atlas (~ 0.003%) to structure graphs, which was 
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an erroneous SMILES describing a nitrogen atom with a 
valency of 5, which is impossible considering that nitro-
gen only has four electron orbitals available for bonding 
in its valence shell. This SMILES attempted to describe a 
nitro group, which PIKAChU tolerates even for valency 5 
nitrogens. However, this representation of a nitro group 
was unconventional and incorrect, with two superflu-
ous hydrogen atoms attached to the nitrogen. This dem-
onstrates how the detailed graph-based, object-oriented 
encoding of chemical structures down to the electron 
level in PIKACHU intrinsically ensures that all structures 
that are loaded are chemically valid.  Of the remaining 
32,551 SMILES-to-structure-graph-to-SMILES conver-
sions, only one yielded a SMILES string that described 
different chemistry than the original: three carbon-13 
atoms were interpreted as carbon-12 (Additional file  2: 
Table S1, third row). As PIKAChU does not yet support 
isotopic differentiation, this is not unexpected.

Additionally, we manually assessed the correctness of 
22 SMILES-to-graph conversions by reading in and sub-
sequently drawing the SMILES in PIKAChU. We chose 
the SMILES such that a variety of syntax representations 
and chemistries were represented, including rings, aro-
matic systems, charge, stereocentres and bond stereo-
chemistry. Some SMILES describe the same structures 
but use a different syntax. PIKAChU handled all SMILES 
correctly, accurately detecting and visualising all afore-
mentioned chemical properties (Fig. 3).

PIKAChU is not suitable for reading in molecules with 
a high number of recursive cycles, such as buckminster-
fullerene. As PIKAChU detects all possible cycles within 
a molecule to determine aromaticity of cyclic systems, 
this step takes so long to compute that the program 
appears to get ‘stuck’. However, there exist only a handful 
of examples of such molecules, none of which have any 
real practical biological or chemical relevance.

Structure visualisation
Another key feature of PIKAChU is molecular visualisa-
tion from SMILES. PIKAChU’s drawing software relies 
on similar logic to that of SmilesDrawer, a JavaScript 
SMILES drawing library. In our software, we added a few 
improvements: we fixed cis–trans stereochemistry detec-
tion (Additional file 2: Fig. S3), included an extra overlap 
resolution step (Fig. 2B), and implemented an improved 
version for finding the smallest subset of smallest rings, 
a key step in correctly depicting cycles. There is always 
a bit of debate regarding the visualisation of molecu-
lar macrocycles. Many organic chemists opt for a ‘hon-
eycomb’ architecture, as employed by ChemDraw and 
CDK, to better represent the 3D architecture of a mol-
ecule, hinting at long-distance interactions that may take 
place within the compound (Additional file 2: Fig. S4B). 

However, this representation does not instantly draw the 
eye to sites of cyclisation, a drawback for natural prod-
uct biologists and bioinformaticians who are often inter-
ested in the biosynthetic steps involved in a compound’s 
assembly. As PIKAChU was created with natural product 
chemistry in mind, we chose to use a polygon represen-
tation for macrocycles, which clearly shows cyclisation 
sites (Additional file 2: Fig. S4A).

While PIKAChU always detects and interprets aroma-
ticity internally, it currently only supports drawing struc-
tures in a kekulised format.

The most important aspect of automated molecular 
visualisation is accuracy: users need to be able to rely 
on the correctness of drawing software, especially when 
processing a large number of structures at once making it 
impossible to inspect each image independently. To this 
purpose, we visualised a chemically diverse set of struc-
tures from the ChEMBL and NP Atlas databases, and 
tested if RDKit could interpret correct chemistry from 
PIKAChU-generated atom coordinates. Out of the 32,552 
structures in the NP Atlas database, only 40 (~ 0.12%) 
were drawn incorrectly. Of these, 33 were drawn wrongly 
due to incorrect depiction of cis–trans chemistry of 
double bonds adjacent to nested rings (Additional file 2: 
Table  S1). Additionally, PIKAChU failed to convert 8 
structures to drawings (~ 0.02%). One of these was the 
same incorrectly defined SMILES describing the valency 
5 nitrogen that was found previously. The remaining fail-
ures largely resulted from ChiralityErrors: errors raised 
by PIKAChU when it cannot correctly depict cis/trans 
chemistry of a double bond. With 32,504 correctly drawn 
structures, PIKAChU achieves a drawing accuracy of 
99.85%. PIKAChU performed comparably on the 100,000 
smallest molecules from the ChEMBL database (99.21% 
accuracy, 0.16% incorrect drawings, 0.63% unsuccessful 
conversions; Fig.  4A). Comprehensive lists and example 
depictions of SMILES leading to incorrect interpretations 
can be found in Additional file 2: Table S1 and Additional 
file 1.

We additionally assessed the readability of these PIKA-
ChU-rendered drawings by automatically detecting steric 
clashes from PIKAChU-generated atom coordinate sets. 
Only 4.95% of NP Atlas SMILES renderings contained 
steric clashes, with ~ 1.62 clashes per clashing structure. 
PIKAChU was better at processing the ChEMBL data-
base, with only ~ 0.30% of drawings containing clashing 
atoms. This makes sense, as NP Atlas contains a higher 
proportion of highly cyclised systems and large mole-
cules, properties which make it more difficult to readably 
depict a molecule in a plane. As the honeycomb approach 
of depicting molecules solves some of these issues, we 
hope to implement the option to visualise molecules 
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L-Tryptophan

D-Tryptophan

L-Tryptophan zwitterion

cis-difluoromethylethylene

trans-difluoromethylethylene

benzene

C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)O)N c1[nH]c2ccccc2c1C[C@H](N)C(=O)O NC(Cc1c[nH]c2ccccc12)C(O)=O

C1=CC=C2C(=C1)C(=CN2)C[C@H](C(=O)O)N c1[nH]c2ccccc2c1C[C@@H](N)C(=O)O NC(Cc1c[nH]c2ccccc12)C(O)=O

c1[nH]c2ccccc2c1C[C@H]([NH3+])C(=O)[O-]

F/C=C(\F)/C F/C=C(\F)C F/C=C(F)/C C/C(F)=C/F F/C(C)=C\F

F\C=C(\F)/C F\C=C(\F)C F\C=C(F)/C C\C(F)=C/F F\C(C)=C\F

c1ccccc1 C1C=CC=CC=1 C1=CC=CC=C1 C=1C=CC=CC1 C=1C=CC=CC=1

Fig. 3 Assessment of PIKAChU’s SMILES reader. Structures were drawn from the SMILES written beneath the molecule depictions. All 22 structures 
were correctly drawn.
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using either the honeycomb or the polygon strategy in 
the future.

In Fig.  5, we show nine examples of structures ren-
dered by PIKAChU. Due to the drawing algorithm that 
PIKAChU employs for complex ring systems, 5-mem-
bered and 6-membered rings often appear distorted, as 
observed for vancomycin and aplasmomycin B. Addition-
ally, PIKAChU’s overlap resolution step, while resolving 
a lot of steric clashes, sometimes results in carbon–car-
bon bonds being placed at an 180° angle which makes 
the structure less interpretable, as seen for PIKAChU’s 
depiction of the molecule nanokid.

Speed assessment
We assessed PIKAChU’s SMILES reading and structure 
drawing speed by drawing 10,000 random molecules 
from the NP Atlas database and the ChEMBL data-
base (Fig. 4C). With an average reading speed of ~ 2,874 
SMILES per minute and an average drawing speed 
of ~ 279 molecules per minute for the NP Atlas database 
and ~ 375 molecules per minute for the ChEMBL data-
base on a single laptop core, it is clear that PIKAChU 
spends the bulk of its time rendering an image on atom 
positioning, not on SMILES reading. The discrepancy 

between the two databases can be explained by the 
nature of the molecules contained within them: typically, 
natural products are larger and more cyclised than the 
average small molecule. This makes PIKAChU’s drawing 
speed one order of magnitude slower than RDKit’s (Addi-
tional file 2: Table S2), which is expected considering that 
PIKAChU is a pure Python package while RDKit gener-
ates drawings with pre-compiled C++ code. Also, PIKA-
ChU’s finetuning step is computationally expensive, likely 
leading to an increase in computational time. Still, PIKA-
ChU is fast enough for integration into pure-Python bio-
informatics and cheminformatics pipelines.

Substructure detection
A dedicated set of functions ensures that performing 
substructure searches using PIKAChU is straightforward. 
With a single line of code, users can visualise a single 
occurrence of a substructure, all occurrences of a sub-
structure, or all occurrences of a range of substructures 
in a chemical compound (Fig. 6A). Substructure searches 
are fast due to several pre-processing steps, ensuring that 
the expensive graph matching algorithm is only executed 
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Fig. 4 PIKAChU’s performance tested on the NP Atlas and ChEMBL databases. For drawing readability and accuracy assessment, the entire NPAtlas 
database and the 100,000 smallest molecules of the ChEMBL database were tested. For speed assessment, 10,000 random molecules from each 
database were used. A Structure readability expressed as the percentage of molecules with steric clashes. B Drawing accuracy expressed as the 
percentage of drawings correctly interpreted by RDKit upon writing PIKAChU-calculated atom coordinates to a .mol file. C PIKAChU’s SMILES 
reading speed and drawing speed in molecules per minute.
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Vancomycin

NanoKid

Aplasmomycin B

Sulflower

Epicolactone

AHB-6-Methylneamine

Hypocrenone A

Maitotoxin

Paclitaxel

Fig. 5 Various molecules rendered by PIKAChU
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when a match is likely. Stereochemistry matching, acti-
vated by default, can be toggled on and off.

With PIKAChU’s substructure matching algorithm, we 
visualised the amino acid composition of the cyclic pep-
tides daptomycin and vancomycin, using only a single 
line of code for each (Fig. 6B). Colours are fully and easily 

customisable, and can be provided as hex codes or as col-
our names.

ECFP fingerprinting
To quickly determine the approximate similarity between 
two molecules, PIKAChU employs ECFP fingerprinting 

a

b

Single All Multiple

Daptomycin Vancomycin

> daptomycin = smiles_from_file(’daptomycin.smi’)
> aspartate = r"N[C@H](C=O)CC(O)=O" 
> tryptophan = r"N[C@H](C=O)CC1=CNC2=CC=CC=C21" 

> highlight_substructure(aspartate, daptomycin, search_mode='single', colour='light blue')
> highlight_substructure(aspartate, daptomycin, search_mode='all', colour='light blue')
> highlight_substructure([aspartate, tryptophan], daptomycin, search_mode='multiple', colour=['red', 'blue'])

Fig. 6 Substructure matching with PIKAChU. A From left to right: examples of highlighting a single instance of a substructure, all instances 
of a substructure, or all instances of multiple substructures. In the example, occurrences of aspartic acid and tryptophan were searched in the 
superstructure daptomycin. The code used to generate the images is displayed underneath the panels. B PIKAChU’s substructure matching 
algorithm using to visualise all amino acid components of the antibiotics daptomycin (left) and vancomycin (right). Code can be found at https:// 
github. com/ BTheD ragon Master/ pikac hu/ blob/ main/ examp le_ scrip ts/ amino_ acid_ compo sition. py

https://github.com/BTheDragonMaster/pikachu/blob/main/example_scripts/amino_acid_composition.py
https://github.com/BTheDragonMaster/pikachu/blob/main/example_scripts/amino_acid_composition.py
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[15]. PIKAChU hashes each molecule into a set of unique 
identifiers, each of which represents a substructure. Col-
lectively, these identifiers make up a molecule’s finger-
print. Then, PIKAChU calculates the Jaccard/Tanimoto 
similarity between two molecules by comparing their fin-
gerprints, giving a measure of molecular similarity and/
or distance.

Here, we showcase PIKAChU’s ECFP fingerprinting by 
calculating and subsequently constructing a tSNE plot of 
the molecular distances between 36 calcium-dependent 
lipopeptides. Lipopeptides of the same family grouped 
together (Additional file 2: Fig. S5), confirming that PIKA-
ChU’s ECFP fingerprinting yields reliable measures of 
chemical similarity.

Additionally, PIKAChU’s ECFP fingerprinting makes it 
possible to generate bit vectors from molecule sets, where 
each element in the vector represents the presence/absence 
of a specific substructure. These can subsequently be used 
as interpretable molecular featurisations for machine 
learning.

Building in silico reactions using PIKAChU
PIKAChU provides a platform for the creation and visuali-
sation of reaction mechanisms by providing a range of reac-
tion functions that can be used to make or break molecular 
bonds, add or remove atoms and alter the chirality of ste-
reocentres. In addition to these built-in reaction build-
ing blocks, PIKAChU allows users to easily define more 
complex reactions through the manipulation of atom and 
bond object attributes. Additionally, PIKAChU supports 
fully customisable structure annotation, which is useful for 
keeping track of reaction steps, reaction targets, or atom 
origin. As a proof of principle, we used PIKAChU to define 
and visualise a polyketide ketoreduction reaction, catalysed 
by a ketoreductase polyketide synthase domain during 
polyketide synthesis, employing both built-in and custom 
reaction functions (Additional file 2: Fig. S6). This example, 
as well as a comprehensive guide containing instructions 
on how to build reaction mechanisms using PIKAChU, can 
be found in the online documentation.

While creating reaction pathways with PIKAChU 
enforces chemically correct conversions by checking at 
each step if a structure is chemically correct, it is more 
laborious than similar functionalities in other cheminfor-
matics kits such as RDKit, which use reaction SMILES and 

atom mapping to perform chemical reactions. We intend 
to implement reaction SMILES and atom mapping into 
PIKAChU in the future.

PIKAChU compared to state‑of‑the‑art chemical drawing 
software
Finally, we assessed how PIKAChU performs compared to 
existing chemical drawing software. To this purpose, we 
visualised various structures in PIKAChU (v1.0.5), RDKit 
(v2020.09.1.0), ChemDraw (v20.1.0.112) and SmilesDrawer 
(v1,2.0), and manually assessed drawing quality and cor-
rectness (Fig. 7). Only SmilesDrawer occasionally produced 
an incorrect structure, confusing cis–trans stereochem-
istry when stereochemistry is defined in or after a branch 
(Fig. 7A). For heavily cyclised molecules (Fig. 7B–E), we see 
a difference between the ‘honeycomb’ (RDKit and Chem-
Draw) and the ‘polygon’ (PIKAChU and SmilesDrawer) 
approaches of cycle positioning. The honeycomb approach 
ensures minimal distortion of microcycles, even when 
they are part of larger systems; as such, RDKit and Chem-
Draw render molecules such as vancomycin with fewer 
distortions than SmilesDrawer and PIKAChU (Fig.  7B). 
However, when the honeycomb approach does not work 
because of steric constraints, forcing microcycles into reg-
ular polygons can distort the macrocyclic structure to the 
extent that the drawing becomes unreadable. This is the 
case for aplasmomycin B (Fig.  7C), which is drawn with 
fewer bond overlaps by SmilesDrawer and PIKAChU. In 
structures where microcycles and macrocycles are sepa-
rate, there is little difference in structure rendering between 
the two approaches (Fig. 7D, E). It must be said that while 
readable, these depictions are still far from optimal, and 
chemists could produce better diagrams by manually 
tweaking the drawings of these molecules in ChemDraw. 
This demonstrates that even with state-of-the-art software, 
2-dimensional automatic visualisation remains a challenge, 
particularly for constrained ring systems.

PIKAChU has a slight advantage over RDKit in draw-
ing molecules of varying sizes, automatically adjusting the 
canvas size based on the size of the molecule to be drawn. 
This also means that PIKAChU’s font size, bond length 
and bond thickness maintain a constant ratio across differ-
ent drawings, which is not the case for RDKit (Fig. 7D, E). 
While it is possible to manually adjust canvas size in RDKit, 
some extra coding steps are required to achieve this.

Fig. 7 Comparison of PIKAChU to various other chemical drawing software packages. A SmilesDrawer, ChemDraw, RDKit and PIKAChU drawings 
given the SMILES string ‘C/C=C(\N)/C’. While ChemDraw, RDKit and PIKAChU all draw the cis–trans stereochemistry of the double bond correctly, 
with the amino group cis of the methyl group, SmilesDrawer draws the stereobond in the wrong orientation. B SmilesDrawer, ChemDraw, RDKit 
and PIKAChU drawings of the heavily cyclised molecule vancomycin. C SmilesDrawer, ChemDraw, RDKit and PIKAChU drawings of the molecule 
aplasmomycin B, D epicolactone, and E paclitaxel.

(See figure on next page.)
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PIKAChU’s visual output is far more customizable than 
that of SmilesDrawer, allowing for molecule rotation, draw-
ing multiple molecules on a single canvas, and custom 
colouring of each individual bond and atom, supporting 
hex-codes as well as a range of descriptive strings.

While ChemDraw accommodates high-quality and 
highly customisable visualisation, it is not open-source. 
This makes PIKAChU more suitable for integration into 
automated open-source pipelines required by many 
projects.

Conclusions
We developed PIKAChU, a dependency-light chem-
informatics library implemented entirely in Python. 
Having extensively validated our software, we conclude 
that, while RDKit heavily outperforms PIKAChU in 
terms of speed, PIKAChU performs sufficiently fast and 
reliably to be suitable for cheminformatics and bioin-
formatics pipelines. Backed by extensive online docu-
mentation, easy and straightforward installation, and 
state-of-the-art automated visualisation software, we 
hope that PIKAChU can provide a convenient alterna-
tive for chem- and bioinformaticians programming in 
Python.

Abbreviations
PIKAChU: Python-based Informatics Kit for Analysing Chemical Units; SMILES: 
Simplified Molecular-Input Line Entry System; ECFP: Extended Connectivity 
FingerPrinting.
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