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Abstract 

MF-LOGP, a new method for determining a single component octanol–water partition coefficients ( LogP ) is pre-
sented which uses molecular formula as the only input. Octanol–water partition coefficients are useful in many appli-
cations, ranging from environmental fate and drug delivery. Currently, partition coefficients are either experimentally 
measured or predicted as a function of structural fragments, topological descriptors, or thermodynamic properties 
known or calculated from precise molecular structures. The MF-LOGP method presented here differs from classi-
cal methods as it does not require any structural information and uses molecular formula as the sole model input. 
MF-LOGP is therefore useful for situations in which the structure is unknown or where the use of a low dimensional, 
easily automatable, and computationally inexpensive calculations is required. MF-LOGP is a random forest algorithm 
that is trained and tested on 15,377 data points, using 10 features derived from the molecular formula to make LogP 
predictions. Using an independent validation set of 2713 data points, MF-LOGP was found to have an average RMSE 
= 0.77 ± 0.007, MAE = 0.52 ± 0.003, and R2 = 0.83 ± 0.003. This performance fell within the spectrum of performances 
reported in the published literature for conventional higher dimensional models ( RMSE = 0.42–1.54, MAE = 0.09–1.07, 
and R2 = 0.32–0.95). Compared with existing models, MF-LOGP requires a maximum of ten features and no struc-
tural information, thereby providing a practical and yet predictive tool. The development of MF-LOGP provides the 
groundwork for development of more physical prediction models leveraging big data analytical methods or complex 
multicomponent mixtures.
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Graphical Abstract

Introduction
The n-octanol/water partition coefficient ( POW  ) of a 
compound is a physical property that quantifies its lipo-
philicity relative to its hydrophilicity [1]. Partition coef-
ficients play a determining role in the environmental fate 
and transport of pollutants [2–4]. For example, the soil 
sorption of heavily halogenated compounds, or “forever 
chemicals,” is strongly influenced by their n-octanol/
water partition coefficients, with higher values asso-
ciated with strong soil sorption [5]. In its base 10 log 
form(LogP ), partitioning behavior is an important fac-
tor in drug development and pharmacokinetics, where 
low values of LogP are associated with greater bioavail-
ability [6]. For example, Lipinski et al. included partition-
ing behavior in the “Rule of Five” stating that drugs must 
have LogP values less than 5 to be orally active  [7].

Thermodynamically, the partitioning of a solute 
between two phases is defined by chemical potential 
( µn,i ) [8]: 

where µo
n is the chemical potential of compound n at a 

given reference state (often taken to be pure liquid i ), an,i 
is the activity of n in phase i , R is the ideal gas constant, 
and T  is the absolute system temperature. If the system 
is assumed to be dilute, the activity can be modeled as 

(1)µn,i = µo
n + RTln

(
an,i

)

an,i = γXn,iφn,i where φn,i is the volume fraction of com-
pound n in phase i , and γn,i is the activity coefficient 
which approaches unity for an ideal solution. At chemical 
equilibrium, the chemical potential of compound n must 
be equal in all phases (i.e., µn,i=α = µn,i=β for phases a 
and b, which can be the organic and aqueous phases in 
an octanol–water system), and the partition coefficient 
becomes [8, 9]: 

where the ow subscript on P denotes partitioning 
between octanol and water phases.

As an experimentally measured thermodynamic 
property, partition coefficients can be measured via the 
shake flask and slow-stir methods [10, 11]. In both cases, 
octanol and water are placed in a vessel, into which a 
small quantity of the compound of interest is injected. 
Samples are extracted and analyzed after equilibrium is 
reached. While these methods are the standard across 
the field, uncertainty is introduced if the mixtures have 
not yet reached equilibrium when the samples are 
extracted or in cases where microemulsions have formed 
[11]. According to the Organization for Economic Co-
Operation and Development (OECD), the shake-flask 
method has a minimum standard deviation of 0.3 log 

(2)log10
(
Pow,n

)
= log10

(
[n]oct

[n]w

)
=

µn,w

µn,oct
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units [10]. However, in practice and for a range of con-
ditions consisting of varying temperature, pH, etc., the 
standard deviation ranges from 0.01–0.84 log units, often 
with similar magnitude of the averaged value itself [12]. 
In addition, the shake-flask and slow-stir methods are 
labor intensive, require off-line mixture analysis, and are 
hence costly. In an effort to address the lack of accuracy, 
researchers have advocated the use of microfluidics and 
improved in-situ analyses such as in-line UV or NMR to 
increase the speed and accuracy of measurements while 
reducing the generation of waste [13–15]. Unfortunately, 
microfluidic methods and in  situ analysis requires spe-
cialized equipment that is not available in most labs. Both 
experimental strategies also require isolation of the pure 
compound, which may not be readily available, particu-
larly in exploratory and discovery studies. Low-cost and 
rapid methods are needed to estimate LogP when experi-
mental measurement is not possible.

Since the 1960s, mathematicians and computer scien-
tists have developed numerous regression methodologies 
that are now collectively termed machine learning. [16] 
These techniques range in complexity from simple linear 
regressions to neural networks, all of which are models 
that attempt to find the ideal relationship between inde-
pendent and dependent variables. Regression techniques 
have been adopted by many fields [17–19], and starting 
in the 1970’s, applied to the prediction of partition coef-
ficients by Rekker and coworkers [20]. By using an expan-
sive database curated by Hansch and Leo [20]. Rekker 
et al. fit a linear regression model to structural fragments 
representing specific and well-defined portions of mol-
ecules to correlate molecular structure to experimental 
partition coefficients [19]. This model sparked the rapid 
development of regression algorithms that took struc-
tural inputs and produce physical property outputs, cul-
minating in the Calculated LOGP (CLOGP) model that 
was the first model to have sufficient fragments for accu-
rate predictions of realistic molecules [21].

Since these early efforts, numerous models have been 
developed to either introduce a new method or expand 
upon previous capabilities and accuracy [6, 22–28]. These 
models can be generalized by their features into three cat-
egories. (1) Molecular Simulation models, such as iLOGP  
[23],MLOGP [23], and ALOGPS [24] use physical struc-
ture to approximate electron densities, molecular size, 
and other topology and energetic insights [29]. In an 
independent study, MLOGP and ALOGPS have reported 
root mean square errors ( RMSE ) of 2.03 and 1.02 (log 
units), respectively, when predictions are compared with 
experimental measurements [22]. The greater accuracy 
of ALOGPS compared with MLOGP is explained by dif-
ferences in model complexity (i.e., linear regression vs 

neural network) and differences in the quantity and com-
plexity of features. (2) Fragment Additive Models, such 
as CLOGP [21], XLOGP2 [25], and WLOGP [26] break 
a molecule into a family of structural fragments and then 
calculate the LogP using contributions from each frag-
ment [30]. Reported RMSE for XLOGP2 and CLOGP are 
1.80 and 1.23 on the same independent analysis as the 
molecular simulation models [22]. The XLOGP2 algo-
rithm was designed to fit 100 different atom/fragment 
types; the original CLOGP algorithm only had 58 learned 
constants but has since been updated to cover nearly 400 
different fragments [31]. (3) Similarity Search algorithms 
are like (1) and (2) but have a fundamental difference in 
how the algorithm is initiated. The previous algorithms 
are most often the weighted sum of contribution across 
atoms, fragments, and other calculated properties; these 
calculations are not initialized by the structure of the 
molecule in any way. For similarity search algorithms like 
XLOGP3 [6] and KOWWIN [27], the molecule in ques-
tion is compared to known compounds within a data-
base and the experimental LogP value of the most similar 
compound is used as an initial estimate the for the LogP 
value. This rough estimate is then refined by applying 
correction factors to transform the reference compound 
to the one in question. The independently reported 
RMSE reported for XLOGP2 is 1.80, whereas XLOGP3 
was 1.08 log units [22]. Introducing the similarity search 
improved the accuracy of the XLOGP algorithm by 40%, 
and the accuracy improvement scales with the degree of 
similarity between the reference substance and the one 
being modeled [6].

Each of these regression methods, either directly or 
indirectly, require chemical structure as the primary 
model input which is then parsed into model specific 
features within the algorithm. In many cases, the exact 
chemical structure is known, and its requirement as an 
input to the algorithm is not a major problem. In some 
cases, however, the exact chemical structure of a com-
pound is unknown, rendering existing LogP methods 
ineffective. One such example occurs when dealing with 
big analytical data sets that do not resolve molecular 
structure, such as those arising from analysis of a com-
plex mixture using mass spectrometry methods such 
as Matrix Assisted Laser Desorption Ionization [32] or 
Fourier Transform Ion Cyclotron Resonance Mass Spec-
troscopy (FT-ICR-MS) [33]. In these cases, the analy-
sis provides molecular formulas and some measure of 
the relative abundance of components comprising the 
mixture, but without structural information. Another 
example where molecular structure may not be available 
is drug discovery. LogP plays an important role in devel-
opment of new drugs, since this value determines what 
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methods are available for delivery or if the molecule is 
sufficiently bioavailable to achieve therapeutic effect. 
Using computer models to predict drug efficacy of theo-
retical pharmaceutical candidates is becoming increasing 
popular; the use of an automated, defeatured machine 
learning algorithm that does not require complex struc-
tural information can decrease computational costs to 
scan the multidimensional discovery space to identify 
drugs that partition in ways with favorable pharmacoki-
netic properties [34, 35].

For the situation in which molecular formula is the 
only known information, the number of different types 
of atoms present in the molecule is a natural set of fea-
tures. For hydrocarbons, only three linearly independent 
features are possible: the number of carbon and hydro-
gen atoms and the H/C ratio. Molecular weight and 
double bond equivalents are two linear combinations 
that can be added to the feature matrix. More complex 
organic compounds that bear heteroatoms (N, O, S, P, 
F, Cl, Br, and I are most common) permit a correspond-
ing increase in the number of features, but at the cost of 
much greater chemical complexity compared with simple 
hydrocarbons. Compared to methods that use hundreds 
of features, designing a model that can produce similar 
results with at most tens of features is a computational 
challenge. As such, successfully reducing predictive mod-
els from hundreds to tens of features has the potential to 
stimulate interest in lean models that retain predictive 
accuracy, avoid over fitting, and are easier to implement 
and use than existing models.

In this paper, we evaluate the accuracy of six machine 
learning regressions including linear regression, ran-
dom forest, and k-nearest neighbors to predict organic 
compound LogP values from elemental formulas. The 
six models were all trained, validated, and tested using 
a mined data set consisting of 18,091 data points avail-
able in the open literature. The resulting Molecular For-
mula-LogP model, or MF-LOGP, can be utilized for 
organic molecules and is especially useful when molecu-
lar formula is the only available model input.

Methods
Data collection and preparation
A combination of databases, literature repositories, and 
web scraping methods was used to generate an initial 
dataset consisting of 24,047 LogP values as outlined in 
Table 1, [1, 36–38]. The data was filtered to remove inor-
ganic compounds and duplicate values, resulting in a 
dataset consisting of 18,091 data points. PubChemPy [39] 
and CIRpy [40] Python packages were used to add miss-
ing molecular formulas and SMILES strings.

The final curated dataset often contained multiple 
LogP values for a single molecular formula. These were 

due to either, (1) multiple experimental values reported 
for a unique chemical compound (n = 14,143 unique 
compounds of 18,091 data points), or (2) isomers that 
presented with the same molecular formula but unique 
compounds and LogP values (n = 7098 unique molecular 
formula of 14,143 unique molecular compounds). The 
first introduced experimental variance so that the model 
is more robustly trained. The second accounts for natu-
ral deviations in LogP present among isomeric species 
with 2166 of the 7098 unique molecular formula contain 
at least two isomers. Since structural information is not 
needed on the front end of the MF-LOGP algorithm, 
the dataset must include multiple isomers to be robust 
enough for the algorithms to draw conclusions to accu-
rate LogP predictions and can further only be as accurate 
as these the natural deviation of LogP values. As shown 
in Additional file 1: Figure S18, isomeric species generally 
vary between 0 and 2.78 log units, with an average devia-
tion of 0.46 log units.

Feature engineering
The predictive method considered here uses molecular 
formula as the sole input, then parses three types of fea-
tures. The first type is the number of each atom present 
in the molecule (C, H, N, O, S, P, F, Cl, Br, I), which were 
determined from molecular formulas using chemparse in 
Python [41]. Additional features can also be expressed as 
the fractional content of each atom relative to the carbon 
content in the molecule, these are linearly independent 
additions to the feature matrix. The next two features are 
linear combinations of the first ten features (i.e. number 
of atoms), with practical implications as descriptors of 
molecular structure. The second feature type is the molar 
weight ( MWn ) of compound n , which is determined by 
summing the products of the number of atoms of each 
element ( Xn,m) and their atomic weight ( wm[=]g/mol):

⋅where X ∈ MN ,M(R) is the two-dimensional feature 
matrix where the vector space is defined by compound 
indices (1 ≤ n ≤ N  ) and feature indeces (1 ≤ m ≤ M ). 
The first ten columns (1 ≤ m ≤ 10) represent the number 

(3)MWn =

M−11∑

m=1

Xn,m · wm

Table 1  References used to compiless the initial dataset

Source Number of data 
points

References

Sangster 628 [1]

Mansouri et al 10,273 [36]

PubChem 9571 [37]

National Cancer Institute 3575 [38]
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of atoms per elements (C, H, N, O, S, P, F, Cl, Br, I). The 
11 additional features are transformations of the first ten, 
representing the elemental ratios, MW (Eq. 3) and DBE 
(Eq. 4). Third, the double bond equivalence ( DBE ) can be 
calculated as:

Here, X(n,m=C) , X(n,m=H) , X(n,m=N ) are the number of 
atoms of carbon, hydrogen, and nitrogen within the 
molecular formula for compound Xn . X(n,m=Halogens) is 
the sum of all halogen atoms within compound Xn . DBE 
is the sum of the number of rings, double bonds, and tri-
ple bonds (multiplied by two) that appear a structure. For 
example, the DBE of benzene ( C6H6 ) is 4, while that of 
cyclohexyne ( C6H8 ) is 3.

Functional groups
The goal of MF-LOGP was to predict partition coeffi-
cients without knowledge of molecular structure, includ-
ing the presence of functional groups. While functional 
groups can undoubtedly increase accuracy by account-
ing for chemical behavior that results from specific ori-
entation of the atoms, MF-LOGP explicitly omits these 
features. Future model improvements may account for 
functional group features by either allowing for the addi-
tion of functional groups or more generalized through 
chemometrics-derived molecular signatures such as 
infrared spectra. However, to test the limits of MF-LOGP, 
predictions were compared to their experimental par-
titioning, then grouped by functional groups present 
within each molecule during post-analysis. The occur-
rence of a given functional group was determined from 
the analysis of the corresponding SMILES string using 
the RDkit [42] package available in Python and then one-
hot-encoded (1 = present, 0 = not present) the functional 
group presence into the dataset. The most common func-
tional groups present in the dataset were aromatic, car-
bonyl, and alcohol groups. Additional file  1: Figure S1 
provides a bar plot for the occurrences of each functional 
groups within the dataset.

Model selection
Six commonly used regression models were chosen and 
evaluated for accuracy in this study: multivariate linear 
regression (MLR), ridge regression (RR), lasso regression 
(LR), random forest regression (RFR), gradient boost-
ing regression (GBR), and k-nearest neighbor regression 
(KNNR).

Multivariate Linear Regression (MLR)
Linear regression is the simplest available form of cor-
relation, and it has been used frequently for predictions 

(4)
DBEn = Xn,m=C −

Xn,m=H+Xn,m=Halogens

2 +
Xn,m=N

2 + 1

of LogP . [6, 21, 23, 25–27] For this reason, MLR serves 
as the baseline performance metric for all other mod-
els. MLR is used to calculate the predicted LogP of given 
compounds ( ̂yn ) and can be described as:

where ŷn is the predicted value for compound Xn , 
β ∈ M1,M(R) is a matrix of trained best-fit coefficients 
for each model feature ( M = 21), and  β0 is the best-fit 
ordinal intercept. If additional feature engineering is not 
desired (i.e., elemental ratios, MW  , DBE ), the model is 
trained with Xm = 0 for the mth unwanted feature such 
that βm = 0 . To reach an optimal model, linear regres-
sion aims to minimize the residual sum of squares (RSS) 
over all data points in the training set ( N  ) [43]: 

where yn and ŷn are the experimental and predicted LogP 
values for each compound in the training set.

Ridge Regression (RR)
Ridge regression (RR) is like the MLR algorithm such that 
it fits Eq. 5; however, the values of the fitting coefficients 
( βj ) are included as a penalty in the minimization func-
tion [44]. The modified sum of squares is presented as:

where � is an optimized weighting factor.

Lasso Regression (LR)
Lasso regression (LR), like RR, fits Eq.  5 and constrains 
the fitting coefficients; however, at larger values of � , the 
constraint term can set coefficients to 0. In this sense, 
Lasso can act as feature selection method [45]. The defi-
nition of the LR minimization function is:

Random Forest Regression (RFR)
The random forest regression (RFR) is based on the deci-
sion tree regression, a method that uses features as part 
of an if–then-else structure either for classification or 
regression purposes. The RFR is an ensemble of decision 
tree regressors, meaning that it consists of many individ-
ual decision trees and the predicted value is an averaged 

(5)ŷn =
M∑

m=1

Xn,m · βm + β0

(6)RSS =

N∑

n=1

(
yn − ŷn

)2

(7)RSSRR =
N∑
n=1

(
yn − ŷn

)2
+ �

M∑
m=1

β2
m

(8)RSSLR =
N∑
n=1

(
yn − ŷn

)2
+ �

M∑
m=1

|βm|
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value across all trees. The RF model is represented as 
[46]:

where ŷn is the ensemble prediction for input ( Xn ). The 
final output is an average of individual decision trees ( Tb ) 
over the total number of trees ( B ). The error is minimized 
by the splitting of nodes within each decision tree, and 
the model convergence when the squared error of predic-
tions depicted by Eq. 6 is minimized.

Gradient Boosted Regression (GBR)
The gradient boosting regression (GBR) algorithm is like 
RFR, except that it builds decision trees one at a time, 
whereas RFR builds trees simultaneously and independ-
ent of other trees in the forest. GBR builds decision trees 
one at a time so that the subsequent tree can minimize 
the errors of the previous tree rather than minimize the 
errors of the dataset. The generalized form of the GBR 
algorithm is [46]:

In Eq. 10, the hb term is called a “weak” learner. A weak 
learner is often restricted in depth and provides very 
little insight as a solo learner. However, when each 
learner is then summed, an accurate predicted value ( ̂yn
)is produced. The algorithm will converge when the RSS 
described in Eq. 6 is minimized between the known val-
ues and the values predicted by Eq. 10.

k‑Nearest Neighbors Regression (KNNR)
The k-nearest neighbors’ regression (KNNR) algorithm 
measures the Euclidian distance between the point of 
interest and all points within the training set:

The Euclidian Distance between training molecule, j , and 
molecule of interest, n , is denoted as EDj,n . It is a func-
tion of difference between each entry of the training fea-
ture matrix, Xtrain and the feature matrix describing the 
compound(s) of interest ( X ). KNNR makes no assump-
tions about the distribution of data in N  dimensional 
space. Once all distances are calculated, the algorithm 
will average the K  nearest points to the point of interest 
[45].

(9)ŷn = 1
B

B∑

b=1

Tb(Xn)

(10)ŷn =
B∑

b=1

hb(Xn)

(11)EDj,n =

√
M∑

m=1

(
Xtrain
j,m − Xn,m

)2

where K  is the user-defined number of neighbors used 
to determine a predicted value. The min(EDn, k) is the 
kth smallest Euclidian Distance between the compound 
of interest and the training points. The model converges 
once the Eq. 6 is minimized between the known and pre-
dicted values.

Hyperparameter tuning
Depending on the data set, regression-based models are 
prone to identifying a local minima, thereby missing the 
true global minimum required for accurate predictions. 
Tuning the hyperparameters of a model helps ensure that 
it reaches the global minimum and provides the most 
accurate results. The hyperparameters for the six mod-
els were tuned by using GridSearchCV [45] function in 
Python. The optimization was performed with an eight-
fold cross validation. A summary of the base hyperpa-
rameters and the tuned hyperparameters can be found 
Additional file 1: Table S1.

Model performance parameters
Three metrics were chosen to compare the six different 
models: root mean square error ( RMSE ), mean abso-
lute error ( MAE ), and coefficient of determination ( R2 ). 
These metrics are defined as:

In these equations N  is the total number of samples, ŷn 
are predicted values, y is the average known value, and 
yn are the known values. Both RMSE and MAE quantify 
the accuracy of a given prediction; they differ such that 
RMSE imposes a greater penalty for large outlier predic-
tions. The RMSE and MAE values for a well-fit model 
should be close together and near zero, thus both will be 
reported in this analysis.

Data split and training
For model development, 85% of the data (15,377 out of 
18,091 data points) were used for training and 15% (2,714 

(12)ŷn =
1

K

(
K∑

k=1

min(EDn, k)

)

(13)RMSE =

√∑N
n=1(ŷn−yn)2

N

(14)MAE =
∑N

i=1 |ŷn−yn|
N

(15)R2 = 1−
∑N

i=1(ŷn−yn)
2

∑N
i=1(yn−ȳ)2
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out of 18,142 data points) was reserved for final test. The 
testing data was not used during any of the training and 
validating of the six models so that it could serve as a fair 
metric of the predictive power of the regressed models.

A 2 × 3 factorial experimental design was used to eval-
uate the ideal training procedure for each algorithm. This 
method trained each model with eight different combi-
nations of additional features, cross validation, and tuned 
hyperparameters. Each combination of parameters was 
iterated 100 times, allowing the training data to be ran-
domized while keeping the testing data independent. The 
experiment matrix can be seen in Additional file 1: Tables 
S2 and S3, and the performance parameters of each 
model combination are represented in Additional file 1: 
Figures S2–S4.

Results and discussion
Dataset discovery
The first step of this study was to explore the dataset to 
understand its content and potential limitations for anal-
ysis. Figure 1 summarizes key features. Figure 1a contains 
a plot of LogP values as a function of carbon number, 
showing that that the data is centered in the region 
defined by carbon numbers between 1–40 and log-parti-
tion coefficients of −5 to 7. The maximum carbon num-
ber present in the data set is 62, which defines the upper 
prediction limit for these models.

Figure  1b presents violin plots that are vertical and 
symmetrical representation of each feature’s histogram. 
The stand-alone histograms can be found in Additional 
file 1: Figures S5–S15. The molecules present in the data 
set are comprised primarily of carbon and hydrogen—
with statistically greater hydrogen content than carbon, 
on an atomic basis—and typically contain zero of all 
other heteroatoms but can range up to 28 heteroatoms 
on a given molecule.

Figure  1c provides values of correlation coefficients 
among the atom number features themselves and 
between each element and values of LogP . The top row 
provides correlation coefficients between each of the 
atom number features and LogP . Among all features, 
the carbon and chlorine numbers have the greatest posi-
tive correlation coefficients (0.43 and 0.375) with LogP . 
Nitrogen and oxygen both have negative correlations 
(−0.30 and −0.19), consistent with the appearance of 
these atoms in polar functional groups such as alcohols 
and amines introduce hydrophilicity [47]. The correla-
tion constants of all the remaining atoms (hydrogen, sul-
fur, phosphorous, and remaining halogens) are between 
0 and 0.2, indicating weak correlation with LogP . Values 
of correlation coefficients shown in Fig.  1c are consist-
ent the results of an F-test statistical analysis of feature 
importance, as shown in Additional file 1: Figure S16.

The remaining values of correlation constants capture 
feature-feature interactions. As expected, hydrogen is 
strongly correlated with carbon number. Interestingly, 
the oxygen number correlates more strongly with the car-
bon number than does nitrogen (0.48 vs 0.14), indicating 
that in this data set there is no correlation between the 
size of a compound and the number of nitrogen atoms, 
whereas oxygen tends to be present in larger ones. Parity 
plots of each correlation in Fig. 1c were plotted in Addi-
tional file 1: Figure S17 to further visualize the data.

Notably, of the 14,143 unique compounds in the 
curated dataset of LogP values, experimental devia-
tions ranging from 0–1.58 log units. Of the 7098 unique 
molecular formula, average standard deviations ranged 
from 0–2.87 with an average value of 0.46. The distribu-
tion of isomer standard deviations are displayed in Addi-
tional file 1: Figure S18.

Fig. 1  a Heat map of experimental partition coefficients as a function of carbon number. b Violin distribution plots of each elemental presence 
within the dataset. c Correlation matrix for feature-feature and feature-response correlations. The data set is highly populated from carbon numbers 
of 1–25 and LogP values of  −2.5–5, this is region is expected to have the best performance. In addition to the quantity of data, compounds with 
chlorine, nitrogen and oxygen substitutions should lend to improved predictions as there are strong correlations to their partition coefficient
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Model performances
The remaining 85% (15,377 of 18,091) of the data points 
not set aside for final testing were used to train and vali-
date the six models according to the experimental design 
outlined. Specifically, 80% (12,301 of 15,377) of this data 
was used train the models and the remaining 20% (3076 
of 15,377) was used to validate the performance. Parity 
density plots of the validation performances for all six 
default models are shown in Fig.  2. Visually, the tight-
ness of fit around the black parity line and the yellow/
red section in the middle indicate a good grouping of 
predictions. For a perfect model, the predictions would 
follow the solid black parity line with the highest density 
(red) from -1 to 6 and a decrease in density on both sides 
as consistent with the known distribution in Fig. 1a. To 
quantify the performance depicted in Fig.  2, the mod-
els were trained and validated 100 times, each time 

randomizing the remaining 80% of data used for train-
ing. Doing this identifies anomalies in the data or model 
development. The averaged findings of this analysis can 
be found in Table 2 and the standard deviations of each 
value in Additional file  1: Table  S4. This evaluation was 
carried out for the eight experimental combinations out-
lined in Additional file 1: Tables S2 and S3. According to 
Additional file 1: Figures S2–S4, the default RFR (no cross 
validation, additional features, or hyperparameters) per-
formed the best out of the eight combinations.

Of the six models, three were linear (MLR, RR, LR) 
and three were non-linear (RFR, GBR, KNNR). For MLR 
and RR, identical performances were observed with 
RMSE values of 1.151. The lasso regression was over-
constrained and set all learned coefficients to zero. The 
RFR is shown to have the optimal performance com-
pared to the other methods with a validation error of 

Fig. 2  Parity density plots for experimentally determined and predicted values of the validation data (N = 3,076) for each of the six base regression 
models. The linear models, except for Lasso, appear to have a similar performance while the Random Forest shows a better visual fit and higher 
density of points along parity line. a Linear, b Ridge, c Lasso, d Random Forest, e Gradient Boosted, f k-Nearest Neighbors

Table 2  Model performance parameters for all six default models for both training and validation data averaged over 100 experiments

RMSE MAE R
2

Training Validation Training Validation Training Validation

Linear 1.149 1.151 0.845 0.846 0.629 0.628

Ridge 1.149 1.151 0.846 0.847 0.629 0.628

Lasso 1.887 1.887 1.436 1.435 0.000 0.000

Random Forest 0.497 0.797 0.322 0.518 0.931 0.822

Gradient Boosted 0.961 0.988 0.702 0.718 0.741 0.726

Nearest Neighbors 0.743 0.905 0.502 0.616 0.845 0.770
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0.797. According to the results in Table  1, the RFR and 
KNNR are both overfit as their training errors are much 
smaller than the validation error. Typically, this is a cause 
for concern because it tends to decrease the predictive 
nature of the model, but in this case, we see that RFR still 
outperforms all other models with an RMSE 0.1 log units 
smaller than the closest model (KNNR).

Introducing hyperparameters in the training method 
either by themselves or in combination with cross vali-
dation or feature engineering produced a LR method 
that was comparable to MLR and RR (RMSE = 1.15 ± 
0.008, MAE = 0.85 ± 0.007, R2 = 0.63 ± 0.005). For RFR, 
there was a slight improvement with feature engineer-
ing (RMSE = 0.78 ± 0.02, MAE = 0.50 ± 0.01, R2 = 0.83 ± 
0.01), however these results are within error of the base 
model reported in Table 2. Therefore, the 10-feature RFR 
base model was chosen as the final MF-LOGP model 
for all further analyses. Additional file 1: Figure S19 and 
Table  S4 show the validation parity density plots and 
error values of each of the six models with the addition of 
feature engineering.

Comparing predictions by compound class
Using the functional groups identification via SMILES 
strings, a more in-depth error analysis of MF-LOGP 
was performed. After training the MF-LOGP model, 
the absolute errors of each compound were calculated 
between their predicted and experimental values, then 
grouped based on functional group presence within a 
molecule. When multiple functional groups are present 
in the same molecule, the molecule was counted in mul-
tiple groupings. Figure  3 plots the errors in each group 
and represents them as vertical distributions coupled 

with box and whisker plots that highlight the percentile 
breakdown between the 5th (lower) and 95th (upper) 
percentiles.

According to the results represented in Fig.  3, most 
groups have similar distributions, with their averages 
falling near 0.52 log units, which was reported for the 
average absolute error for the overall model. Unsatu-
rated compounds appear to have the broadest distri-
bution, ranging from 0 to 6.5 log units, indicating the 
model fails to strongly predict some of this complex-
ity introduced by double bonds, triple bonds, rings, and 
their isomers. According to Additional file  1: Figure S1, 
the alkene/alkyne groups are the least represented in the 
data, likely also contributing to skewed predictions. Indi-
vidually, the largest averaged errors fall with unsaturated, 
amine/nitrile, and heteroatom groups (0.59, 0.54, and 
0.53 log units). To put more context to these findings, 
10 compounds with largest and smallest absolute errors 
were pulled from the dataset and had their structures 

Fig. 3  Violin (BLUE) and box (GREY) plots highlight the error 
distribution using MF-LOGP between different functional groups, 
demonstrating consistent model performance across all studied 
functional groups

Fig. 4  Structural representation of (a) the five compounds with 
the best predictions and (b) the five compounds with the largest 
difference between prediction and experimental value. The presence 
of halogens and more simply substituted aromatics lend to a more 
accurate prediction. More complex aromatic systems and ionized 
compounds offer less accurate predictions
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identified. Figure 4 shows the structure of the five com-
pounds from the validation set that yielded the largest 
and smallest individual absolute errors.

The complete set of structures are presented in Addi-
tional file 1: Figure S20, and their predictions along with 
expected values listed in Additional file  1: Table  S6. 
Generally, the better predicted compounds appear to be 

halogenated compounds or aromatics with smaller sub-
stitution groups. The less accurate predictions appear 
to be long hydrocarbon compounds or aromatics with 
longer alkyl substitutions, as well as ionized compounds 
such as compound 2b or 3b in Fig. 4.

In addition to resolving error between compound 
classes, an additional determined source of error is 
extrapolating to compounds larger than that in the MF-
LOGP dataset. The data used to train this model typi-
cally had a sum of non-hydrogen atoms less than 30. 
Additional file 1: Figure S21 shows the comparison of the 
MF-LOGP dataset and external data published by Ulrich 
et al [48] and Plante et al [49]. Notably, the sum of non-
hydrogen elements is beyond the range of the MF-LOGP 
dataset. The errors on these datasets are shown in Addi-
tional file 1: Table  S7 and as expected, were larger than 
the values reported for the MF-LOGP.

Final test and external method comparison
The goal of this work is to develop a machine learned 
model that accurately predicts LogP values using only 
features discerned from the molecular formula. Table  2 
shows that the RFR achieves an RMSE and MAE of 
0.797 and 0.518, respectively. Both parameters indicate 
superior performance to the base model (MLR), but do 
not yet provide insights to its capabilities with unknown 

Table 3  Names and descriptions of each model being used as a 
comparison

* Number of features within the molecular simulation models do not account for 
the original input of structural information

Model name Model types Number 
of 
features

References

MF-LOGP Defeatured Atom Additive 10 N/A

XLOGP3 Similarity Search + Fragment 88 [6]

KOWWIN Similarity Search + Fragment 400 [27]

WLOGP Fragment 68 [26]

MLOGP Molecular Simulation 13* [23]

iLOGP Molecular Simulation 2* [23]

ALOGPS Molecular Simulation 115* [24]

SILICOS-IT Fragment + Molecular Simula-
tion

35 [28]

AAM Simple Atom Additive 2 [22]

Fig. 5  Parity density plots of final testing data (N = 2,713) for the deployed MF-LOGP algorithm as well seven peer-reviewed methods that have 
demonstrated strong predictive capabilities, but all require structural information. MF-LOGP outperforms four of the current models and has a close 
performance to the EPA’s KOWWIN algorithm. a MF-LOGP, b XLOGP3, c MLOGP, d iLOGP, e ALOGPS, f KOWWIN, g WLOGP, h SILICOS-IT, i AAM
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compounds. For this, the 15% testing data (2714 out of 
18,091 data points) were used to give an unbiased per-
formance of MF-LOGP as well as eight other models 
currently published in literature as described in Table 3. 
Parity plots of predicted values relative to experimental 
values for each of these eight models are plotted in Fig. 5 
and relevant performance parameters listed in Table 4.

According to the results in Table 4, the MF-LOGP algo-
rithm has a an RMSE , MAE , and R2 of 0.77, 0.52, and 0.83 
respectively. The errors reported in Table  4 give confi-
dence that (1) the MF-LOGP algorithm is not overfitting 
in the training methods as the testing error is similar to 
the validation error, (2) MF-LOGP predictions are robust 
enough to predict within isomeric deviations which were 
typically 0.46 ± 0.44 log units (Additional file  1: Figure 

S18), and (3) MF-LOGP has similar performance to exist-
ing models that require significant structural knowledge 
such as KOWWIN and XLOGP3.

The results of from Fig.  5 and Table  4 are compiled 
into a final comparative analysis which is displayed in 
Fig.  6. The error associated with the independent test 
set was plotted as a function of the features used within 
each model. Within the plot, each model is catego-
rized by the first model type listed in Table  3 for reach 
model and represented as symbols on the plot. Molecu-
lar simulation models are represented as squares (■), 
fragment additive models are shown as circles (●), 
similarity search algorithms are shown as diamonds 
(◆), SILICOS-IT – a combination of fragment and 
simulation additive—is denoted as a triangle (▲), and 

Table 4  Performance parameters for independent testing data on all models

MF-LOGP XLOGP3 MLOGP iLOGP ALOGPS KOWWIN WLOGP SILICOS-IT AAM

RMSE 0.77 0.42 1.08 1.54 0.47 0.67 0.94 1.20 1.64

MAE 0.52 0.09 0.78 1.07 0.30 0.40 0.68 0.87 1.23

R
2 0.83 0.95 0.72 0.32 0.94 0.93 0.75 0.62 0.51

Fig. 6  Scatter plot representing performance of MF-LOGP and published models on the final test data set (N = 2,713) as a function of the number 
of features required by the model. (■) Molecular simulations, (●) fragment/topological analysis, (◆) fragment additive + similarity search, (·) 
molecular simulation with neural network, (★) structurally independent atom additive. The bottom left corner represents the region represents 
high accuracy with the fewest number of features. The top right region represents models with high errors despite having substantial number of 
features
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finally, the structurally independent atom additive mod-
els are denoted as stars (★). Three key observations 
are made clear immediately: (1) Literature models are 
improved by increasing the features that the model fits, 
(2) Existing model accuracy can be binned as similarity 
search > fragment additive > molecular simulation, and 
(3) MF-LOGP outperforms the structurally independ-
ent, simple regression proposed by Mannhold et al. [22] 
Two exceptions are observed. First, while moderately 
accurate (RMSE = 0.67), KOWWIN uses 400 features, 
much more than expected to achieve such accuracy. Sec-
ond, ALOGPS outperforms WLOGP and is competi-
tive with XLOGP3. ALOGPS leverages a neural network 
which lends users a more accurate prediction but has a 
hidden cost by requiring iterative molecular simula-
tion simulations to calculate features based on molecu-
lar structure. Finally, MF-LOGP is shown in the region 
of high accuracy compared to models with a similar 
number of features. The KOWWIN algorithm utilizes 
4000% more features compared to the MF-LOGP algo-
rithm to account for most generalized fragment groups 
that appear in organic compounds. By eliminating struc-
tural information, MF-LOGP performs between 13–45% 
behind the similarity search and neural network algo-
rithms. However, MF-LOGP performs 22–100% better 
than more traditional fragment and molecular simula-
tion additive models. This confirms that while MF-LOGP 
is significantly reduced in both number of features and 
knowledge of features, it stands to be competitive against 
current partition coefficient models.

Conclusion
Until this point, predictive methods have relied entirely 
on the structural identifiers of a compound to either 
define structural fragments that correlate with partition-
ing or are the starting point for thermodynamic simula-
tions that use molecular simulations to calculate phase 
partitioning. Models have become increasingly accurate 
by using machine learning algorithms to more creatively 
define features based on molecular structure. They have 
particularly benefited from similarity matching, addi-
tive methods, and partition predictions. The work shown 
here, however, did so by relaxing the assumption that 
features must be derived from the molecular structure, 
and instead demonstrated that defeaturing a model to 
rely only on the molecular formula created a lean model 
that accurately predicted LOGP with errors comparable 
to model with an order of magnitude greater number of 
features that required rich structural information.

The MF-LOGP algorithm presented in this work 
breaks the curve for both feature and model complexity. 
A structurally informed model with only 10 independent 

features is expected to have an average RMSE of 1.33, 
yet the structurally agnostic MF-LOGP model produces 
an averaged RMSE of 0.77. This model is comparable to 
widely implemented methods such as KOWWIN model 
which contains 400 features. In addition to the impres-
sive accuracy of this model, it does not rely on structural 
information, opening the door to future partitioning 
analyses of complex systems with unknown or unre-
solved molecular structures.
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