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Abstract 

Deep learning has been widely used for protein engineering. However, it is limited by the lack of sufficient experi-
mental data to train an accurate model for predicting the functional fitness of high-order mutants. Here, we develop 
SESNet, a supervised deep-learning model to predict the fitness for protein mutants by leveraging both sequence 
and structure information, and exploiting attention mechanism. Our model integrates local evolutionary context from 
homologous sequences, the global evolutionary context encoding rich semantic from the universal protein sequence 
space and the structure information accounting for the microenvironment around each residue in a protein. We show 
that SESNet outperforms state-of-the-art models for predicting the sequence-function relationship on 26 deep muta-
tional scanning datasets. More importantly, we propose a data augmentation strategy by leveraging the data from 
unsupervised models to pre-train our model. After that, our model can achieve strikingly high accuracy in prediction 
of the fitness of protein mutants, especially for the higher order variants (> 4 mutation sites), when finetuned by using 
only a small number of experimental mutation data (< 50). The strategy proposed is of great practical value as the 
required experimental effort, i.e., producing a few tens of experimental mutation data on a given protein, is generally 
affordable by an ordinary biochemical group and can be applied on almost any protein.

Introduction
Proteins are workhorses of the life activities. Their vari-
ous functions such as catalysis, binding, and transporta-
tion undertake most of the metabolic activities in cells. In 
addition, they are the key components of the cytoskele-
ton, supporting the stable and diverse form of organisms. 
Nature provides numerous proteins with great potential 
value for practical applications. However, the natural 
proteins often do not have the optimal function to meet 
the demand of bioengineering. Directed evolution is a 
widely used experimental method to optimize proteins’ 
functionality, namely fitness, by employing a greedy 
local search to optimize protein fitness [1, 2]. During 
this process, gain-of-function mutants are achieved and 
optimized via mutating several Amino Acids (AA) in the 
protein, which were selected and accumulated through 
the iterative processes of mutation by testing hundreds 
to thousands of variants in each generation. Despite the 
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great success directed evolution has achieved, the phase 
space of the protein fitness landscape can be screened 
by this method is rather limited. Furthermore, to acquire 
a mutant of excellent fitness, especially a high-order 
mutant with multiple AA being mutated, the directed 
evolution often needs to develop an effective high-
throughput screening or conduct a large number of 
experimental tests, which is experimentally and econom-
ically challenging [3].

Since experimental screening for directed evolution 
is largely costing, particularly for high-order mutations, 
prediction of the fitness of protein variants in silico are 
highly desirable. Recently, deep learning methods have 
been applied for predicting the fitness landscape of 
the protein variants [2]. By building models trained to 
learn the sequence-function relationship, deep learn-
ing can predict the fitness of each mutant in the whole 
sequence space and give a list of the most favorable can-
didate mutants for experimental tests. Generally, these 
deep learning models can be classified into protein lan-
guage models [4–11], learning the representations from 
the global unlabeled sequences [6, 7, 12] and multiple 
sequence alignment (MSA) based model, capturing the 
feature of evolutional information within the family of 
the protein targeted [13–16]. And more recent works 
have proposed to combine these two strategies: learning 
on evolutionary information together with global natu-
ral sequences as the representation [17, 18], and trained 
the model on the labelled experimental data of screened 
variants to predict the fitness of all possible sequences. 
Nevertheless, all these models are focused on protein 
sequence, i.e., using protein sequence as the input of the 
model. Apart from sequence information, protein struc-
ture can provide additional information on function. Due 
to the experimental challenge of determining the protein 
structure, the number of reported protein structures is 
orders of magnitude smaller than that of known protein 
sequences, which hinders the development of geomet-
ric deep learning model to leverage protein structural 
feature. Thanks to the dramatic breakthrough in deep 
learning-based technique for predicting protein struc-
ture [19, 20], especially AlphaFold 2, it is now possible 
to efficiently predict protein structures from sequences 
at a large scale [21]. Recently, some researches directly 
take the protein structure feature as input to train the 
geometric deep learning model, which has been proved 
to achieve better or similar performance in prediction of 
protein function compared to language models [22–24]. 
However, the fused deep-learning method which can 
make the use of both sequence and structural informa-
tion of the protein to map the sequence-function is yet 
much to be explored [25].

Recently, both supervised and unsupervised models 
have been developed for protein engineering, i.e., predic-
tion of the fitness of protein mutants [24, 26]. Generally 
speaking, the supervised model can often achieve better 
performance as compared to the unsupervised model 
[26], but the former requires a great amount (at least 
hundreds to thousands) of experimental mutation data of 
the protein studied for training, which is experimentally 
challenging [18]. In contrast, the unsupervised model 
does not need any of such experimental data, but its 
performance is relatively worse, especially for the high-
order mutant, which is often the final product of a direct-
evolution project. It is thus highly desirable to develop a 
deep-learning algorithm, which can efficiently and accu-
rately predict the fitness of protein variants, especially 
the high-order mutant, without the need of a large size 
of experimental mutation data of the protein concerned. 
In the present work, we built a supervised deep learning 
model (SESNet), which can effectively fuse the protein 
sequence and structure information together to predict 
the fitness of variant sequences (Fig.  1A). We demon-
strated that SESNet outperforms several state-of-the-art 
models on 26 metagenesis datasets. Moreover, to reduce 
the dependence of the model on the quantity of experi-
mental mutation data, we proposed a data-augmentation 
strategy (Fig. 1B), where the model was firstly pre-trained 
using a large quantity of the low-quality results derived 
from the unsupervised model and then finetuned by a 
small amount of the high-quality experimental results. 
We showed that the proposed model can achieve very 
high accuracy in predicting the fitness of high-order 
variants of a protein, even for those with more than four 
mutation sites, when the experimental dataset used for 
finetuning is as small as 40. Moreover, our model can 
predict the key AA sites, which are crucial for the pro-
tein fitness, and thus the protein engineer can focus on 
these key sites for mutagenesis. This can greatly reduce 
the experiment cost of trial and error.

Results
Deep learning‑based architecture of SESNet for predicting 
protein fitness
To exploit the diverse information from protein 
sequence, coevolution and structure, we fuse three 
encoder modules into our model. As shown in Fig. 1A: 
the first one (local encoder) got from MSA accounts for 
residue interdependence in a specific protein learned 
from homologous evolution-related sequences [15, 
16]; the second one (global encoder) coming from pro-
tein language model, captures the sequence feature in 
global protein sequence universe [6, 12]; and the third 
one (structure module) captures surrounding struc-
tural features around each residue learned from 3D 
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geometric structure of the protein [23, 24]. While the 
protein language model is regarded as global encoder 
is because that it captured the rich semantic from the 
universal protein sequence space, such as the data-
bases UniProt or Pfam, containing more than 100 mil-
lion sequences of proteins of vastly different sequences 
and functions. As a result, the homologous sequences 
of the target protein are only a tiny portion of the uni-
versal protein sequence space. Such definition (“local” 

vs “global”) has also been used in the Ref [17]. To inte-
grate the information of different modules, we first 
concatenate representations of local and global encod-
ers and get an integrated sequence representation. This 
integrated sequence representation is then sent to an 
attention layer and becomes the sequence attention 
weights, which will be further averaged with the struc-
ture attention weights derived from structure module, 
leading to the combined attention weights. Finally, the 

Fig. 1 Architecture of model and the schematic of data-augmentation strategy. Architecture of SESNet): The local encoder accounts for the 
inter-residue dependence in a protein learned from MSA of homologous sequences using a Markov random field [27]. The global encoder captures 
the sequence feature in global protein sequence universe using protein language model [6]. The structure module accounts for the microscopically 
environmental feature of a residue learned from 3D geometric structure of the protein [23, 28]. Schematic of data-augmentation strategy. B: We first 
build a mutant library containing all of the single-site mutants and numerous double-site mutants. Then, all of these mutated sequences are scored 
by the unsupervised model. After that, these mutants are used to pre-train the initial model (SESNet), which will be further finetuned on a small 
number of low-order experimental mutational data
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product of combined attention weights and the inte-
grated sequence representation is then fed into a fully 
connected layer to generate the predicted fitness. The 
combined attention weights can also be used to predict 
the key AA sites, critical for the protein fitness, details 
of which is discussed in the section of Method.

SESNet outperforms state‑of‑the‑art methods 
for predicting fitness of variants on deep mutation scan 
(DMS) datasets
We compared our supervised model against the exist-
ing state-of-the-art supervised models, ECNet [17], 
ESM-1b [6]; and unsupervised models, ESM-1v [9], 
ESM-IF1 [23] and MSA transformer [15]. As can be 
seen in Fig.  2A, in 19 out of 20 datasets, the super-
vised models generally outperform the unsupervised 
ones as expected, and our model (SESNet) achieves 
the best performance among all the models. Moreover, 
we further explored the ability of our model to predict 
the fitness of higher-order variants by training it using 
the experimental results of the low-order variants on 6 
datasets of DMS. As shown in Fig. 2B and C, our model 
outperforms all the other models. Data in Fig. 2 is pre-
sented in Additional file 1: Tables S1–S3. These datasets 
cover various proteins and different types of function-
alities, including catalytic rate, stability, and binding 
affinity to peptide, DNA, RNA and antibody, as well 
as fluorescence intensity (Additional file  1: Table  S4). 
While most of the datasets contain only single-site 
mutants, five of them involve both single-site and dou-
ble-site mutants, and the dataset of GFP contains data 
up to 15-site mutants.

All three components contribute positively 
to the performance of SESNet
As described in the above architecture (Fig.  1A), our 
model integrates three different encoders or modules 
together. To investigate how much contribution each of 
the three parts makes, we performed ablation studies in 
20 datasets of single-site mutants. Briefly, we removed 
each of the three components and compared the perfor-
mance to that of the original model. As shown in Addi-
tional file 1: Table S5, the average spearman correlation of 
the original model is 0.672, much higher than that with-
out local encoder (0.639), that without global encoder 
(0.247) and that without structure module (0.630). The 
ablation study reveals that all three components contrib-
ute to the improvement of model performance, and the 
contribution from the global encoder, which captures the 
sequence feature in global protein sequence universe, is 
the most significant.

The combined attention weights guide the finding 
of the key AA site
The combined attention weights can be used to measure 
the importance of each AA site on protein fitness when 
mutated. To the first approximation, higher the atten-
tion score is, more important the AA site is. To test this 
approximation, we trained our model on the experi-
mental data of 1084 single-site mutants in the dataset 
of GFP [29], a green fluorescent protein from Aequorea 
victoria. The ground truth of the key sites of GFP are 
defined here as the experimentally discovered top 20 
sites, which exhibit the largest change of protein fitness 
when mutated, or the AAs forming and stabilizing the 
chromophore, which are known to significantly affect the 
fluorescent function of the protein [30], but lack the fit-
ness results in the experimental dataset. Indeed, one can 
observe that, at least 5 out of 20 top attention-score AA 
sites predicted by our model are the key sites as two of 
them (G65 and T201) are located at the chromophore, 
and the other three (P73, R71 and G230) were among 
the top 20 residues discovered in experiment to ren-
der the highest change of fitness when mutated (Fig. 3A 
and Additional file  1: Figure S1A). Interestingly, when 
we removed the structure module from the model, only 
three residues in the predicted top-20 attention-score AA 
is the key site (Fig. 3B and Additional file 1: Figure S1B).

To further verify this discovery, we also performed 
these tests on the dataset of RRM, the RNA recognition 
motif of the Saccharomyces cerevisiae poly(A)-binding 
protein [31]. The key sites of RRM are defined as the 
experimentally discovered top 20 sites, which render the 
largest change of fitness of the protein when mutated, or 
the binding sites, which are within 5 Å of the RNA mole-
cules as revealed in the structure of PDB 6R5K. Figure 3C 
and Additional file 1: Figure S2A show that 11 out of 20 
top attention-score AA sites predicted by our model are 
the key AAs. Six of them (F4, L8, I12, I27 S29 and K31) 
are among the top 20 residues and seven of them (N7, 
L28, S29, K31, A33, T34 and K39) are binding sites. 3 key 
residues can be found in the predicted top-seven atten-
tion-score AAs, when we removed the structure mod-
ule. (Fig. 3D and Additional file 1: Figure S2B). S29 is the 
binding site. A57 and I71 are among the experimentally-
discovered top 20 sites.

The results in Fig.  3 demonstrate that the structural 
module which learns the microscopically structural 
information around each residue makes important con-
tribution to identify the key AAs, which are crucial for 
the protein fitness. Although the ablation study (Addi-
tional file  1: Table  S5) reveals that the addition of the 
structural module improves the average spearman corre-
lation over 20 datasets only by 4 percent, Fig. 3 demon-
strates an important role of the structural module, which 
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Fig. 2 Spearman correlation of predicted fitness. A: Comparison of our model to other models on the predicted fitness of the single-site mutants 
on 20 datasets. We randomly split a given dataset into five folds by randomized shuffling and splitting. All the supervised models are trained and 
evaluated for five times on different folds splitting. In the i-th iteration, the fold-i is used as the test set while the remaining four folds are used for 
training and validation. Later, we perform a simple random strategy to split the remaining four folds of dataset into training and validation as a ratio 
of 7:1. The error bars of each model are the standard deviations of the five-time testing results. B: Comparison of predicted fitness of double-site 
mutants of our model with other unsupervised models (ESM-1v, ESM-IF1 and MSA transformer), or supervised models (ECNet and ESM-1b). Here, 
we performed five-fold cross-validation on the data of single-site mutants and used double-site mutants as external test set. Briefly, we randomly 
split the data of single-site mutants into five folds, and then picked one fold as validation set and the remaining four folds as training set. This 
process was repeated five times and each fold of data was employed once as the validation set. The model that performed best in the validation 
set was tested on the double-site mutants. B: Comparison of our model to other models on fitness prediction of quadruple-site mutants of GFP. 
Here, our model and other supervised model were trained using the single, double, triple-site mutants and all the three together. Where the 
quadruple-site mutants are the external test set. We performed five-fold cross-validation on the train set and tests the models on quadruple-site 
mutants
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can guide the protein engineer to identify the important 
AA sites in a protein for mutagenesis.

As can be seen from the above comparison, our SESNet 
with structural module considered has much better per-
formance in identifying the key amino acids as compared 
to the model without the structural module. We suspect 
this might result from the fact that the key AA site affect-
ing the function of the protein the most has important 
structural roles, which are better captured when the 
structure module is implemented. However, one can also 
see that the performance of identifying the key AA site 
of our model on RRM is much better than on GFP. The 
former is testing the binding affinity between a protein 
and RNA molecule while the latter is examining the fluo-
rescence intensity of a protein. Fluorescence intensity of 
GFP is a very fragile property, strongly depending on the 
local physicochemical environment to form the central 

chromophore and radiating of it. So much precise struc-
tural, spatial and chemical information of the amino acids 
surrounding the chromophore, including the orientation 
of the side groups and the true charge of them, could be 
essential for optimizing the fluorescence intensity. The 
current structure module in our SESNet is not sufficient 
to fully capture such information and needs improve-
ment. But this is beyond the scope of the current work 
and will be done in the future.

Data‑augmentation strategy boosts the performance 
of the fitness prediction when finetuned by a small size 
of labelled experimental data
Supervised model is normally performing better than the 
unsupervised models (see Fig. 2) [26]. But the accuracy of 
the supervised model is highly affected by the amount of 
input experimental results used for training. However, it 
is experimentally challenging and costly to generate suf-
ficient data (many hundreds or even thousands) for such 
purpose on every protein studied. To address this chal-
lenge, we propose a simple strategy of data augmentation 
by using the result generated by one unsupervised model 
to pre-train our model on a given protein, and then fine-
tuning it using a limited number of experimental results 
on the same protein. We call it a pre-trained model. We 
note that data-augmentation strategy has been applied 
in various earlier work and has achieved good success in 
protein design [23, 32, 33]. In particular, to improve the 
accuracy of inverse folding, ref [23] used 16,153 experi-
mentally determined 3-D structures of proteins and 12 
million structures predicted by the AlphaFold 2 [19] to 
train the model ESM-IF1 [23]. In the present work, the 
data augmentation strategy is used for a different pur-
pose that it can reduce the dependence of the supervised 
model on the size of the experimental data when predict-
ing the fitness of protein mutants. We took GFP as an 
example to illustrate our data-augmentation strategy as 
GFP has a large number of experimental data for testing, 
particularly the experimental data for high-order mutants 
(up to 15-site mutant). We used the fitness results of low-
order mutants predicted by the unsupervised model, 
ESM-IF1, to pre-train our model. The pre-training data-
set contains the fitness of all single-site mutants and 
30,000 double-site mutants randomly selected out of tens 
of million double-site variants. Then, we finetuned the 
pre-trained model by a certain number of experimental 
results of single-site mutants. The resulting model was 
used to predict the fitness of high-order mutants. As can 
be seen in Fig.  4A–D, when comparing with the origi-
nal model without pre-training (blue bars), the perfor-
mance of the pre-trained model is significantly improved 
(red bars). Such improvement is particularly large when 
only a small number of experimental data (40) is fed for 

Fig. 3 The key sites out of the sites with the top 20 largest attention 
scores on the wildtype sequence. A and B: The key sites of GFP have 
been marked as red spheres. A: 5 key sites were recovered by our 
model. G65 and T201 are the active residues helping to form and 
stabilize the chromophore in GFP as described by Ref [30]. P73, G230 
and R71 are among the experimentally-discovered top 20 sites, 
which render the highest change of fitness when mutated. B: 3 key 
sites were identified by the model when removing the structure 
module. Y37 and L219 are among the experimentally-discovered top 
20 AA sites. Q181 is the active residue. C and D: The key sites of RRM 
have been marked as red spheres. C: 11 key sites were recovered 
by the original model. N7, L28, S29, K31, A33, T34 and K39 are the 
binding sites which are within 5 Å of the RNA molecules. F4, L8, I12, 
I27, S29 and K31 are among the experimentally-discovered top 20 
sites, which render the highest change of fitness when mutated. D: 
There are 3 key sites identified by the model when removing the 
structure module. S29 is the binding site. A57 and I71 are among the 
experimentally-discovered top 20 sites
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training, and it will be gradually reduced when feeding 
more experimental data, eventually disappearing when 
more than 1000 experimental data were used for train-
ing. Here, we would like to particularly highlight the case 
when the finetuning experimental dataset contains only 
40 data points. As can be seen in Fig. 4A, the pretrained 
model can achieve high spearman correlation of 0.5–0.7 
for multisite-mutants, even for high-order mutants with 
5–8 mutation sites. This is remarkably important for 
most protein engineers, as such experimental workload 
(40 data points) is generally affordable in an ordinary bio-
chemical research group. However, without pre-training, 
the performance of the supervised model is rather low 
(~ 0.2). This comparison demonstrates the advantage of 
the data augmentation strategy proposed in the present 
work.

Moreover, we also compared the performance of the 
pretrained model with respect to the unsupervised 
model (green bars), which were used for generating the 
low-quality pretraining datasets. As can be seen, when 

only 40 experimental data were used for training, the 
pretrained model has similar performance as compared 
to the unsupervised model for low-order mutants (< 4 
mutation sites), but clearly outperforms the latter for 
high-order mutants (> 4 mutation sites). When feeding 
more experimental data, especially a couple of hundreds, 
the pretrained model will outperform the unsupervised 
model regardless of how many sites of the protein were 
mutated.

The unsupervised model used for analysis in Fig. 4 is 
ESM-1F1, which captures the surrounding structural 
information of a residue. To demonstrate the general 
superiority of data-augmentation strategy proposed 
here, we also tested the results using other unsuper-
vised model to generate the augmented datasets for 
GFP. As can be seen in Additional file 1: Figure S3, we 
used ProGen2 [8], an unsupervised model to learn the 
global sequence information, for data augmentation, 
and still derived the similar conclusion as in Fig.  4. 
That is, the pretrained model outperforms the original 

Fig. 4 Results of models trained on different number of experimental variants. A–D: The spearman correlation of fitness prediction on multiple sites 
(2–8 sites) mutants by finetuning using 40, 100, 400, 1084 single-site experimental mutation results from dataset of GFP. Where the red and blue 
bars represent the results of the pre-trained model and the original model without pretraining, respectively. And the green bars correspond to the 
results of the unsupervised model ESM-IF1 as a control
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model without pretraining especially when a small 
experimental dataset is used for training, and it also 
beats the unsupervised model particularly for the high-
order mutants.

To further validate the generality of the data augmen-
tation strategy proposed here, we did the analysis on 
the dataset of other proteins: toxin-antitoxin complex 
(F7YBW8) [34]containing data up to 4 sites mutants, 
and Adeno-associated virus capsids (CAPSD_AAV2S) 
[35], a deep mutational dataset including data up to 
23-site mutants. We used the unsupervised model Pro-
Gen2 [8] to generate the low-quality data of F7YBW8 
for pretraining, since we found ProGen2 performs bet-
ter than ESM-IF1 on this dataset. As shown in Fig. 5A, 
the pre-trained model outperforms both the origi-
nal model without pretraining and the unsupervised 
model in the fitness prediction of all multi-site mutants 
(2–4 sites) after finetuned by using only 37 experimen-
tal data points. In addition, in the dataset of CAPSD_
AAV2S (Fig.  5B), the pre-trained model also achieves 
the best performance in all of the high-order mutants 
ranging from 2 to 23 sites, when finetuned by only 20 
experimental data points. These results further support 
the practical use of our data augmentation strategy, as 
the required experimental effort is largely affordable on 
most proteins.

In addition, we also compared the performance of the 
pretrained model with respect to the original model 
without pretraining on the prediction of single-site 
mutants. As shown in Additional file  1: Figure S4, our 
pre-trained model generally outperforms the original one 
in majority of datasets: 18 out of 20 datasets when fine-
tuning on 20 experimental data points, and in 19 out of 
20 datasets when finetuning on 40 or 100 experimental 
data points. These results further support the value of 

the data augmentation strategy proposed in the present 
work.

Learned models provide insight into protein fitness
SESNet projects a protein sequence into a high dimen-
sional latent space and represents each mutant as a vec-
tor by the last hidden layer. Thus, we can visualize the 
relationships between sequences in these latent spaces to 
reveal how the networks learn and comprehend protein 
fitness. Specifically, we trained SESNet on the experimen-
tal data of single-site mutants from the datasets of GFP 
and RRM, then we used the trained model and untrained 
model to encode each variant and extracted the output 
of the last hidden layer as a representation of the variant 
sequence. Additional file 1: Figure S5 shows a two-dimen-
sional projection of the high dimensional latent space 
using t-SNE [36]. We found that the representations of 
positive and negative variants, i.e., the experimental fit-
ness values being larger or smaller than that of wildtype, 
generated by the trained SESNet are clearly clustered 
into distinct groups (Additional file 1: Figure S5A, B). In 
contrast, the representations from untrained model can-
not provide a distinguishable boundary between positive 
and negative variants (Additional file  1: Figure S5C, D). 
Therefore, SESNet can learn to distinguish functional fit-
ness of mutants into a latent representation space with 
supervised training.

Furthermore, to explore why the data-augmentation 
strategy works, we performed a case study on GFP data-
set. Here, we compared the latent-space representation 
from the last hidden layer generated by our model with 
and without pre-training using the augmented data from 
the unsupervised model. As seen in Additional file  1: 
Figure S6A, after pretraining even without finetuning 
by the experimental data, SESNet can already roughly 

Fig. 5 Results of models trained on different datasets. A–B: The spearman correlation of fitness prediction on high-order mutants by finetuning 
on 37 experimental single-site mutation results from datasets of F7YBW8 and on 20 experimental single-site mutation results of CAPSD_AAV2S, 
respectively. Where the red and blue bars represent the results of the pre-trained model and the original model without pretraining. And the green 
bars correspond to the results of the unsupervised model, which is ProGen2 for F7YBW8 and ESM-IF1 for CAPSD_AAV2S, respectively
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distinguish the negative and positive mutants. One thus 
can deduce that the pre-training can furnish a good 
parameter initialization for SESNet. After further fine-
tuning the pre-trained SESNet by only 40 experimental 
data points of single-site mutants, a rather clear bound-
ary between negative and positive high-order mutants 
is further outlined (Additional file  1: Figure S6B). In 
contrast, when we skipped the pretraining process, i.e., 
directly training the model on 40 experimental data 
points, the separation between the positive and nega-
tive high-order mutants is rather ambiguous (Additional 
file  1: Figure S6C). This comparison demonstrates the 
superiority of our data-augmentation strategy in dis-
tinguishing mutants of distinct fitness values, when the 
number of available experimental data is limited.

Discussion
In this study, we present a supervised deep learning 
model, which leverages the information of both sequence 
and structure of protein to predict the fitness of variants. 
And this model is found to outperform the existing state-
of-the-art ones for protein engineering. Moreover, we 
proposed a data augmentation strategy, which pretrains 
our model using the results predicted by other unsuper-
vised model, and then finetunes the model with only a 
small number of experimental results. We demonstrated 
that such data augmentation will significantly improve 
the accuracy of the model when the experimental results 
are very limited (~ 40), and also for high-order mutants 
with > 4 mutation sites. We noted that our work, espe-
cially the data-augmentation strategy proposed here, 
will be of great practical importance as the experimental 
effort it requires is generally affordable by an ordinary 
biochemical research group and can be applied on most 
protein.

Method
Details of model architecture
Local encoder
Residue interdependencies are crucial to evaluate if a 
mutation is acceptable. Several models, including ESM-
MSA-1b [37], DeepSequence [14], EVE [38] and the Potts 
model [27], such as EVmutation [16] and ECNet [39], 
utilize multiple sequence alignment (MSA) to dig the 
constraints of evolutionary process in the residues level. 
In the present work, we use Potts model to establish the 
local encoder. This method first searches for the homolo-
gous sequences and builds MSA of the given protein with 
HHsuite [40]. After that, a statistical model is used to 
identify the evolutionary couplings by learning a genera-
tive model of the MSA of homologous sequences using 
a Markov random field. In the model, the probability of 
each sequence depends on an energy function, which 

is defined as the sum of single-site constraints ei and all 
pairwise coupling constraints eij:

where i and j are position indices along the sequence. 
The i-th amino acid xi is encoded by a vector, in which 
elements are set to the single-site term ei(xi) and pairwise 
coupling terms eij(xi, xj) for j = 1,…,n, n is the number 
of residues in the sequence. These coupling parameters 
ei and eij can be estimated using regularized maximum 
pseudolikelihood algorithm [41, 42]. As the result, the 
i-th amino acid xi in the sequence is represented by a 
(L+ 1)-long vector:

where, the first ei(xi) is single-site constraint and the 
following pairwise coupling terms ei1…eiL were got by 
mapping the values to the elements of matrix eij(xi, xj) 
based on the residue types and positions of i-th (j-th) 
amino acid. Therefore, the full representation of a pro-
tein sequence was obtained by stacking local evolution-
ary representations for every amino acid, resulting in an 
L × (L + 1) matrix. Since the length of the local evolu-
tionary representation of each amino acid is close to the 
length of the sequence, the (L+ 1)-long vector would be 
transformed into a new vector with fixed length dl (in our 
local encoder, dl=128) through a fully connected layer 
to avoid the overfitting issue. Sequence of protein would 
also pass a Bi-LSTM layer and be transformed into an 
L× dl matrix for random initialization. By concatenat-
ing two matrices above, we obtain the output of local 
encoder e′ =< e

′

1, e
′

2, . . . e
′

L > , whose size is L× 2dl.

Global encoder
Recently, the large scale pre-trained models have been 
successfully applied in diverse tasks for inferring pro-
tein structure or function based on sequence informa-
tion. Such as prediction of secondary structure, contact 
prediction and prediction of mutational effects. Thus, 
we take a pre-trained protein language model as the 
global encoder which is responsible to extract biochemi-
cal properties and evolution information of the protein 
sequences. There are some effective language models 
such as UniRep [12], TAPE [43], ESM-1v [44], ESM-
1b [37], ProteinBERT [11] etc. We test these language 
models on our validation datasets, and results show 
that ESM-1b performs better than others. Therefore, we 
chose to use ESM-1b as the global encoder. The model is 
a bert-based [45] context-aware language model for pro-
tein, trained on the protein sequence dataset of UniRef 
50 (86 billion amino acids across 250 million protein 

(1)E(x) =
∑

i

ei(xi)+
∑

i �=j

eij
(

xi, xj
)

(2)vi = [ei(xi), ei1(xi, x1), ei2(xi, x2), . . . eiL(xi, xL)]



Page 10 of 13Li et al. Journal of Cheminformatics  2023, 15(1):12

sequences). Due to its ability to represent the biologi-
cal properties and evolutionary diversity of proteins, we 
utilize this model as our global encoder to encode the 
evolutionary protein sequence. Formally, given a protein 
sequence x =< x1, x2, . . . , xL > ∈ LN  as input, where 
xi is the one-hot representation of ith amino acids in the 
evolutionary sequence, L is the length of the sequence, 
and N  is the size of amino acids alphabet. The global 
encoder first encodes each amino acid and its context 
to g =< g1, g2, . . . , gL > , where gi ∈ Rn , (in ESM-1b, 
n = 1420 ). Then gi is projected to g ′

i of a hidden space 
Rh with a lower dimension (in our default model con-
figuration, h = 256 ), g ′

i = WGgi + b , where WG ∈ Rn×h 
is a learnable affine transform parameter matrix and 
b ∈ Rh is the bias. The output of global encoder is 
g
′

=< g
′

1, g
′

2, . . . g
′

L > ∈ RL×h . We integrate the ESM-1b 
architecture into our model i.e.; we update the parame-
ters of ESM-1b dynamically during the training process.

Structure module
Structure module utilizes the microenvironmental infor-
mation to guide the fitness prediction. In this part, we use 
the ESM-IF1 model [23] to generate the scores of mutant 
sequences, which evaluate their ability to be folded to the 
wildtype structure of the given protein. Higher scores 
mean these mutations are more favorable than others. 
Specifically, all possible single mutants at each position of 
a sequence would obtain the corresponding scores. The 
prediction sequence distribution is an (L× 20) matrix. 
Then we calculated the cross-entropy at each position 
of the sequence between the matrix above and one-
hot encoding matrix of mutant sequence. After passing 
the results through a SoftMax function, we obtained an 
(L× 1) output vector, which is the reconstruction per-
plexities p

′

=< p
′

1, p
′

2, . . . p
′

L > align the evolutionary 
sequence. In the present work, we do not directly encode 
distance map or the 3D coordinate of mutated protein. 
Since before that encoding process, we need to fold every 
specific mutant from their sequences, which will lead to 
unaffordable computational cost and is unpractical for 
the task of fitness prediction.

Intra‑Attention
The outputs of local encoder and global encoder are 
embedding vectors, aligning all positions of input sequence. 
We utilize intra-attention mechanism to compress the 
whole embeddings to a context vector. The inputs of atten-
tion layer are: (1) the global representations 
g
′

=< g
′

1, g
′

2, . . . g
′

L > (2) the local representations 
e
′

=< e
′

1, e
′

2, . . . e
′

L > (3) the reconstruction perplexities 
p
′

=< p
′

1, p
′

2, . . . p
′

L > . Firstly, the local representations 

and global representations are normalized by layer normal-
ization [46] over the length dimension respectively for sta-
ble training. That is, g

′

= LayerNorm(g
′

) and 
e
′

= LayerNorm
(

e
′

)

 . Secondly, the normalized global 
representations and local representations are concatenated 
to joint-representations r =< r1, r2, . . . rL > , where 
ri =

[

g
′

i; r
′

i

]

∈ R2h . Then we use an dot attention layer to 
compute the sequence attention weights 
a =< a1, a2, . . . , aL >∈ RL , where ai ∈ R is the attention 

weight on the ith position, ai =
exp(ri•Wari)

∑n
k=1 exp(rk•Wark )

 , 
Wa ∈ Rh×1 is the learnable parameter. Besides the sequence 
attention weights, there is structure attention weights 
called structure attention s =< s1, s2, . . . , sL >∈ RL , which 
are calculated by reconstruction perplexities, 
si =

exp(p
′

i )
∑n

k=1 exp
(

p
′

k

) . We use the average of sequence atten-

tion and structure attention as the final combined attention 
weights, that is w =< w1,w2, . . . ,wL > , where wi =

ai+si
2  . 

According to the combined attention weights, we get the 
context vector c =

∑L
i=1 wiri as the embedding vector of 

the entire sequence.

Output layer
The input of output layer is the context vector c from the 
output of attention aggregator, and an evolutionary score 
d from the unsupervised model [23]. While the evolu-
tionary score may not be trusted in many cases, we use a 
dynamic weight to take the score into account. The con-
text vector c was firstly transformed to a hidden vector 
h , where h = ReLU(Whc + b) , Wh and b are learnable 
parameters, and ReLU [47] is the activation function. 
Then, the hidden vector h is used to calculate the weight 
p ∈ (0, 1) on d : p = Sigmoid(Wp[h; d]) . The scale of p 
quantifies how much should the model trust the score 
from the zero-shot model. At last, we use a linear layer 
to compute a fitness score yq ∈ R according to the hidden 
vector h directly, where yq = Wqh+ b . The output of our 
model, i.e., the prediction fitness y ∈ R is computed as:

We utilize the mean square error (MSE) as the 
loss function to update model parameters during 
back-propagation:

where N  is the number of samples in a mini-batch, ti is 
the target fitness and yi is the output fitness.

(3)y = (1− p)× yp + p× yq

(4)loss =
1

N

N
∑

i=1

(

ti − yi
)2
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Dataset and experimental settings
Benchmark dataset collection
We first collected 20 multiple deep mutational scanning 
datasets from Ref [14]. Most of them only contain the fit-
ness data of single-site mutants, while one of them (RRM) 
[31] also provides data of high-order mutants. The fitness 
data measured in these datasets include enzyme func-
tion, growth rate, peptide binding, viral replication and 
protein stability. We also collected the mutant data of the 
WW domain of human Yap1, GB1 domain of protein G 
in Streptococcus sp. group G and FOS-JUN heterodimer 
from Ref [48], and the prion-like domain of TDP-43 from 
Ref [49] to evaluate the ability of our model to predict the 
effect of double-sites mutant by learning from the data of 
single-site mutant. Besides, the ability to predict the fit-
ness of higher order mutants (larger than 2) is tested in 
the dataset from Ref [29]. This study analyzed the local 
fitness landscape of the green fluorescent protein from 
Aequorea victoria (avGFP) by measuring the native func-
tion (fluorescence) of tens of thousands of derivative 
genotypes of avGFP. The detailed information on these 
datasets are provided in Additional file 1: Table S4.

Prediction of single‑site mutation effects
We compared our model to ECNet, ESM-1b, ESM-1v 
and MSA transformer model on the DMS datasets. Since 
there is no public benchmark test set for mutant predic-
tion task, we have to split it by ourselves. Obtaining a fair 
external train-test splitting for model comparison on the 
single-site mutant dataset can be difficult. Because the 
dataset splitting may affect the results of model compari-
son. To ensure fairness of predicting the fitness on single-
site mutants, we randomly split a given dataset into five 
folds by randomized shuffling and splitting. Our model, 
SESNet, and other supervised models (ECNet and ESM-
1b) are trained and evaluated for five times on different 
folds splitting. In the i-th iteration, the fold-i is used as 
the test set while the remaining four folds are used for 
training and validation. Splitting the remaining data-
set into a training and validation set involves a trade-off 
between fairness and computational cost. Internal five-
fold cross-validation can provide a fair comparison, but 
it will also increase huge computational cost. Therefore, 
we only perform a simple random strategy to split the 
remaining four folds of dataset into training and valida-
tion in a 7:1 ratio. The training set is utilized to train the 
models for N epochs at most. And the validation set is 
used to avoid overfitting through the early-stopping 
mechanism. The error bars of each model in Fig. 2a are 
the standard deviations of the five-time testing results 
(spearman correlation).

Prediction of high‑order mutation effects
We evaluated the performance for predicting the fitness 
of high-order mutants by the model trained on low-
order mutants. Here, we used the data of high-order 
mutants as an external test set and did five-cross valida-
tion of the low-order mutant data. Briefly, we randomly 
split the data of low-order mutants into five folds, and 
then picked one fold as validation set and the remain-
ing four folds as training set. This process was repeated 
five times and each fold of data was employed once as 
the validation set. The model that performed best in the 
validation set was tested on the high-order mutants.

Data‑augmentation strategy
The data augmentation was conducted by pre-train-
ing our model on the results predicted by the unsu-
pervised model. To be specific, we first built a mutant 
library, which contains all the single-site mutants and 
30,000 double-site mutants randomly selected from 
tens of millions of saturated double-site mutants. 
Then, we used ESM-IF1 (or ProGen2) to score all these 
sequences. Those sequence-score data were used to 
pre-train our model. While we used 90% of the data as 
training test, 10% as validation set. At first, our model 
was randomly initialized except the global encoder 
(ESM-1b module). Then the normalized mutant library 
was used to train the model for 10 epochs using the 
Adam optimizer whose learning rate is 5e-4. All of the 
parameters including global encoder were trainable 
during this process, and the hidden size, batch size, 
dropout and warmup steps were consistent with the 
hyper-parameter configuration for the multiple-sites 
dataset shown in Additional file 1: Table S7. In the fine-
tuning stage, the pretrained model was finetuned on a 
small subset of the experimental dataset, also allow-
ing all model parameters to be trainable. The learning 
rate was set to 5e-4. In the evaluation stage, we used 
the finetuned model to predict the fitness for high-
order mutants and compute the spearman correlation 
between the experimental fitness (ground truth) and 
predicted fitness.

Training details
SESNet was trained using the Adam optimizer with 
weight decay. Hyperparameters of the model were tuned 
with a local grid search on two representative datasets, 
GFP for multi-sites dataset and RRM for single-site data-
set. The searched optimal hyperparameters configuration 
are applied in other datasets. We tested the hidden size 
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of [128, 256, 512], learning rate of [1e-3, 5e-4, 1e-4, 5e-5, 
1e-5], and dropout of [0.1, 0.2, 0.4]. Additional file  1: 
Table  S7 in SI shows the details of the hyperparameter 
configurations. All experiments are conducted on a GPU 
server with 10 RTX 3090 GPUs (24  GB VRAM) and 2 
Intel Gold 6226R CPUs with 2 TB RAM.

Model contrast
The source code of ECNet model for contrast is down-
loaded from the GitHub website (https:// github. com/ 
luoyu nan/ ECNet) provided by Ref [17]. The ESM-1b 
model is also reproduced in our local computers with 
architecture that is described in their publication [6]. The 
code of ESM-IF1, ESM-1v and MSA transformer (ESM-
MSA-1b) are got from the GitHub website of Facebook 
research (https:// github. com/ faceb ookre search/ esm). For 
each assay, all experiments of three different models are 
performed in the same dataset.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13321- 023- 00688-x.

Additional file 1: Table S1. Spearman correlation in Figure 2A. Compari-
son to other supervised and unsupervised models for fitness prediction 
on the single-site mutants of 20 datasets. The one marked in bold denotes 
the best performance. Table S2. Spearman correlation in Figure 2B. Fit-
ness prediction of double-site mutants by unsupervised models (ESM-IF1, 
ESM-1v and MSA transformer), or supervised models (ECNet and ESM-1b) 
and SESNet trained on the data of single-site mutants. The one marked in 
bold denotes the best performance. Table S3. Spearman correlation in 
Figure 2C. Prediction of quadruple variants of avGFP using models trained 
on single, double, triple-site mutants and all the above three. Table S4. 
Detailed information on the proteins listed in the dataset of Tables 1-3. 
The protein fitness classification and the number of sites being mutated 
of each protein. Table S5. Ablation study results. Ablation study was per-
formed in the testing when we removed each of the three modules in the 
integrated model. The average spearman correlation of all datasets shows 
that model including all the three components are the most accurate, and 
all three parts contribute positively to the performance of the integrated 
model, with the global encoder contributing the most. Table S6. Ablation 
study of the pre-trained model tested on GFP datasets. The spearman 
correlation was predicted by our models which is pre-trained on single-
site and numerous double-sites variants generated by the unsupervised 
model ESM-IF1. Table S7. Hyperparameter configurations for different 
dataset. Figure S1. Attention score of sites on the wildtype sequence. 
Attention scores of sites generated by SESNet (A) and the model without 
the structure module (B) trained on the 1084 single-site mutants of the 
dataset of GFP. We picked up the top 20 attention-score AA sites predicted 
by SESNet with and without structure module, respectively. When the 
structural module is present, there are five sites (marked by the blue 
ellipse in the subgraph A) identified by our model accords with the key 
AA sites discovered by experiments (mentioned in main text). However, 
this number is reduced to three when we remove the structural module 
from the model (marked by the blue ellipse in the subgraph B). Figure 
S2. Attention score of sites on the wildtype sequence. Attention scores of 
sites generated by SESNet (A) and the model when removing the struc-
ture encoder (B) trained on the 1064 single-site mutants of the dataset 
of RRM.  We picked up the top-20 attention-score AA sites predicted 
by SESNet model with and without the structure module, respectively. 
When the structural module is present, there are 11 sites (marked with 
blue ellipse in the subgraph A) predicted by the model accord with the 
key AA sites discovered by experiments (mentioned in main text). In 

contrast, when removing the structure module, 3 of the predicted top-20 
AA sites accord with the experimentally discovered (see the subgraph 
B). Figure S3. Results of models pre-trained on the dataset generated by 
the unsupervised model ProGen2 (ref ), and then fine-tuned on different 
number of experimental data points. A-D: The spearman correlation of 
fitness prediction on multiple sites (2-8 sites) mutants by finetuning on 40, 
100, 400, 1084 experimental single-site variants from dataset of GFP. Here, 
the red and blue bars represent the results of the model with and without 
pre-training, respectively. And the green bars correspond to the results 
of the unsupervised model ProGen2 as a control. Figure S4. Results of 
models trained on different number of single-site experimental variants. 
A-C: The spearman correlation of fitness prediction on single-site mutants 
by finetuning on 20, 40, 100 single-site variants from different datasets. 
Where the blue and red symbols represent the results of the pre-trained 
model and the original model without pretraining, respectively. Figure 
S5. Variant sequence representations of trained and untrained SESNet 
by the experimental data. Each point represents a variant, where the 
positive and negative variants are colored as red and blue, respectively. 
The models were trained on single-site mutants from the dataset of GFP 
and RRM. Here a red point represents a mutant whose experimental fit-
ness value is higher than that of the wild type, while the blue point gives 
mutant whose experimental fitness value is lower than the wild type. As 
can be seen in A and B, after training by part of the experimental data set, 
the positive and negative mutants can be separated into different spaces. 
In contrast, those representations from untrained model with random 
parameter initialization (C and D) do not reflect any clear separation 
between the positive and negative mutants as expected. This compari-
son shows that our model can learn to distinguish functional fitness 
of mutants into a latent representation space with supervised training. 
Figure S6. Representations of variants in different training ways. A: The 
representations from the pre-trained models without fine-tuning by any 
experimental data. B: the representations from the pre-trained models, 
which is further finetuned on 40 single-site experimental mutants. C: the 
representations from the model directly trained on 40 single-site experi-
mental mutants without pre-training.

Additional file 2. The source code of SESNet.

Additional file 3. The dataset used in the present work.
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