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Abstract 

Chemical mutagenicity is a serious issue that needs to be addressed in early drug discovery. Over a long period of time, 
medicinal chemists have manually summarized a series of empirical rules for the optimization of chemical mutagenic-
ity. However, given the rising amount of data, it is getting more difficult for medicinal chemists to identify more com-
prehensive chemical rules behind the biochemical data. Herein, we integrated a large Ames mutagenicity data set with 
8576 compounds to derive mutagenicity transformation rules for reversing Ames mutagenicity via matched molecular 
pairs analysis. A well-trained consensus model with a reasonable applicability domain was constructed, which showed 
favorable performance in the external validation set with an accuracy of 0.815. The model was used to assess the 
generalizability and validity of these mutagenicity transformation rules. The results demonstrated that these rules were 
of great value and could provide inspiration for the structural modifications of compounds with potential mutagenic 
effects. We also found that the local chemical environment of the attachment points of rules was critical for successful 
transformation. To facilitate the use of these mutagenicity transformation rules, we integrated them into ADMETopt2 
(http:// lmmd. ecust. edu. cn/ admet sar2/ admet opt2/), a free web server for optimization of chemical ADMET properties. 
The above-mentioned approach would be extended to the optimization of other toxicity endpoints.
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Introduction
Chemical mutagenicity is a serious issue to be addressed 
in early drug discovery [1, 2]. More specifically, gene 
mutation caused by a compound is a permanent and irre-
versible change closely related to carcinogenicity, which 
is a great threat to human health [3]. The most popular 
in vitro test system to assess potential mutagenic potency 
of a compound is the bacterial reverse mutation test 
called the Ames assay [4, 5]. It uses the mechanism of 
back mutation in different bacteria strains, typically Sal-
monella typhimurium, to detect different types of muta-
tions. The early-stage detection of chemical mutagenicity 
is of great significance for increasing the effectiveness of 
drug development [6]. However, with the rapid expansion 
of the chemical space explored by medicinal chemists, 
large-scale in  vitro assays are not feasible considering 
labor, time and cost. In addition, the rising amount of 
data makes it more difficult to manually extract chemical 
rules related to the optimization of mutagenicity. There-
fore, researchers proposed many computational algo-
rithms to automatically learn hidden chemical knowledge 
from large data sets and developed many valuable com-
putational tools [7–9]. These technologies offer cheaper 
and faster alternatives for the evaluation and optimiza-
tion of chemical mutagenicity and have been recognized 
by many international organizations [10].

In the past decade, many machine learning models for 
mutagenicity prediction had been proposed and obtained 
favorable predictive performance [6, 11, 12]. In general, 
these models could be roughly divided into two catego-
ries: conventional machine learning models and deep 
learning models. The former utilized molecular descrip-
tors, such as molecular fingerprints and physicochemi-
cal properties, combined with conventional machine 
learning algorithms, such as random forest (RF) [13] 
and support vector machine (SVM) [14], to build mod-
els [7, 15]. The latter preferred to use molecular graphs 
and multilevel network architectures for model construc-
tion [9, 16]. Conventional machine learning models were 
much simpler but limited by manually selected molecular 
descriptors and algorithms, whereas deep learning mod-
els were more suitable for endpoints with a large amount 
of data to reduce the risk of falling into the trap of over-
fitting. However, even though the great achievement of 
machine learning models in mutagenicity prediction, 
they could not provide reference guidance for structural 
modifications of compounds with potential mutagenic 
effects.

In lead optimization, matched molecular pairs analy-
sis (MMPA) is a powerful tool and is widely used by 
medicinal chemists to optimize pharmacokinetic prop-
erties, toxicity, and physicochemical properties [17–19]. 

Matched molecular pairs (MMPs) refer to a pair of 
similar molecules with a single structural change [20]. 
MMPA aims to derive the chemical rules (i.e., MMP 
rules) between structural transformations and prop-
erty changes from MMPs. For example, Paul et  al. used 
MMPA to identify the effect of common substituents on 
ADMET parameters [19]. Leach et al. utilized MMPA to 
analyze the effect on aqueous solubility, plasma protein 
binding, and oral exposure of adding substituents to aro-
matic rings and methylating heteroatoms [21]. Generally, 
these valuable chemical rules provide clear design guid-
ance for drug candidates, which reduces the design cycle 
of drug discovery projects. However, given the complex-
ity of chemical and biological systems, the same substi-
tution of different molecules might result in different 
property changes [17, 22]. Therefore, it is necessary to 
evaluate the generalizability and validity of MMP rules 
when applied to different molecules.

In this study, we derived and evaluated chemical 
rules for the optimization of chemical mutagenicity via 
MMPA and machine learning methods, respectively. As 
shown in Fig. 1, we first integrated a new Ames muta-
genicity data set with structural diversity (Fig. 1a). Then, 
on the basis of the new data set, we derived mutagen-
icity transformation rules through MMPA (Fig.  1b) 
and constructed a machine learning model with a well-
defined applicability domain for mutagenicity predic-
tion (Fig.  1c). Subsequently, we evaluated these rules 
by applying them to the optimization of Ames positives 
and scoring with a machine learning model (Fig.  1d). 
Finally, three important factors that might influence 
the validity of mutagenicity transformation rules were 
analyzed.

Materials and methods
Data collection and preparation
Chemicals were evaluated for their genotoxic potential 
based on the results in the Salmonella bacterial muta-
genicity assay, either in the presence or absence of the S9 
mix. A compound was judged as Ames positive if it sig-
nificantly induced revertant colony growth in at least one 
strain. Only if it did not induce revertant colony growth 
in any reported strains, it could be regarded as Ames 
negative. The initial records of Ames mutagenicity data 
were collected from literature [23] and a publicly acces-
sible database from OECD QSAR Toolbox, i.e., the bacte-
rial mutagenicity ISSSTY database [24]. To evaluate the 
generalizability of the machine learning models and the 
detected chemical rules, we included the approved drugs 
from DrugBank [25] as Ames negative samples, combin-
ing with the Ames strong positive data from the Division 
of Genetics and Mutagenesis, National Institute of Health 
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Sciences (DGM/NIHS) [26] as an external validation set. 
Notably, these approval drugs involved in this study dis-
played no mutagenicity or there was no evidence to prove 
their mutagenicity.

The initial dataset was then curated as follows. All 
compounds were first converted into canonical SMILES 
format. Then, mixtures and inorganic compounds were 
removed, and salts were converted into corresponding 
acids or bases by Pipeline Pilot Software 2017 R2 (BIO-
VIA, USA). The records of duplicate compounds would 
be re-analyzed and assigned new labels. In addition, the 
same records as the DGM/NIHS data set were removed. 
Subsequently, we assigned the Ames data randomly into 
a training set and a test set with a ratio of 9:1. In cross-
validation, the training set would be subdivided into 
a new training set and a validation set according to the 
number of folds.

Python‑based matched molecular pairs analysis
The detection of MMPs and the generation of trans-
formation rules were implemented based on the Hus-
sain and Rea algorithm [27], which had been codified 
as an open-source python package termed mmpdb [28]. 

As shown in Fig. 1b, only the transformation rules that 
were extracted from Ames positives to Ames negatives 
were regarded as mutagenicity transformation rules. 
The detected rules were encoded into SMIRKS format. 
To better define MMPs, the changing fragments of a 
molecule were limited between 2 and 15 heavy atoms. 
The portion of heavy atoms in changing fragments was 
no more than half of the molecule. In addition, multi-
ple cuts, including single-cut, double-cut and triple-
cut, were performed to obtain all possible fragments of 
a molecule. The chirality was preserved when cutting 
a bond. In general, different types of fragments would 
be generated with different cutting methods, which 
determined the category of the transformation rules. 
The fragments generated with single-cut, double-cut 
and triple-cuts were defined as side chains, linkers, and 
scaffolds, respectively. Finally, the local environment 
of the attachment points was calculated and recorded 
in a SHA256 hash of the circular fingerprints with 
a radius from 0 to 5. Notably, we can obtain multiple 
mutagenicity transformation rules from one MMP, and 
one mutagenicity transformation rule can be extracted 
from different MMPs.

Fig. 1 The workflow of this study includes four steps: a data collection and preparation, b matched molecular pairs analysis to derive mutagenicity 
transformation rules, c the construction of machine learning models for mutagenicity prediction, and d evaluation of mutagenicity transformation 
rules via machine learning models
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Construction of machine learning models
Molecular representation
A total of four types of molecular representation meth-
ods were used to represent the structural features of 
the molecules in this study, including three molecular 
fingerprints and one molecular graph. The MACCS fin-
gerprints (MACCS, 166 bits), RDK fingerprints (RDK, 
2048 bits), and extended connectivity fingerprints with 
a radius of 2 continuous bonds and a length of 1024 bits 
(ECFP, 1024 bits) were generated with the RDKit pack-
age (version 2021.03.4) [29]. The molecular graph inte-
grated nine types of atomic features for each atom as 
node features, and four types of bond features for each 
bond as edge features, to construct an initial vector. 
The RDKit package (version 2021.03.4) was performed 
to calculate both atomic features and bond features.

Model construction
Six popular machine learning algorithms, includ-
ing SVM [30], RF [13], extreme gradient boost-
ing (XGBoost) [31], light gradient boosting machine 
(LightGBM) [32], gradient boosting (GB) [33], and a 
graph neural network algorithm (GNN) named Atten-
tive FP [16], were employed to develop the base clas-
sifiers for chemical mutagenicity prediction. Except 
for the Attentive FP algorithm, the hyper-parameters 
involved in the mentioned algorithms were optimized 
using the fivefold cross-validation and grid search. 
The Attentive FP algorithm adopted the Bayesian opti-
mization for hyper-parameters search and the Adam 
optimizer for gradient descent optimization. To avoid 
overfitting, we applied an early stop strategy. The train-
ing process would be terminated early if the area under 
curve (AUC) values had not improved in 8 epochs on 
the training set and 10 epochs on the validation set. To 
verify the robustness of the GNN model, we utilized 
the tenfold cross-validation.

To make full use of these base classifiers and improve 
the predictive capability of the final model, we used a 
model stacking strategy to construct a consensus model. 
The core idea of the strategy was to integrate the pre-
dicted probabilities from different base classifiers into a 
feature matrix and retrain them to generate a new model. 
Here, the logistic regression algorithm (LR) [34] was per-
formed to develop a consensus model based on the six 
best base classifiers.

The SVM, RF, GB, and LR algorithms were imple-
mented using the scikit-learn package (version 1.0). The 
XGBoost and LightGBM algorithms were implemented 
using the xgboost package (version 1.5.2) and the light-
gbm package (version 3.3.2), respectively. The Attentive 
FP algorithm was implemented using Xiong’s code [16].

Model evaluation
The validation set and test set were used to evaluate 
the performance of each model. Five statistical indexes, 
namely AUC, accuracy (ACC), sensitivity (SE), specificity 
(SP), and F1-score (F1), were calculated. The equations 
of these indexes were given in Additional file 1: Table S1. 
The AUC and F1 values can characterize the overall per-
formance of the model. SE, equivalent to recall, measures 
the predictive ability of the model for positive samples. 
On the contrary, SP represents the model’s prediction 
ability of negative samples. Generally, SE is more impor-
tant than SP in toxicity prediction because detecting 
more compounds with potential toxic can effectively 
reduce the cost in early drug discovery.

Definition of applicability domain
Limited by the chemical space of compounds in the train-
ing set, each machine learning model was biased towards 
predicting a specific type of compounds, i.e., applicabil-
ity domain. That is to say, the prediction results were 
more reliable if the predicted compounds were within 
the applicability domain of a specific machine learning 
model. In this study, a similarity-based method [35] was 
used to determine the applicability domain of the con-
sensus model. We first calculated the Tanimoto similarity 
indexes with ECFP between a given compound and each 
compound in the training set, where the top K Tanimoto 
similarity indexes were regarded as the similarity of the 
given compound to the training set. Then, we searched 
for the best similarity threshold  (DT), where compounds 
within the threshold should have better and more reliable 
prediction results. The definition of similarity threshold 
was shown in Eq. 1. The equation had two hyper-param-
eters, K and z. The grid search was performed to deter-
mine the optimal K and optimal z.

In this equation, DT represents the similarity threshold 
of the model, i.e., the applicability domain. γ  represents 
the average Tanimoto similarity index of the compounds 
in the training set and σ is the standard derivation of the 
Tanimoto similarity index of all the compounds in the 
training set. z is a hyper-parameter representing the sig-
nificance level. For a given compound, if the Tanimoto 
similarity indexes of its K most similar molecules all 
exceed the defined similarity threshold  DT, it is regarded 
as in domain (ID), otherwise out of the domain (OD).

Evaluation of mutagenicity transformation rules 
with machine learning models
We first assumed that the mutagenicity transforma-
tion rules detected with MMPA could be used in the 

(1)DT = γ + zσ
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optimization of other Ames positives. Then, we inte-
grated all Ames positives into a new data set and trans-
formed them with MMP rules. The newly generated 
compounds would be predicted with the well-trained 
consensus model. Each mutagenicity transformation 
rule could be used for the optimization of many Ames 
positives and each Ames positive compound could be 
optimized with different mutagenicity transforma-
tion rules. To evaluate the applicability and reliability 
of each obtained mutagenicity transformation rule, we 
defined an evaluation metric, namely  SValidity (Eq. 2). It 
evaluated the validity of a given mutagenicity transfor-
mation rule by calculating the proportion of the newly 
generated compounds that were predicted to be Ames 
negative. Notably, only those newly generated com-
pounds within the applicability domain of the consen-
sus model were included in the statistics.

In this equation, Nneg represents the number of newly 
generated compounds that are predicted as Ames 
negative, and Ntotal is the number of newly generated 
compounds.

(2)Svalidity =
Nneg

Ntotal

Results
Data set analysis
In this study, we collected the Ames records from Hans-
en’s benchmark (6512 compounds) [23] and the ISSSTY 
database (6052 compounds) [24]. After data preparation, 
a total of 8576 compounds with structural diversity were 
obtained, including 4643 Ames positives and 3933 Ames 
negatives. The comprehensive data set was then split into 
a training set including 7720 compounds and a test set 
containing 856 compounds. Overall, the numbers of neg-
atives and positives in this data set were balanced with 
a ratio of 0.847 (Neg./Pos.). In addition, 805 approved 
drugs from DrugBank [25] that were not involved in the 
training set, and 664 Ames strong positive samples from 
DGM/NIHS [26] were built as an external validation set. 
The numbers and sources of compounds in different data 
sets were shown in Table 1.

To further explore the chemical space of the Ames data 
set, the Tanimoto similarity indexes and Murcko scaf-
folds analysis [36] were performed. The Tanimoto simi-
larity indexes were calculated with ECFP and the Murcko 
scaffolds of the total data set were extracted by remov-
ing side chain substituents but retaining the linkers and 
ring systems with RDKit package [29]. The overall color 
of the Tanimoto similarity heat map was light green 
with an average similarity of 0.087 (Fig.  2a), indicating 

Table 1 The number and sources of compounds in different data sets

Data set Mutagenic Non‑mutagenic Source

Training set 4174 3546 Hansen’s benchmark & ISSSTY database

Test set 469 387 Hansen’s benchmark & ISSSTY database

External validation set 664 805 DGM/NIHS & DrugBank

Fig. 2 The heat map a and the molecular cloud b of the Ames data set
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the structural diversity of the data set. Additionally, we 
detected 1822 different Murcko scaffolds from the data 
set, suggesting that each Murcko scaffold shared an aver-
age of 4.7 molecules. Moreover, more than 80% of the 
scaffolds were contained in no more than three mol-
ecules, indicating a high level of chemical diversity. The 
molecular cloud [37] was used to visualize the frequency 
of the detected Murcko scaffold (Fig. 2b). Clearly, mole-
cules with polycyclic scaffolds were the focus of chemical 
mutagenicity studies. In a word, the above analysis of the 
Tanimoto similarity indexes and Murcko scaffolds dem-
onstrated the structural diversity of the Ames data set.

Derivation of mutagenicity transformation rules via MMPA
The MMPA was performed based on the curated Ames 
data set from Hansen’s benchmark data set and the 
ISSSTY database. Then, a total of 7485 MMPs and 6107 
mutagenicity transformation rules were identified. The 
total information of all transformation rules was given 
in Additional file 2: Table S2 (some examples were illus-
trated in Table  6). The frequency and categories of 
these transformation rules were summarized in Table 2. 
Clearly, the single-cut rules had the largest proportion 
(80.15%) of all the rules while only 37 triple-cut rules were 
extracted from the data set, which could be attributed to 
the more restrictive identification conditions of triple-cut 
rules. It could be observed that structural modification 
of side chains was the primary scheme for mutagenic-
ity optimization. On the other hand, a large proportion 
(85.08%) of mutagenicity transformation rules were only 
detected once from the data set, indicating that there 
might be some redundant or invalid rules. Furthermore, 
limited to the amount of Ames data, few double-cut rules 
and triple-cut rules occurred more than 4 times. In con-
trast to this, there were some high-frequency single-cut 
rules, such as “[*:1][N +](= O)[O-] >  > [*:1][H]” and “[*:1]
CC1CO1 >  > [*:1][H]”, which had been detected for 172 
times and 23 times, respectively. Overall, we success-
fully extracted mutagenicity transformation rules from 
the Ames data set with MMPA, and the analysis revealed 
the important role of the structural modification of side 
chains in mutagenicity optimization.

Performance of machine learning models on mutagenicity 
prediction
Performance of base classifiers and consensus model
Based on the carefully curated Ames data, we con-
structed a total of 16 base classifiers for chemical muta-
genicity prediction, including 15 conventional machine 
learning models and a deep learning model. The model 
performance on the training set was evaluated with 
cross-validation (Additional file  1: Table  S3). For each 
machine learning method, the best model was selected 
according to the AUC and SE values of cross-validation. 
Finally, the RF_RDK, SVM_ECFP, LGB_RDK, XGB_
MACCS, GBT_MACCS, and GNN models performed 
better than the other models and were preserved as the 
best base classifiers.

According to previous quantitative structure-activ-
ity relationship (QSAR) studies, the consensus model 
combining multiple base classifiers tended to have bet-
ter model robustness and predictive capability [38–40]. 
Therefore, we applied a model stacking strategy by inte-
grating the prediction probabilities of six base classifi-
ers and fed them into a logistic regression algorithm to 
generate a consensus model. The well-trained consen-
sus model showed favorable performance in the test set 
(Additional file 1: Table S4). For a more intuitive compar-
ison, we visualized the performance of the base classifiers 
and consensus model in the test set and external valida-
tion set (Fig. 3). According to the AUC values, the perfor-
mance of the consensus model was improved by 0.4–4% 
in test set. In addition, compared with base classifiers, 
the consensus model also exhibited satisfactory accuracy 
and sensitivity in the external validation set (Additional 
file  1: Table  S5). Even so, nearly 22% of the compounds 
in external validation set were still incorrectly predicted 
by the consensus model, which might be due to the fact 
that some of these compounds were out of the applicabil-
ity domain of the model.

Determination of applicability domain with test set
A defined applicability domain is one of the five OECD 
principles for the validation of QSAR models [41]. Mol-
ecules within the applicability domain tended to obtain 
more reliable prediction results. In this study, the test set 
was used to define the applicability domain. We calcu-
lated the average Tanimoto similarity index of the com-
pounds in the training set ( γ  ) of 0.0880 and the standard 
derivation of the Tanimoto similarity index ( σ ) of 0.0625. 
Then, to minimize the loss of valuable chemical space, we 
considered both the number of compounds in the test set 
and the predictive performance of the consensus model 
to explore optimal k and Z. The final similarity thresh-
old  (DT) was 0.338 with an optimal k and Z of 5 and 4, 

Table 2 The summary of mutagenicity transformation rules

Frequency Multiple cuts Total

Single‑cut Double‑cut Triple‑cut

1 4114 1053 29 5196 (85.08%)

2–4 704 120 8 832 (13.62%)

5–9 54 2 0 56 (0.92%)

10+ 23 0 0 23 (0.38%)

Total 4895 (80.15%) 1175 (19.25%) 37 (0.6%) 6107
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respectively. The defined applicability domain contained 
nearly 80% (679 out of 856) compounds of the test set 
and obtained a favorable predictive capability of these 
ID compounds (AUC = 0.927, ACC = 0.865, SE = 0.899, 
SP = 0.815, F1 = 0.886). As shown in Fig.  3, the model 
performed better in predicting ID compounds, indicating 
that the defined applicability domain successfully sum-
marized the model’s preference.

Performance on the external validation set
To evaluate the generalizability of the consensus model, 
we integrated an external validation set with 664 Ames 
strong positive compounds from DGM/NIHS and 805 
approved drugs as Ames negative samples. For the total 
external validation set, there were 376 positives and 239 
negatives within the applicability domain of the consen-
sus model. Overall, our consensus model had an accuracy 
of 0.815 for the ID compounds. Specifically, 290 (nearly 
77.1%) Ames strong positive compounds and 211 (nearly 
88.3%) Ames negative samples were correctly predicted.

The Ames strong positive compounds from DGM/
NIHS were an external validation set used in the Ames/
QSAR International Challenge Project [10]. The initial 
number of Ames strong positive samples should be 672, 
but 8 of them had ambiguous incomplete SMILES and 
were therefore not included in our external validation set. 
A total of 12 QSAR vendors with 17 QSAR tools, includ-
ing 11 statistical-based models and 6 rule-based models, 
participated in the Ames QSAR International Challenge 
Project. When predicting these Ames strong positive 
compounds, these statistical-based models and rule-
based models obtained an average SE of 0.690 and 0.749, 
respectively. By contrast, our consensus model had a SE 
of 0.771, which was better than 91% (10 out of 11) statis-
tical-based models and 66% (4 out of 6) rule-based mod-
els (Additional file 2: Table S6). The results demonstrated 

the strong positive predictive power of our consensus 
model. In addition, according to the prediction results 
of Ames negative samples, our consensus model also 
showed favorable performance.

Analysis of mutagenicity transformation rules
Mutagenicity optimization with mutagenicity transformation 
rules
The obtained mutagenicity transformation rules could be 
used in structural transformation of the compounds shar-
ing the same substructures. If a compound had multiple 
identical substructures, only one of these substructures 
would be transformed once. To investigate whether these 
transformation rules could be used for mutagenicity opti-
mization, we first extracted the Ames positives from the 
Hansen/ISSSTY data set and DGM/NIHS data set and 
transformed them with MMP rules. Subsequently, the 
newly generated compounds would be predicted with 
the well-trained consensus model. Table 3 illustrated the 
changes in the number of compounds when transformed 
with mutagenicity transformation rules. For example, 
among the 664 Ames positives from DGM/NIHS data 
set, 540 ones could be transformed using the trans-
formation rules and a total of 24311 compounds were 

Fig. 3 The model performance of six base classifiers (GNN model, RF_RDK model, SVM_ECFP model, LGB_RDK model, XGB_MACCS model and 
GBT_MACCS model) and consensus model in the test set a and external validation set b. The ‘Applicability Domain’ referred to the performance of 
consensus model considering only the compounds within the applicability domain

Table 3 Changes in the number of compounds when 
transformed with mutagenicity transformation rules

Npos.: the number of positive compounds.  Ntrans: the number of positive 
compounds that can be transformed with mutagenicity transformation rules. 
 Ngen: the number of newly generated compounds.  NID: the number of newly 
generated compounds within the applicability domain of the consensus model. 
 Npos.: the number of compounds that are predicted as Ames positive.  Nneg.: the 
number of compounds that are predicted as Ames negative

Dataset Npos Ntrans Ngen NID  (Npos. vs  Nneg.)

DGM/NIHS 664 540 24311 12716 (7527 vs 5189)

Hansen/ISSSTY 4670 3213 118677 93663 (63269 vs 30394)
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generated. After feeding these newly generated com-
pounds into the consensus model, we found that there 
were 12716 ID compounds, where 7527 ones were pre-
dicted as Ames positive and 5189 ones were classified 
as Ames negative. It was clear that these mutagenicity 
transformation rules could be used for most Ames posi-
tives, which showed the generalization of these rules.

As shown in Fig. 4, Ames negatives occupied a consid-
erable proportion of all the newly generated compounds, 
indicating that the mutagenicity transformation rules 
were of great practicability and could be used in muta-
genicity optimization. On the other hand, it should be 
noted that a large amount of newly generated compounds 
was still predicted as Ames positive, which revealed that 
there were some invalid transformations. Therefore, an 
evaluation metric, namely  SValidity, was defined to evaluate 
the transformation validity of each mutagenicity trans-
formation rule.

Evaluation of mutagenicity transformation rules
In this study, we calculated the  SValidity of each mutagenic-
ity transformation rule in two data sets. A total of 1629 
and 5612 mutagenicity transformation rules were used 
in DGM/NIHS data set and Hansen/ISSSTY data set, 
respectively. The  Svalidity of these rules was summarized 
in Additional file  2: Table S7. For simplicity, we defined 
those rules with a  Svalidity higher than 0.5 as high-quality 
mutagenicity transformation rules. According to the 
statistics, high-quality transformation rules accounted 
for 45.3% and 68.3% of all those rules used in mutagen-
icity optimization of DGM/NIHS data set and Hansen/
ISSSTY data set, respectively. Furthermore, given the 
accidental errors caused by those less frequently used 
rules, we filtered out those transformation rules that 
were used less than 10 times in the optimization of Ames 
positives of two data sets. The proportions of high-qual-
ity mutagenicity transformation rules dropped to 28.3% 

and 36.8%, respectively. In addition, when using these 
rules in the optimization of Ames positives in the DGM/
NIHS data set, the invalid mutagenicity transformation 
rules  (Svalidity = 0) only accounted for 4.8%, suggesting 
that most transformation rules could effectively reverse 
chemical mutagenicity. Overall, the results indicated that 
the mutagenicity transformation rules were of great prac-
tical value in mutagenicity optimization. Nevertheless, it 
should be noted that these rules might only be applied to 
specific chemical environments and the abuse of these 
rules could easily lead to invalid transformations.

Factors influencing the performance of mutagenicity 
transformation rules
In this part, we analyzed three factors that might influ-
ence the performance of mutagenicity transformation 
rules, including local chemical environment, rule fre-
quency and rule category.

The local chemical environment of the attachment 
points of each transformation rule was encoded into the 
circular fingerprints with a radius from 0 to 5. When 
transformed using these rules, one could set the mini-
mum radius to ensure the same local environment at the 
attachment point. It was easy to appreciate that identical 
substitution at different molecules might result in differ-
ent property changes [17, 22]. For example, a transforma-
tion rule derived from aromatic compounds might not be 
applied to aliphatic ones. We then counted and recorded 
the transformation validity of these rules by calculating 
the percentage of successfully transformed molecules at 
different radii (Table 4). Clearly, the transformation valid-
ity increased with the local environment radius and the 
transformation validity reached 88.7% and 94.9% at the 
local environment radius of 5. The result indicated that 
the local environment had a great impact on the validity 
of transformation rules. The larger the local environment 

Fig. 4 The distribution of the prediction results of newly generated compounds from the DGM/NIHS data set a and Hansen/ISSSTY data set b 
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radius considered when using these rules, the higher the 
success rate of mutagenicity optimization.

Rule frequency was an important parameter in some 
MMP rules-related studies [42, 43]. In this study, we 
divided these mutagenicity transformation rules into 
three categories based on rule frequency, then calculated 
the transformation validity of each category in different 
local environment radii (Additional file  2: Table  S8). As 
shown in Fig.  5, it was surprising that high-frequency 
rules (Frequency > 3) did not perform better than the 
other rules. By contrast, those rules with the frequency 
of 2 and 3 could transform more efficiently in most sce-
narios. We further analyzed a high-frequency rule “[*:1]
[N +](= O)[O-] >  > [*:1][H]” and found that the transfor-
mation of the nitro group into a hydrogen atom did not 
necessarily reverse the mutagenicity, because the nitro 
group was not necessarily responsible for mutagenicity 
[44]. Therefore, we speculated that the rule frequency 
was just an extrinsic property of mutagenicity transfor-
mation rules, depending on the chemical space that the 
experimental researchers focused on, and it was not 
directly related to the transformation validity.

Different fragmentation protocols would generate 
different categories of MMP rules, including single-
cut, double-cut and triple-cut rules. Here, we recorded 
the transformation results of different rule categories 
at different local environment radii (Additional file  2: 
Table  S9). According to Table  5, the single-cut rules 
performed better than the double-cut rules, indicating 
that the structural modification of the side chain was 
more efficient than that of the linker in mutagenicity 
optimization. In addition, the local chemical environ-
ment of triple-cut rules was more complicated than 
those of single-cut rules and double-cut rules, which 
narrowed the applicability domain of the triple-cut 
rules. Thus, only 83 compounds were generated from 
Hansen/ISSSTY data set with triple-cut rules. Never-
theless, the transformation validity of triple-cut rules 
was no less than 50% across all the local environment 
radii, which indicated that the structural modifica-
tion of molecule scaffolds was a feasible approach in 
mutagenicity optimization and might even yield better 
results.

Table 4 Statistics of newly generated compounds from two data sets at different environment radii

Ngen: the number of newly generated compounds.  Nneg.: the number of compounds that are predicted as Ames negative.  St.v.: the transformation validity of 
mutagenicity transformation rules at the different radius.  Nrules: the number of mutagenicity transformation rules that were used at the different radii

Radius Newly generated compounds from DGM/NIHS data set Newly generated compounds from Hansen/ISSSTY data 
set

Ngen Nneg St.v. Nrules Ngen Nneg St.v. Nrules

0 7751 2928 37.8% 1159 51779 12425 24.0% 2652

1 3178 1280 40.3% 780 22718 6652 29.3% 1793

2 891 451 50.6% 397 7240 2693 37.2% 1108

3 690 409 59.3% 293 4207 2432 57.8% 1103

4 153 74 48.4% 77 2765 1489 53.9% 460

5 53 47 88.7% 49 4954 4703 94.9% 4334

Fig. 5 The influence of rule frequency on transformation validity. The  St.v. were calculated through DGM/NIHS data set a and Hansen/ISSSTY data 
set b, respectively
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Discussion
Toxicity has always been a field of great concern for 
medicinal chemists in lead optimization [45, 46]. In 
this study, we derived and evaluated the chemical rules 
for mutagenicity optimization via MMPA and machine 
learning methods, respectively. With MMPA, we derived 
those MMP rules from Ames positives to Ames negatives 
and explored whether these rules could be applied in 
mutagenicity optimization. Furthermore, to evaluate the 
applicability and reliability of mutagenicity transforma-
tion rules, we constructed a machine learning model with 
a well-defined applicability domain and favorable perfor-
mance (Fig. 3). Through the complementarity of MMPA 
and machine learning models, we summarized a series of 
valuable mutagenicity transformation rules (Additional 
file 2: Table S2), which might provide new clues for muta-
genicity optimization.

To avoid potential mutagenicity of drug candidates 
in early drug discovery, experts summarized a series of 
structural patterns whose presence may induce muta-
genicity, i.e. structural alerts (SAs) [47]. For example, the 
aromatic amino group was considered as a SA for muta-
genicity, because the amino group was easily transformed 
into nitrogen ions to react with DNA [48]. In this study, 
we detected a series of valuable mutagenicity transfor-
mation rules. As shown in Table 6, these rules obtained 
satisfactory results in mutagenicity optimization. More 
importantly, the functional groups in these rules were 
SAs that had been reported before. For example, the ali-
phatic halogens (Rule ID: 1504) and nitrosamine groups 
(Rule ID: 1605, 724, 4267, 681) were mutagenicity-related 
SAs included in ToxAlerts [49]. From this point, our 
mutagenicity transformation rules provided a promising 
alternative for the substitution of SAs.

In previous studies, researchers evaluated MMP rules 
by accessing the significance of the difference in the 
property changes with different statistical tests [22, 50]. 
However, this evaluation method was limited by the data 
type of the property of interest and the frequency of 
MMP rules. For example, Fu et al. evaluated the chemical 
transformation rules for logD7.4 values with Wilcoxon 
signed-rank test but it could be only performed in those 
rules that were presented in more than 10 MMPs [50]. 

Clearly, this method filtered out many valuable but low-
frequency MMP rules. In this study, we evaluated the 
mutagenicity transformation rules by applying them to 
optimize Ames positives and scoring with a well-trained 
machine learning model. In theory, each transformation 
rule could obtain a  Svalidity value to represent the reliabil-
ity of the rule. In this way, we demonstrated the gener-
alizability of these valuable mutagenicity transformation 
rules.

To make better use of these mutagenicity transforma-
tion rules, we integrated them into ADMETopt2 (http:// 
lmmd. ecust. edu. cn/ admet sar2/ admet opt2/), a free web 
server for optimization of chemical pharmacokinetics 
properties and toxicity. Two drugs, i.e., nifurtimox and 
metronidazole, which had been reported to have poten-
tial mutagenic effects [51–53], were used as case stud-
ies to prove the practicability of these rules. We first 
predicted these two drugs with our machine learning 
model and the prediction results also illustrated that they 
were Ames positives. Then, we used mutagenicity trans-
formation rules to explore the structural modification 
schemes to reverse the mutagenicity of these two drugs. 
As described in Fig.  6, we obtained some new chemi-
cal entities which were predicted to be Ames negative. 
In this way, medicinal chemists could get more inspira-
tion for mutagenicity optimization. Moreover, to get new 
chemical entities with favorable ADMET properties, sev-
eral ADMET models in our admetSAR 2.0 system [54] 
(http:// lmmd. ecust. edu. cn/ admet sar2/) could be used to 
narrow the chemical space of the newly generated com-
pounds. Therefore, we provided a user-friendly platform 
for the use of these valuable mutagenicity transformation 
rules.

However, there were still several limitations of these 
transformation rules. First, these transformation rules 
could fix potential mutagenicity issues but might result 
in unexpected changes in other properties of interest. 
Second, some of the transformation rules would cause 
large structural changes in a given compound. Finally, 
there were some incorrect or invalid transformation 
rules in thee current set of rules. We are actively devel-
oping computational methods to solve these potential 
limitations, for example, using QSAR models to remove 

Table 5 Statistics of newly generated compounds using different categories of rules from two data sets

Rule Category Newly generated compounds from DGM/NIHS data set Newly generated compounds from Hansen/ISSSTY 
data set

Ngen Nneg St.v. Nrules Ngen Nneg St.v. Nrules

Single-cut 11715 4995 42.6% 1511 80637 26614 33.0% 4568

Double-cut 1005 194 19.3% 118 12943 3712 28.7% 1017

Triple-cut – – – – 83 68 81.9% 27

http://lmmd.ecust.edu.cn/admetsar2/admetopt2/
http://lmmd.ecust.edu.cn/admetsar2/admetopt2/
http://lmmd.ecust.edu.cn/admetsar2/
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newly generated compounds with poor properties 
and using 3D similarity changes of molecules to select 
the most appropriate rules. Meanwhile, we are deeply 
aware that computational algorithms and expert sys-
tems are indispensable to obtaining a larger number 
of transformation rules with better quality. We will 
continue to update the mutagenicity data set to obtain 
more effective transformation rules and learn from 
expert systems to optimize the existing rules.

Conclusions
The optimization of chemical mutagenicity is of great sig-
nificance in lead optimization. In this study, we derived 
mutagenicity transformation rules from a curated Ames 
mutagenicity data set with MMPA method and evalu-
ated them with a well-trained consensus model. We 
demonstrated the generalizability and validity of these 
mutagenicity transformation rules and analyzed three 
important factors that might influence the validity of the 

Table 6 Mutagenicity transformation rules for the substitution of structural alerts

Svalidity* was calculated through the transformation of Ames positives from the DGM/NIHS data set. Svalidity** was calculated through the transformation of Ames 
positives from the Hansen/ISSSTY data set.
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mutagenicity transformation rules. To make better use of 
these rules, we integrated them into our free web server 
named ADMETopt2 (http:// lmmd. ecust. edu. cn/ admet 
sar2/ admet opt2/). Overall, this study provides a new ave-
nue to reverse chemical mutagenicity of compounds, and 
the strategy can be extended to the optimization of other 
toxicity endpoints.
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