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Abstract 

Current biological and chemical research is increasingly dependent on the reusability of previously acquired data, 
which typically come from various sources. Consequently, there is a growing need for database systems and data-
bases stored in them to be interoperable with each other. One of the possible solutions to address this issue is to use 
systems based on Semantic Web technologies, namely on the Resource Description Framework (RDF) to express data 
and on the SPARQL query language to retrieve the data. Many existing biological and chemical databases are stored 
in the form of a relational database (RDB). Converting a relational database into the RDF form and storing it in a native 
RDF database system may not be desirable in many cases. It may be necessary to preserve the original database form, 
and having two versions of the same data may not be convenient. A solution may be to use a system mapping the 
relational database to the RDF form. Such a system keeps data in their original relational form and translates incoming 
SPARQL queries to equivalent SQL queries, which are evaluated by a relational-database system. This review compares 
different RDB-to-RDF mapping systems with a primary focus on those that can be used free of charge. In addition, it 
compares different approaches to expressing RDB-to-RDF mappings. The review shows that these systems represent 
a viable method providing sufficient performance. Their real-life performance is demonstrated on data and queries 
coming from the neXtProt project.
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Introduction
Modern biological and chemical research generates a 
massive and ever-increasing amount of data originat-
ing from various scientific experiments and measure-
ments. For their potential reuse in further research, these 

data are stored in dedicated databases. A key feature of 
any database (management) system1 is the ability to find 
required data easily. However, this ability is no longer 
sufficient in many cases. In many areas of research, it is 
necessary to combine data from multiple databases. As a 
result, there is a growing need for databases and database 
systems to be interoperable with each other. This effort 
has been supported, for example, by the introduction of 
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the FAIR data principles, which are intended as a guide-
line to enhance the reusability of data [1].

Many of medium-to-large-scale biological and chem-
ical databases (e.g. PubChem BioAssay [2], ChEMBL 
[3], Rhea [4] and MolMeDB [5]) are internally stored 
as relational databases. This approach makes it easy to 
develop a dedicated server that presents the data and 
supports data querying. Unfortunately, such a way is 
usually not very interoperable, and it can be difficult 
to combine the database with others or to query mul-
tiple databases uniformly. To address this gap, some of 
the databases use Semantic Web technologies, mainly 
including the Resource Description Framework (RDF) 
to express their data in an interoperable format [6]. 
To increase interoperability even more, some of the 
databases allow data querying by SPARQL, the query 
language for RDF data [7]. Using these technologies 
enables the databases to be integrated into the large 
ecosystem of Semantic Web databases. Such biological 
and chemical databases include, for example, the pro-
tein database UniProt [8], the reaction database Rhea 
[9], the human-protein database neXtProt [10] and 
the database of gene-disease associations DisGeNET 
[11]. Biological and chemical data can also be retrieved 
through SPARQL from Wikidata [12], where, for 
instance, the natural product database LOTUS hosts its 
data [13].

If a database is originally stored as a relational data-
base, there are two basic approaches to make this data-
base accessible through SPARQL. In the first one, the 
data are exported to an RDF form and stored in a native 
RDF database system supporting SPARQL querying. 
The disadvantage of this approach is that either the data 
are stored twice (and have to be kept synchronised), or 
a full migration to the native RDF database system is 
needed (and the original relational database is aban-
doned). The second approach is to keep the data in the 
original form and use a system that enables mapping 
the relational database (RDB) to the (virtual) RDF form. 
This mapping is used by the system to translate incom-
ing SPARQL queries to equivalent SQL queries, which 
can be evaluated on the original data by a relational-
database system.

Due to the principle on which they work, RDB-to-RDF 
mapping systems cannot be considered a universal alter-
native to native RDF database systems. They are merely 
suitable for certain specific databases for which efficient 
RDB-to-RDF mappings can be written. Such databases 
should use only limited sets of predicates as well as small 
sets of entity classes with a systematic assignment of 
identifiers to their instances. Another limitation is that 
SPARQL queries submitted to such RDB-to-RDF map-
ping systems should only refer to fixed relations between 

searched entities. Biological and chemical databases usu-
ally meet these conditions.

This review examines different currently used RDB-
to-RDF mapping systems and various approaches to the 
design of RDB-to-RDF mappings. It compares them with 
each other and with the native solutions. The compari-
son mainly focuses on their application in biological and 
chemical databases. Our main inspiration for creating 
this review was that we ourselves develop such an RDB-
to-RDF mapping system and we successfully use it to 
make chemical data available.

In the following sections of this introduction, we briefly 
describe the basic aspects of the technologies that are rel-
evant to understanding this review.

Resource Description Framework
RDF has been designed to provide a simple way to make 
statements about entities, to which it refers as resources. 
In the RDF data model [6, 14], data are expressed as tri-
ples in the form of subject-predicate-object. Each triple 
expresses a simple statement about its subject, namely 
that the subject has the property denoted by the predi-
cate and having the value of the object. Resources are ref-
erenced by Internationalised Resource Identifiers (IRIs), 
which makes sure that the resource identifiers have a 
global meaning. If the global identification of a resource 
is not important, the resource can be anonymous and 
represented by a so-called blank node. In such a case, the 
resource identifier is database-local, and it is defined that 
the resource cannot be present in any other database. 
Predicates are also identified by IRIs. From the point 
of view of RDF, they are resources as well. Therefore, it 
is possible to make statements about them. The set of 
predicates used by some database is typically fixed and 
reflects the data ontologies used. Objects can be either 
resources or constant values, called literals. Each literal 
has its value and datatype. Datatypes are denoted by IRIs 
and they are resources as well. IRIs, blank nodes and lit-
erals are collectively referred to as RDF terms.

Relational database
In contrast, in the relational-database model [15], data 
are stored in the form of a set of named tables (relations), 
where each of the tables consists of several named col-
umns (attributes). For each column, the type of the val-
ues stored in the column is specified. Such a set of tables 
and their columns is typically fixed and dedicated for the 
purpose of a specific database. Individual entries are then 
stored as rows of the tables. There is no mandatory con-
cept for the description of entities and their identifica-
tions. For a given database, the existence of an entity of 
a certain class is typically expressed by the existence of 
a record in a table dedicated to this class of entities. One 
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of the table columns (called a primary key) is typically 
intended to store the entity identifiers. For the identifica-
tion of entities, integer or string values are mostly used. 
Unlike RDF, this identification has no global meaning; it 
is only required that the identifiers be unique for all enti-
ties of a given class stored in the database. Other columns 
of the table can be used to store various properties of 
the entities. If necessary, it is possible to reference enti-
ties from another table by using their primary key values. 
A column of the table containing these values is called a 
foreign key.

RDB‑to‑RDF mapping
To map a relational database to an RDF database, two 
closely related steps are required. First, it is necessary to 
define term mappings between relational-database values 
and RDF terms and then triple mappings between tables 
and sets of RDF triples. Each triple mapping defines how 
a triple is generated from a row of a given source table. 
It specifies which term mappings and which values from 
the table row are used to generate individual RDF terms 
(i.e. subject, predicate and object) of the triple.

For the expression of mappings from relational data-
bases to RDF databases, RDB-to-RDF Mapping Lan-
guage (R2RML) has been introduced [16]. Although most 
of current RDB-to-RDF mapping systems support this 
standard mapping language, they typically also define 
their own languages, which allow them to take full advan-
tage of their capabilities.

Querying mapped RDF data
Although a mapping of a relational database to an RDF 
database can be imagined as a process of generating the 
RDF database from data stored in the relational database, 
the RDF database does not need to be explicitly material-
ised for SPARQL query evaluation. Instead, the mapping 
is used to translate a SPARQL query into an equivalent 
SQL query, which is evaluated against the original rela-
tional database.

The basic SPARQL language construct is a triple pat-
tern, which is like an RDF triple, but each of its parts may 
be a variable. The triple pattern matches an RDF data 
triple if the pattern variables can be replaced by RDF 
terms for which the resulting triple is equivalent to the 
RDF data triple. Triple-pattern matching against a que-
ried RDF database produces a solution sequence where 
each solution maps the variables to the RDF terms for 
which the resulting triple exists in the database. Further 
SPARQL construction subsequently works with these 
solution sequences.

A solution sequence can be represented as a table. The 
semantics of the other SPARQL constructs is often close 

to some of SQL constructs. Therefore, the key issue is 
how to translate pattern matching into a SQL query. The 
rest of the translation is then relatively straightforward.

The pattern matching against a native RDF database 
goes through the database triples and checks whether 
a triple can be matched by a given pattern. In contrast, 
the pattern matching against a mapped (virtual) RDF 
database goes through its triple mappings and checks 
whether a triple mapping can generate triples that are 
matched by the pattern. If it can, the triple mapping is 
used to generate the appropriate part of the SQL query 
that returns a solution sequence in the form of a table.

Methods
Database systems can be considered from different per-
spectives. It is possible, for example, to explore their 
maintainability, extensibility, overall performance, data 
loading time etc. This review largely focuses on com-
paring systems by their query performance in a real-life 
database.

Selected database systems
The review has been performed on RDB-to-RDF map-
ping systems and native RDF database systems with a pri-
mary focus on those that are used in the fields of biology 
and chemistry and are available free of charge. Although 
there are many, mostly historical, approaches, we have 
limited the selection to only systems that support the 
current version of SPARQL (i.e. version 1.1) and are thus 
applicable in the current Semantic Web environment.

The probably most widely utilised RDF database sys-
tem in the fields of biology and chemistry is Virtuoso 
[17]. It is used, for example, by UniProt, Rhea, neXtProt, 
DisGeNET and others. The representation of other RDF 
database systems is significantly smaller. The Wikidata 
project employs the Blazegraph database system [18]. 
BETA [19] (a benchmark for computational drug-tar-
get prediction) uses the GraphDB database system [20] 
for its analysis. GlycoStore [21] (a database of retention 
properties for glycan analysis) and BioCarian [22] (a 
search engine for exploratory searches in heterogene-
ous biological databases) utilise the RDF database system 
included in the Jena framework [23].

Virtuoso can also operate as a relational-database sys-
tem and has an extensive support for RDB-to-RDF map-
pings, which it calls RDF Linked Data View [24]. Another 
system supporting RDB-to-RDF mappings is Ontop [25]. 
The main advantage of this system is its support for mul-
tiple relational-database systems. In this work, Ontop is 
specifically tested in connection with two of the most 
popular opensource relational-database systems - Post-
greSQL and MariaDB (a community-developed fork of 
MySQL). Unfortunately, the disadvantage of this system 
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is that it does not support all SPARQL features. The last 
RDB-to-RDF mapping system used in this review is the 
IDSM SPARQL engine, developed by our group [26]. It is 
based on PostgreSQL and supports all SPARQL features.

Details of the used versions of the selected systems are 
provided in Additional file 1.

The selection and preparation of a benchmark database
For the comparison of different approaches of accessing 
data using SPARQL, we selected the neXtProt human 
protein database (2021-11-19 release) as a benchmark 
database. This database is very suitable for our purposes 
as it has sufficient size (about 1.8 billion triples) and com-
plexity (more than 200 distinct predicates). Moreover, 
there is a set of real-life SPARQL query examples that 
can be evaluated against the database. This database is 
publicly available in the RDF form, but not in the form 
of a relational database. For this reason, if an RDB-to-
RDF mapping system is to be used, the database has to be 
transformed into the relational-database form.

During the transformation, we follow a few general 
guidelines. Entities stored in the neXtProt database can 
be naturally divided into several entity types (e.g. gene, 
isoform, annotation, evidence, etc.). For each entity type, 
a dedicated base table is created. Instances (i.e. individual 
entities) of an entity type are represented by rows of the 
corresponding base table - each entity is represented by 
exactly one row. Each base table contains the primary 
key column storing entity identifiers that are unique for 
the given entity type. If no entity of a particular type has 
more than one value of a property, then values of the 
property can be stored directly in the corresponding 
base table in a dedicated column. Otherwise, a dedicated 
property table is created for the given property. This table 
contains a foreign-key column referencing entities in the 
corresponding base table and a column storing appro-
priate property values. It should also be noted that if all 
instances of an entity type have a property with the same 
values, these values do not need to be stored directly in 
the created relational database.

In neXtProt, entities use the following schema of their 
IRIs in general:

http://nextprot.org/rdf/type/identifier
For a given entity, the identifier part of its IRI can be 

used directly as an identifier of the entity in the relevant 
base table and in property tables. The relational data-
base created using this method of entity identification is 
referred to as the database with direct identifiers.

Most of the neXtProt entity types use string identifiers 
to identify entities, which is relatively space consuming; 
in addition, relational-database indexes and joins over 
string types are not as effective as over integer types. For 

this reason, we have also created a version that uses inte-
ger values to identify all entities.

If an entity uses a string identifier in its IRI, an artificial 
integer identifier is created and used in all places in the 
database instead of the original one. To preserve all infor-
mation, the original value of the identifier is stored in a 
dedicated column of the relevant base table. This variant 
of a relational database is referred to as the database with 
indirect identifiers.

These variants are only general concepts. The par-
ticular form of the relational-database schema depends 
on the relational-database system and the RDB-to-RDF 
mapping system used. For instance, PostgreSQL sup-
ports the single-byte BOOLEAN type, which can be used 
to store xsd:boolean values from the RDF database. 
MariaDB uses the single-byte integer type for the same 
purpose. On the other hand, Virtuoso has no single-byte 
type that can be used for this, as a result of which it is 
necessary to use a multibyte integer type.

Other differences arise from the differences between 
RDB-to-RDF mapping systems. The neXtProt database 
uses xsd:integer values. For mapping this datatype, 
the Ontop uses the 8-byte integer type. However, the 
xsd:integer datatype should represent the infinite set 
of all integer values. For this reason, the IDSM SPARQL 
engine uses the variable-length numeric type, which is 
infinite as well.

To make the selected database more suitable for our 
purposes, we have slightly modified it. We have corrected 
the original data files to make them more standard-com-
pliant to achieve the maximum possible compatibility 
with all RDF database systems. Moreover, in order to 
improve the results of the transformation, we have added 
several triples that we considered to be missing. We have 
reported the missing of these triples to neXtProt main-
tainers as a issue. We have considered it better to fix 
these inconsistencies in the database used than to try to 
capture the same inconsistencies in RDB-to-RDF map-
ping systems.

RDB‑to‑RDF mapping approaches
A way in which a specific relational database is mapped 
to an RDF database mostly depends on the schema of 
the source relational database, on the ontology of the 
target RDF database and on the features of the RDB-to-
RDF mapping system used for the mapping. Since the 
prepared relational databases are created based on the 
original neXtProt RDF database, RDB-to-RDF map-
pings from them back to the original RDF form are rela-
tively straightforward and reflect the ways in which the 
relational-database tables are created from RDF data. 
The main differences in our RDB-to-RDF mapping 
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approaches arise from the ways in which the SQL values 
are translated into RDF terms.

For each entity type occurring in neXtProt, it is neces-
sary to define a term mapping between the SQL values 
that identify the entities in the relational database and the 
IRIs that identify the corresponding entities in the RDF 
database. The following descriptions focus mainly on 
entities that do not use numeric identifiers in their IRIs.

If the database with direct identifiers is used, these 
term mappings can be simply defined as templates in 
which specific parts are replaced by SQL values. In our 
case, SQL values are concatenated with entity type-spe-
cific prefixes. We have named the resulting RDB-to-RDF 
mapping the string approach because both the relational 
database and the RDB-to-RDF mapping use string values 
to identify the entities.

In the case of the database with indirect identifiers, the 
term mappings for entity types using artificial identifi-
ers requires a more complex approach, because artificial 
integer identifiers cannot be mapped to appropriate IRIs 
by using simple templates. In this case, a term mapping is 
specified by a couple of SQL functions, the first of which 
maps SQL values to IRIs and the other maps IRIs back on 
SQL values. We named the resulting RDB-to-RDF map-
ping the integer approach because both the relational 
database and the RDB-to-RDF mapping use integer val-
ues to identify the entities.

However, some RDB-to-RDF mapping systems have 
very limited possibilities to define term mappings. At its 
most basic, such a system supports only the template-
based approach. In this case, it is still possible to use 
the database with indirect identifiers if the RDB-to-RDF 
mapping system supports the specification of triple-
mapping source tables as results of complex SQL queries. 
In this approach, the source tables used in the previous 
approach are joined (where necessary) by foreign keys 
with the required base tables to convert artificial identi-
fiers into the original ones. Subsequently, these SQL que-
ries are used as source tables in triple mappings, which 
can then use the template-based term mappings again. 
We have named the resulting RDB-to-RDF mapping the 
combined approach because the relational database and 
the RDB-to-RDF mapping use different types to identify 
the entities. The relational database utilises artificial inte-
gers to identify the entities, but the RDB-to-RDF map-
ping employs the original string identifiers.

Query set
The example queries available at the neXtProt SNORQL 
page (version as of 1 April 2022) are used as a basis for 
the benchmark query set utilised in this review [27]. 
From this set, seven queries using the service statements 
have been removed as unsuitable for our benchmarking 

because specific portions of these SPARQL queries have 
to be invoked against external SPARQL servers. Several 
queries that use some non-standard features have been 
modified. We have also modified queries that utilise 
SPARQL features not supported by Ontop.

Finally, we have checked whether all methods return 
correct results. Unfortunately, we have encountered 
many cases where a system returns incorrect results or 
even crashes. Most of the discovered issues were related 
to Virtuoso operating as an RDB-to-RDF mapping sys-
tem. Most issues have been reported (see Additional 
file 1), and some of them had already been fixed before 
the final measurement was performed. For others, we 
try to find workarounds. The workarounds are typically 
based on modifications of SPARQL queries specifically 
for the methods affected. Unfortunately, despite our best 
efforts, one query (NXQ_00058) had to be removed from 
the query set because it causes crashes of Virtuoso in 
some scenarios and we had not found any workarounds 
to fix it.

As a result, the obtained query set contains 140 queries 
that are correctly evaluated by all the systems tested.

Benchmark setup
We benchmark all combinations of the selected RDB-
to-RDF mapping systems and all designed RDB-to-
RDF mapping approaches, with the only exception 
being Ontop using the integer approach, because the 
Ontop mapping language cannot express this map-
ping approach. Therefore, the testing is performed on a 
total of ten different combinations. For the best perfor-
mance possible, native mapping languages are used in 
all the RDB-to-RDF mapping systems tested. In addition 
to these systems, all the native RDF database  systems 
selected (i.e. Virtuoso, Blazegraph, GraphDB and Jena) 
are utilised in the benchmark as well. A total of 14 meth-
ods of accessing data via SPARQL are thus tested.

For the benchmarks, we use Debian GNU/Linux 11 
(Bullseye) running on AMD Ryzen 9 5900X with 64GB 
RAM and with Samsung 980 PRO 2TB SSD. In all vari-
ants, we try to tune the database systems to maximise the 
utilisation of the hardware used, mainly setting them to 
take advantage of all the memory.

PostgreSQL and Virtuoso have the support for parallel 
queries, which means that they allow multiple cores to be 
used simultaneously to evaluate a single query. Methods 
using these systems are tested twice - with the support 
disabled and with the support enabled.

For each method tested, the queries are evaluated one 
at a time. To minimise the effect of I/O operations, each 
query is evaluated twice and only the evaluation times of 
the second run are used.
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All relevant sources that are used to set the benchmark 
are available in the repository accessible online.

Results and discussion
Before discussing the performance of the methods in real 
operation, we briefly compare the RDB-to-RDF mapping 
approaches from the theoretical point of view.

In the combined approach, up to three tables are joined 
in one triple mapping. This may seem to be highly subop-
timal compared to the other approaches, which employ 
only one table in each triple mapping. However, an RDB-
to-RDF mapping system typically has a wide range of 
different optimisations, so many of these joins can be 
eliminated. We demonstrate this on several SPARQL-to-
SQL translations generated by a hypothetical RDB-to-
RDF mapping system.

Allow us to consider only a small part of the neXt-
Prot RDF database. The :activeSite property con-
nects isoforms with annotations of active sites. In a 
relational database, these data are stored in table iso-
form_active_sites. Similarly, the :evidence 
property connects annotations with their evidences, and 
it is stored in table annotation_evidences. If the 
string approach is used for the RDB-to-RDF mapping, 
these tables directly contain parts of IRIs identifying the 
given entities (i.e. the database with direct identifiers is 
used). The corresponding relational-database schema is 
depicted in Fig.  1a. If the integer approach or the com-
bined approach is used, the tables contain only artificial 
identifiers. To translate these artificial identifiers to iden-
tifiers used as parts of IRIs, the tables isoform_bases, 
annotation_bases and evidence_bases are used 
(i.e. the database with indirect identifiers is used). The 
corresponding relational-database schema is shown in 
Fig. 1b.

Now, we assume a simple SPARQL query selecting 
active-site annotations of a specific isoform (see Fig. 2a). 
If the string approach is used, the produced SQL code is 
very simple (Fig. 2b). In the case of the integer approach, 
the SQL code is also relatively simple, but SQL functions 
have to be used for term mappings (Fig. 2c). In the exam-
ple, these functions translating artificial identifiers into 
IRIs (and back) are expressed as SQL subqueries. If the 
combined approach is used, the IRIs templates are uti-
lised in the same way as in the string approach. However, 
three tables have to be joined in that case (Fig. 2d).

Among these three translations of the SPARQL query, 
the string approach is probably optimal, as all the 
required data are already available in one table. The com-
bined approach may seem to be the worst in this case, 
but it is probably comparable to the integer approach. 
The two approaches generate SQL codes that have to use 

the same set of tables to obtain solutions. Depending on 
the relational-database system used, their executing plans 
can be very similar, especially if the nested-loop join 
strategy is used.

Fig. 1  Examples of relational-database schemas
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The situation is changed when a more complex query 
is used, which can be demonstrated on a SPARQL query 
selecting evidences of active-site annotations of a specific 
isoform (see Fig. 3a).

If the string approach or integer approach is used, the 
generated SQL codes need only one table join in both 
cases (Fig.  3b and c). Nevertheless, a join according to 
string values is not as effective as a join according to inte-
ger values in general. In this case, the string approach is 
probably still the best, but in the case of more complex 
patterns producing more table joins, the greater over-
head of string-based joins overcomes the overhead of the 
functions translating artificial identifiers.

The situation is different especially if the combined 
approach is used. If the generated SQL code is not 
optimised, it is necessary to join six tables in this case 
(Fig. 3d). This is extremely suboptimal. However, the sys-
tem can use some key-based optimisations. If a table is 
joined with itself according to its primary key column, 
this join can be eliminated. Similarly, if tables are joined 
according to a foreign key, the join can be eliminated in 
some cases as well. After these optimisations, the com-
bined approach thus produces the SQL code (Fig.  3e), 
which is evaluated similarly to the SQL code produced by 
the integer approach, as it is in the case of the previous 
SPARQL query.

Database sizes
Although this is not our primary goal, we measure the 
spaces required to store the data by the individual data-
base systems. We do not focus directly on the maximum 
reduction of the necessary space. However, disk I/O 
operations have a great impact on query performance. 
Therefore, we try to keep the sizes within reasonable 
limits.

The size of a database is mainly affected by its stor-
age format. For example, the PostgreSQL database sys-
tem typically uses a 23-byte row header. In an indirectly 
referenced database, two integer values having 8 bytes 
in total are stored in each row of a property table. This 
means that these 8-byte data are stored in 31-byte rows, 
which represents a significant overhead in this case.

Nevertheless, the total size may be affected by many 
settings and various tricks, especially in the case of 
relational-database systems. In relational databases, we 
index all columns (except for two long text columns). 
The fine-tuning of the selection of the columns to be 
indexed can dramatically reduce size. MariaDB has 
many possibilities to select a store engine and its row 
format. It can have a great influence on the database 
size as well. Nevertheless, we keep the default settings 
here. In Jena and Blazegraph, disabling quad indexes 
reduces the space requirements by approximately half.

The sizes of loaded and indexed databases are 
expressed in Table 1. Due to the differences in individ-
ual systems, the sizes are measured only very roughly, 

Fig. 2  Example of translations of a simple SPARQL query
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yet sufficiently for a basic comparison. Regardless of the 
relational-database system used, the size of a database 
with indirect identifiers is significantly smaller than 
the size of the corresponding database with direct ref-
erences. Without the need for special tuning, the Vir-
tuoso RDF database is clearly the smallest. Other RDF 
databases are overcome by relational databases with 
indirect identifiers. Jena is even surpassed by relational 
databases with direct identifiers. Overall, in terms of 
space requirements, it has thus been proved that the 

relational-database systems used by RDB-to-RDF map-
ping systems are competitive with native RDF database 
systems in general.

Possible sources of bias
Before focusing on the discussion of the performance 
of the individual methods, it is very important to draw 
attention to possible sources of bias. Since the neXtProt 
server from which the query set has been obtained uses 
Virtuoso, it is to be expected that the query set contains 

Fig. 3  Example of translations of a more complex SPARQL query
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only queries that can be evaluated correctly and in a 
reasonable time by Virtuoso if it is used as a native RDF 
database system.

Other possible sources of bias are related to method 
settings. Although we have tried to configure all the 
tested methods for the greatest possible performance, 
it is important to note that our experience with indi-
vidual methods is very diverse. We have many years of 
experience running Virtuoso. As authors of the IDSM 

SPARQL engine, we have deep knowledge of tuning 
this system. Since the IDSM SPARQL engine is based 
on PostgreSQL, we also have more experience tuning 
PostgreSQL than MariaDB.

Query performance
The evaluation time of individual queries varies greatly, 
and some queries are not even completed within the rea-
sonable time limit at all. For this reason, it does not make 
sense to compare individual methods based on their 
average query times. Instead, we use the same method 
as in our previous work [28]. The query-evaluation times 
obtained by each of the methods are transformed into 
plots (Figs.  4, 5 , 6 and  7), where, in each of the plots, 
the x-axis represents a query-evaluation time limit and 
the y-axis represents the percentage of the queries not 
completed within the limit (i.e. the percentage of the que-
ries with query-evaluation times exceeding the limit). It 
is worth mentioning that it is not necessary to run mul-
tiple measurements with different query time limits. All 
the required values can be derived from a single meas-
urement with a sufficiently large limit. This makes it 
possible to present the results as continuous plots. It is 

Table 1  The sizes of loaded and indexed databases

Database system Database size (in GB)

Directly 
referenced

Indirectly 
referenced

Native RDF

PostgreSQL for IDSM 
SPARQL engine

123 84 –

PostgreSQL for Ontop 119 80 –

MariaDB for Ontop 117 85 –

Virtuoso 138 96 27

GraphDB – – 101

Blazegraph – – 106

Jena using TDB2 – – 239

Table 2  Method performance

Method Queries not completed within the time limit (%)

System Approach Parallel 0.1 s 1 s 10 s 100 s 1000 s

Ontop/MariaDB String No 63.57 33.57 19.29 11.43 4.29

Ontop/MariaDB Combined No 62.14 32.14 18.57 7.86 0.71

Ontop/PostgreSQL String No 69.29 42.14 21.43 10.71 2.86

Ontop/PostgreSQL Combined No 65.71 35.71 22.86 11.43 4.29

Ontop/PostgreSQL String Yes 70.00 36.43 14.29 5.71 1.43

Ontop/PostgreSQL Combined Yes 67.86 32.86 16.43 7.14 2.86

IDSM SPARQL engine String No 64.29 31.43 15.00 5.71 2.14

IDSM SPARQL engine Combined No 64.29 30.71 17.14 4.29 2.14

IDSM SPARQL engine Integer No 59.29 30.71 12.86 4.29 2.86

IDSM SPARQL engine String Yes 64.29 27.14 11.43 3.57 1.43

IDSM SPARQL engine Combined Yes 64.29 28.57 13.57 3.57 2.14

IDSM SPARQL engine Integer Yes 57.14 25.00 11.43 3.57 2.14

Virtuoso String No 57.86 34.29 16.43 5.71 1.43

Virtuoso Combined No 65.71 35.00 15.71 8.57 3.57

Virtuoso Integer No 50.71 23.57 10.71 2.14 1.43

Virtuoso Native No 35.00 17.14 6.43 2.14 0.71

Virtuoso String Yes 55.00 33.57 14.29 2.86 0.71

Virtuoso Combined Yes 62.86 34.29 14.29 5.71 2.86

Virtuoso Integer Yes 48.57 23.57 9.29 2.86 1.43

Virtuoso Native Yes 34.29 15.71 6.43 1.43 0.71

Blazegraph Native No 65.00 36.43 20.71 11.43 6.43

GraphDB Native No 65.00 40.00 27.14 5.00 2.86

Jena TDB2 Native No 83.57 46.43 38.57 16.43 4.29
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also important to note that if a method is better than the 
other tested methods for all query-evaluation limits, it 
does not imply that all queries are evaluated more quickly 
by the method than by the others.

When comparing the performance of the methods 
tested, we mainly focus on the values corresponding to 
limits exceeding 0.1 s, because anything below this value 
is probably not very distinguishable by users, especially 
in  situations where the internet-communication over-
head must also be taken into account. For a better com-
parison, the derived values of all the methods for the time 
limits of 0.1, 1, 10, 100 and 1000  s are summarised in 
Table 2.

Query performance in the non‑parallel query mode
As shown by the measurements of query-evaluation 
times obtained for methods in the non-parallel query 
mode (see Fig.  4), Virtuoso when operated as a native 
RDF database system is clearly the best method. Among 
the RDB-to-RDF mapping systems, Virtuoso using the 
integer approach outperforms the other RDB-to-RDF 
mapping systems and even all the other native RDF data-
base systems (except for Virtuoso itself ). Taken from 
the other side, the Jena method is outperformed by all 

methods. The performance of the other methods is much 
closer to each other. Overall, RDB-to-RDF mapping sys-
tems can be competitive with native RDF database sys-
tems in general.

The effect of parallelism
Enabling parallel-query support has a good impact on 
query-evaluation times in general (Fig. 5). This impact is 
relatively low in the case of Virtuoso, because Virtuoso 
uses multiple threads mainly in the parallel computation 
of hash indexes. In contrast, PostgreSQL makes it pos-
sible to split a query-execution plan between multiple 
worker processes, where every worker process executes a 
parallel portion of the plan. As demonstrated by the eval-
uation times measured, this approach makes it possible 
to achieve much more significant speedup.

Ontop: PostgreSQL vs. MariaDB
Ontop achieves good performance with both relational-
database systems tested (Fig. 6). It follows from the meas-
ured evaluation times that it has better performance in 
combination with MariaDB, especially if the combined 
approach is used. Since Ontop generates essentially iden-
tical SQL queries for both systems, the main differences 

Fig. 4  The performance of the methods in the non-parallel query mode



Page 11 of 14Galgonek and Vondrášek ﻿Journal of Cheminformatics           (2023) 15:61 	

in the times measured are probably caused by differences 
in the ways that these relational-database systems use to 
evaluate the SQL queries.

A comparison of RDB‑to‑RDF mapping approaches
The measured data can be used to infer general per-
formance characteristics of the RDB-to-RDF mapping 
approaches (Fig. 7). In general, the integer approach has 
better performance than the string approach on the same 
RDB-to-RDF mapping system. The performance of the 
combined approach is comparable with the performance 
of the string approach in the cases of the IDSM SPARQL 

engine and Ontop/PostgreSQL, or even slightly better in 
the case of Ontop/MariaDB. In Virtuoso, the combined 
approach is outperformed by the other two approaches. 
However, it is probably a consequence of the fact that 
Virtuoso does not perform all the join optimisations 
described above. In general, the integer approach seems 
to be the best choice. If an RDB-to-RDF mapping system 
does not allow the use of this approach, then the com-
bined approach seems to be a good choice, because its 
performance is comparable to the string approach, but its 
storage requirements are lower.

Fig. 5  The effect of parallelism. For each method, the red line represents the values measured when the parallel-query support is enabled, the blue 
line when it is disabled
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Fig. 6  Ontop and the effect of the relational-database system used. For each RDB-to-RDF mapping approach used by Ontop, the red and blue lines 
represent the values measured for Ontop in combinations with PostgreSQL and MariaDB, respectively

Fig. 7  Comparisons of RDB-to-RDF mapping approaches. For each RDB-to-RDF mapping system, the red, green and blue lines represent the values 
measured for string, integer and combined approaches, respectively
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Conclusion
The review shows that RDB-to-RDF mapping systems 
can be useful for making the existing biological and 
chemical databases available via SPARQL. It demon-
strates that these systems have sufficient performance 
to evaluate complex queries in a non-trivially large life-
science database. Some of them have even outperformed 
some of native RDF database systems.

The best results have been achieved by Virtuoso. This 
database  system outperforms the other approaches 
regardless of whether it is used as a native RDF database 
system or as an RDB-to-RDF mapping system. Unfortu-
nately, while working with this system, we encountered 
the highest number of issues, especially when it was used 
as an RDB-to-RDF mapping system. We were able to 
find workarounds for most of these issues. Nevertheless, 
it would have been nearly impossible to identify these 
issues in many cases if we had not had the results of other 
methods, which we could use for comparison.

The performance of the other two tested RDB-to-RDF 
mapping systems is comparable. Ontop supports more 
relational-database systems, but, unfortunately, it does 
not support all features of the SPARQL language. In addi-
tion, it is more user-friendly, because it uses a simple and 
easy-to-use RDB-to-RDF mapping language to describe 
RDB-to-RDF mappings. The disadvantage of this lan-
guage, however, is that it is not as expressive as other lan-
guages, and it does not make it possible to express all the 
mapping approaches tested.

The IDSM SPARQL engine fully supports the SPARQL 
standard, but it is closely tied to PostgreSQL and can-
not be used with other relational-database systems. 
Currently, it does not use any RDB-to-RDF mapping 
language, and RDB-to-RDF mappings have to be con-
structed directly from the Java code. This is not very user-
friendly; on the other hand, it is a very flexible solution, 
because it allows users to extend the engine and thereby 
directly influence the SQL code produced.

The comparison of different approaches to RDB-to-
RDF mappings demonstrates that it is better to utilise 
approaches based on the use of artificial identifiers. 
In general, the performance of these approaches is 
typically better, and the database also has lower space 
requirements in such cases. Of course, in a real-life 
situation, a relational database is typically already 
created, and it is thus not directly tailored to a par-
ticular RDB-to-RDF mapping approach. However, 
relational databases themselves typically already use 
suitable identifiers to achieve good SQL-query per-
formance and low space requirements. Moreover, the 
comparison shows that to keep good performance, 
it is not necessary to utilise these identifiers directly 
as parts of constructed IRIs that are used to identify 

entities. Consequently, it is typically possible to design 
nice user-friendly IRIs without a significantly nega-
tive impact on performance. Therefore, when using 
such a real-life database, the performance of a created 
RDB-to-RDF mapping should be comparable with the 
approaches using relational databases with indirect 
identifiers.
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