
Galgonek and Vondrášek ﻿
Journal of Cheminformatics (2023) 15:61
https://doi.org/10.1186/s13321-023-00729-5

REVIEW Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Cheminformatics

A comparison of approaches to accessing
existing biological and chemical relational
databases via SPARQL
Jakub Galgonek1* and Jiří Vondrášek1 

Abstract 

Current biological and chemical research is increasingly dependent on the reusability of previously acquired data,
which typically come from various sources. Consequently, there is a growing need for database systems and data-
bases stored in them to be interoperable with each other. One of the possible solutions to address this issue is to use
systems based on Semantic Web technologies, namely on the Resource Description Framework (RDF) to express data
and on the SPARQL query language to retrieve the data. Many existing biological and chemical databases are stored
in the form of a relational database (RDB). Converting a relational database into the RDF form and storing it in a native
RDF database system may not be desirable in many cases. It may be necessary to preserve the original database form,
and having two versions of the same data may not be convenient. A solution may be to use a system mapping the
relational database to the RDF form. Such a system keeps data in their original relational form and translates incoming
SPARQL queries to equivalent SQL queries, which are evaluated by a relational-database system. This review compares
different RDB-to-RDF mapping systems with a primary focus on those that can be used free of charge. In addition, it
compares different approaches to expressing RDB-to-RDF mappings. The review shows that these systems represent
a viable method providing sufficient performance. Their real-life performance is demonstrated on data and queries
coming from the neXtProt project.

Keywords  Resource Description Framework, Relational database, RDB-to-RDF mapping, SPARQL

Introduction
Modern biological and chemical research generates a
massive and ever-increasing amount of data originat-
ing from various scientific experiments and measure-
ments. For their potential reuse in further research, these

data are stored in dedicated databases. A key feature of
any database (management) system1 is the ability to find
required data easily. However, this ability is no longer
sufficient in many cases. In many areas of research, it is
necessary to combine data from multiple databases. As a
result, there is a growing need for databases and database
systems to be interoperable with each other. This effort
has been supported, for example, by the introduction of

*Correspondence:
Jakub Galgonek
jakub.galgonek@uochb.cas.cz
1 Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo
náměstí 2, 166 10 Prague 6, Czech Republic

1  The term ‘database system’ is often abbreviated simply to ‘database’. In order
to prevent confusion, this abbreviation is never used in this text, and the term
‘database’ always refers to its original meaning, i.e. an organised collection of
related data.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-023-00729-5&domain=pdf

Page 2 of 14Galgonek and Vondrášek ﻿Journal of Cheminformatics (2023) 15:61

the FAIR data principles, which are intended as a guide-
line to enhance the reusability of data [1].

Many of medium-to-large-scale biological and chem-
ical databases (e.g. PubChem BioAssay [2], ChEMBL
[3], Rhea [4] and MolMeDB [5]) are internally stored
as relational databases. This approach makes it easy to
develop a dedicated server that presents the data and
supports data querying. Unfortunately, such a way is
usually not very interoperable, and it can be difficult
to combine the database with others or to query mul-
tiple databases uniformly. To address this gap, some of
the databases use Semantic Web technologies, mainly
including the Resource Description Framework (RDF)
to express their data in an interoperable format [6].
To increase interoperability even more, some of the
databases allow data querying by SPARQL, the query
language for RDF data [7]. Using these technologies
enables the databases to be integrated into the large
ecosystem of Semantic Web databases. Such biological
and chemical databases include, for example, the pro-
tein database UniProt [8], the reaction database Rhea
[9], the human-protein database neXtProt [10] and
the database of gene-disease associations DisGeNET
[11]. Biological and chemical data can also be retrieved
through SPARQL from Wikidata [12], where, for
instance, the natural product database LOTUS hosts its
data [13].

If a database is originally stored as a relational data-
base, there are two basic approaches to make this data-
base accessible through SPARQL. In the first one, the
data are exported to an RDF form and stored in a native
RDF database system supporting SPARQL querying.
The disadvantage of this approach is that either the data
are stored twice (and have to be kept synchronised), or
a full migration to the native RDF database system is
needed (and the original relational database is aban-
doned). The second approach is to keep the data in the
original form and use a system that enables mapping
the relational database (RDB) to the (virtual) RDF form.
This mapping is used by the system to translate incom-
ing SPARQL queries to equivalent SQL queries, which
can be evaluated on the original data by a relational-
database system.

Due to the principle on which they work, RDB-to-RDF
mapping systems cannot be considered a universal alter-
native to native RDF database systems. They are merely
suitable for certain specific databases for which efficient
RDB-to-RDF mappings can be written. Such databases
should use only limited sets of predicates as well as small
sets of entity classes with a systematic assignment of
identifiers to their instances. Another limitation is that
SPARQL queries submitted to such RDB-to-RDF map-
ping systems should only refer to fixed relations between

searched entities. Biological and chemical databases usu-
ally meet these conditions.

This review examines different currently used RDB-
to-RDF mapping systems and various approaches to the
design of RDB-to-RDF mappings. It compares them with
each other and with the native solutions. The compari-
son mainly focuses on their application in biological and
chemical databases. Our main inspiration for creating
this review was that we ourselves develop such an RDB-
to-RDF mapping system and we successfully use it to
make chemical data available.

In the following sections of this introduction, we briefly
describe the basic aspects of the technologies that are rel-
evant to understanding this review.

Resource Description Framework
RDF has been designed to provide a simple way to make
statements about entities, to which it refers as resources.
In the RDF data model [6, 14], data are expressed as tri-
ples in the form of subject-predicate-object. Each triple
expresses a simple statement about its subject, namely
that the subject has the property denoted by the predi-
cate and having the value of the object. Resources are ref-
erenced by Internationalised Resource Identifiers (IRIs),
which makes sure that the resource identifiers have a
global meaning. If the global identification of a resource
is not important, the resource can be anonymous and
represented by a so-called blank node. In such a case, the
resource identifier is database-local, and it is defined that
the resource cannot be present in any other database.
Predicates are also identified by IRIs. From the point
of view of RDF, they are resources as well. Therefore, it
is possible to make statements about them. The set of
predicates used by some database is typically fixed and
reflects the data ontologies used. Objects can be either
resources or constant values, called literals. Each literal
has its value and datatype. Datatypes are denoted by IRIs
and they are resources as well. IRIs, blank nodes and lit-
erals are collectively referred to as RDF terms.

Relational database
In contrast, in the relational-database model [15], data
are stored in the form of a set of named tables (relations),
where each of the tables consists of several named col-
umns (attributes). For each column, the type of the val-
ues stored in the column is specified. Such a set of tables
and their columns is typically fixed and dedicated for the
purpose of a specific database. Individual entries are then
stored as rows of the tables. There is no mandatory con-
cept for the description of entities and their identifica-
tions. For a given database, the existence of an entity of
a certain class is typically expressed by the existence of
a record in a table dedicated to this class of entities. One

Page 3 of 14Galgonek and Vondrášek ﻿Journal of Cheminformatics (2023) 15:61 	

of the table columns (called a primary key) is typically
intended to store the entity identifiers. For the identifica-
tion of entities, integer or string values are mostly used.
Unlike RDF, this identification has no global meaning; it
is only required that the identifiers be unique for all enti-
ties of a given class stored in the database. Other columns
of the table can be used to store various properties of
the entities. If necessary, it is possible to reference enti-
ties from another table by using their primary key values.
A column of the table containing these values is called a
foreign key.

RDB‑to‑RDF mapping
To map a relational database to an RDF database, two
closely related steps are required. First, it is necessary to
define term mappings between relational-database values
and RDF terms and then triple mappings between tables
and sets of RDF triples. Each triple mapping defines how
a triple is generated from a row of a given source table.
It specifies which term mappings and which values from
the table row are used to generate individual RDF terms
(i.e. subject, predicate and object) of the triple.

For the expression of mappings from relational data-
bases to RDF databases, RDB-to-RDF Mapping Lan-
guage (R2RML) has been introduced [16]. Although most
of current RDB-to-RDF mapping systems support this
standard mapping language, they typically also define
their own languages, which allow them to take full advan-
tage of their capabilities.

Querying mapped RDF data
Although a mapping of a relational database to an RDF
database can be imagined as a process of generating the
RDF database from data stored in the relational database,
the RDF database does not need to be explicitly material-
ised for SPARQL query evaluation. Instead, the mapping
is used to translate a SPARQL query into an equivalent
SQL query, which is evaluated against the original rela-
tional database.

The basic SPARQL language construct is a triple pat-
tern, which is like an RDF triple, but each of its parts may
be a variable. The triple pattern matches an RDF data
triple if the pattern variables can be replaced by RDF
terms for which the resulting triple is equivalent to the
RDF data triple. Triple-pattern matching against a que-
ried RDF database produces a solution sequence where
each solution maps the variables to the RDF terms for
which the resulting triple exists in the database. Further
SPARQL construction subsequently works with these
solution sequences.

A solution sequence can be represented as a table. The
semantics of the other SPARQL constructs is often close

to some of SQL constructs. Therefore, the key issue is
how to translate pattern matching into a SQL query. The
rest of the translation is then relatively straightforward.

The pattern matching against a native RDF database
goes through the database triples and checks whether
a triple can be matched by a given pattern. In contrast,
the pattern matching against a mapped (virtual) RDF
database goes through its triple mappings and checks
whether a triple mapping can generate triples that are
matched by the pattern. If it can, the triple mapping is
used to generate the appropriate part of the SQL query
that returns a solution sequence in the form of a table.

Methods
Database systems can be considered from different per-
spectives. It is possible, for example, to explore their
maintainability, extensibility, overall performance, data
loading time etc. This review largely focuses on com-
paring systems by their query performance in a real-life
database.

Selected database systems
The review has been performed on RDB-to-RDF map-
ping systems and native RDF database systems with a pri-
mary focus on those that are used in the fields of biology
and chemistry and are available free of charge. Although
there are many, mostly historical, approaches, we have
limited the selection to only systems that support the
current version of SPARQL (i.e. version 1.1) and are thus
applicable in the current Semantic Web environment.

The probably most widely utilised RDF database sys-
tem in the fields of biology and chemistry is Virtuoso
[17]. It is used, for example, by UniProt, Rhea, neXtProt,
DisGeNET and others. The representation of other RDF
database systems is significantly smaller. The Wikidata
project employs the Blazegraph database system [18].
BETA [19] (a benchmark for computational drug-tar-
get prediction) uses the GraphDB database system [20]
for its analysis. GlycoStore [21] (a database of retention
properties for glycan analysis) and BioCarian [22] (a
search engine for exploratory searches in heterogene-
ous biological databases) utilise the RDF database system
included in the Jena framework [23].

Virtuoso can also operate as a relational-database sys-
tem and has an extensive support for RDB-to-RDF map-
pings, which it calls RDF Linked Data View [24]. Another
system supporting RDB-to-RDF mappings is Ontop [25].
The main advantage of this system is its support for mul-
tiple relational-database systems. In this work, Ontop is
specifically tested in connection with two of the most
popular opensource relational-database systems - Post-
greSQL and MariaDB (a community-developed fork of
MySQL). Unfortunately, the disadvantage of this system

Page 4 of 14Galgonek and Vondrášek ﻿Journal of Cheminformatics (2023) 15:61

is that it does not support all SPARQL features. The last
RDB-to-RDF mapping system used in this review is the
IDSM SPARQL engine, developed by our group [26]. It is
based on PostgreSQL and supports all SPARQL features.

Details of the used versions of the selected systems are
provided in Additional file 1.

The selection and preparation of a benchmark database
For the comparison of different approaches of accessing
data using SPARQL, we selected the neXtProt human
protein database (2021-11-19 release) as a benchmark
database. This database is very suitable for our purposes
as it has sufficient size (about 1.8 billion triples) and com-
plexity (more than 200 distinct predicates). Moreover,
there is a set of real-life SPARQL query examples that
can be evaluated against the database. This database is
publicly available in the RDF form, but not in the form
of a relational database. For this reason, if an RDB-to-
RDF mapping system is to be used, the database has to be
transformed into the relational-database form.

During the transformation, we follow a few general
guidelines. Entities stored in the neXtProt database can
be naturally divided into several entity types (e.g. gene,
isoform, annotation, evidence, etc.). For each entity type,
a dedicated base table is created. Instances (i.e. individual
entities) of an entity type are represented by rows of the
corresponding base table - each entity is represented by
exactly one row. Each base table contains the primary
key column storing entity identifiers that are unique for
the given entity type. If no entity of a particular type has
more than one value of a property, then values of the
property can be stored directly in the corresponding
base table in a dedicated column. Otherwise, a dedicated
property table is created for the given property. This table
contains a foreign-key column referencing entities in the
corresponding base table and a column storing appro-
priate property values. It should also be noted that if all
instances of an entity type have a property with the same
values, these values do not need to be stored directly in
the created relational database.

In neXtProt, entities use the following schema of their
IRIs in general:

http://nextprot.org/rdf/type/identifier
For a given entity, the identifier part of its IRI can be

used directly as an identifier of the entity in the relevant
base table and in property tables. The relational data-
base created using this method of entity identification is
referred to as the database with direct identifiers.

Most of the neXtProt entity types use string identifiers
to identify entities, which is relatively space consuming;
in addition, relational-database indexes and joins over
string types are not as effective as over integer types. For

this reason, we have also created a version that uses inte-
ger values to identify all entities.

If an entity uses a string identifier in its IRI, an artificial
integer identifier is created and used in all places in the
database instead of the original one. To preserve all infor-
mation, the original value of the identifier is stored in a
dedicated column of the relevant base table. This variant
of a relational database is referred to as the database with
indirect identifiers.

These variants are only general concepts. The par-
ticular form of the relational-database schema depends
on the relational-database system and the RDB-to-RDF
mapping system used. For instance, PostgreSQL sup-
ports the single-byte BOOLEAN type, which can be used
to store xsd:boolean values from the RDF database.
MariaDB uses the single-byte integer type for the same
purpose. On the other hand, Virtuoso has no single-byte
type that can be used for this, as a result of which it is
necessary to use a multibyte integer type.

Other differences arise from the differences between
RDB-to-RDF mapping systems. The neXtProt database
uses xsd:integer values. For mapping this datatype,
the Ontop uses the 8-byte integer type. However, the
xsd:integer datatype should represent the infinite set
of all integer values. For this reason, the IDSM SPARQL
engine uses the variable-length numeric type, which is
infinite as well.

To make the selected database more suitable for our
purposes, we have slightly modified it. We have corrected
the original data files to make them more standard-com-
pliant to achieve the maximum possible compatibility
with all RDF database systems. Moreover, in order to
improve the results of the transformation, we have added
several triples that we considered to be missing. We have
reported the missing of these triples to neXtProt main-
tainers as a issue. We have considered it better to fix
these inconsistencies in the database used than to try to
capture the same inconsistencies in RDB-to-RDF map-
ping systems.

RDB‑to‑RDF mapping approaches
A way in which a specific relational database is mapped
to an RDF database mostly depends on the schema of
the source relational database, on the ontology of the
target RDF database and on the features of the RDB-to-
RDF mapping system used for the mapping. Since the
prepared relational databases are created based on the
original neXtProt RDF database, RDB-to-RDF map-
pings from them back to the original RDF form are rela-
tively straightforward and reflect the ways in which the
relational-database tables are created from RDF data.
The main differences in our RDB-to-RDF mapping

Page 5 of 14Galgonek and Vondrášek ﻿Journal of Cheminformatics (2023) 15:61 	

approaches arise from the ways in which the SQL values
are translated into RDF terms.

For each entity type occurring in neXtProt, it is neces-
sary to define a term mapping between the SQL values
that identify the entities in the relational database and the
IRIs that identify the corresponding entities in the RDF
database. The following descriptions focus mainly on
entities that do not use numeric identifiers in their IRIs.

If the database with direct identifiers is used, these
term mappings can be simply defined as templates in
which specific parts are replaced by SQL values. In our
case, SQL values are concatenated with entity type-spe-
cific prefixes. We have named the resulting RDB-to-RDF
mapping the string approach because both the relational
database and the RDB-to-RDF mapping use string values
to identify the entities.

In the case of the database with indirect identifiers, the
term mappings for entity types using artificial identifi-
ers requires a more complex approach, because artificial
integer identifiers cannot be mapped to appropriate IRIs
by using simple templates. In this case, a term mapping is
specified by a couple of SQL functions, the first of which
maps SQL values to IRIs and the other maps IRIs back on
SQL values. We named the resulting RDB-to-RDF map-
ping the integer approach because both the relational
database and the RDB-to-RDF mapping use integer val-
ues to identify the entities.

However, some RDB-to-RDF mapping systems have
very limited possibilities to define term mappings. At its
most basic, such a system supports only the template-
based approach. In this case, it is still possible to use
the database with indirect identifiers if the RDB-to-RDF
mapping system supports the specification of triple-
mapping source tables as results of complex SQL queries.
In this approach, the source tables used in the previous
approach are joined (where necessary) by foreign keys
with the required base tables to convert artificial identi-
fiers into the original ones. Subsequently, these SQL que-
ries are used as source tables in triple mappings, which
can then use the template-based term mappings again.
We have named the resulting RDB-to-RDF mapping the
combined approach because the relational database and
the RDB-to-RDF mapping use different types to identify
the entities. The relational database utilises artificial inte-
gers to identify the entities, but the RDB-to-RDF map-
ping employs the original string identifiers.

Query set
The example queries available at the neXtProt SNORQL
page (version as of 1 April 2022) are used as a basis for
the benchmark query set utilised in this review [27].
From this set, seven queries using the service statements
have been removed as unsuitable for our benchmarking

because specific portions of these SPARQL queries have
to be invoked against external SPARQL servers. Several
queries that use some non-standard features have been
modified. We have also modified queries that utilise
SPARQL features not supported by Ontop.

Finally, we have checked whether all methods return
correct results. Unfortunately, we have encountered
many cases where a system returns incorrect results or
even crashes. Most of the discovered issues were related
to Virtuoso operating as an RDB-to-RDF mapping sys-
tem. Most issues have been reported (see Additional
file 1), and some of them had already been fixed before
the final measurement was performed. For others, we
try to find workarounds. The workarounds are typically
based on modifications of SPARQL queries specifically
for the methods affected. Unfortunately, despite our best
efforts, one query (NXQ_00058) had to be removed from
the query set because it causes crashes of Virtuoso in
some scenarios and we had not found any workarounds
to fix it.

As a result, the obtained query set contains 140 queries
that are correctly evaluated by all the systems tested.

Benchmark setup
We benchmark all combinations of the selected RDB-
to-RDF mapping systems and all designed RDB-to-
RDF mapping approaches, with the only exception
being Ontop using the integer approach, because the
Ontop mapping language cannot express this map-
ping approach. Therefore, the testing is performed on a
total of ten different combinations. For the best perfor-
mance possible, native mapping languages are used in
all the RDB-to-RDF mapping systems tested. In addition
to these systems, all the native RDF database systems
selected (i.e. Virtuoso, Blazegraph, GraphDB and Jena)
are utilised in the benchmark as well. A total of 14 meth-
ods of accessing data via SPARQL are thus tested.

For the benchmarks, we use Debian GNU/Linux 11
(Bullseye) running on AMD Ryzen 9 5900X with 64GB
RAM and with Samsung 980 PRO 2TB SSD. In all vari-
ants, we try to tune the database systems to maximise the
utilisation of the hardware used, mainly setting them to
take advantage of all the memory.

PostgreSQL and Virtuoso have the support for parallel
queries, which means that they allow multiple cores to be
used simultaneously to evaluate a single query. Methods
using these systems are tested twice - with the support
disabled and with the support enabled.

For each method tested, the queries are evaluated one
at a time. To minimise the effect of I/O operations, each
query is evaluated twice and only the evaluation times of
the second run are used.

Page 6 of 14Galgonek and Vondrášek ﻿Journal of Cheminformatics (2023) 15:61

All relevant sources that are used to set the benchmark
are available in the repository accessible online.

Results and discussion
Before discussing the performance of the methods in real
operation, we briefly compare the RDB-to-RDF mapping
approaches from the theoretical point of view.

In the combined approach, up to three tables are joined
in one triple mapping. This may seem to be highly subop-
timal compared to the other approaches, which employ
only one table in each triple mapping. However, an RDB-
to-RDF mapping system typically has a wide range of
different optimisations, so many of these joins can be
eliminated. We demonstrate this on several SPARQL-to-
SQL translations generated by a hypothetical RDB-to-
RDF mapping system.

Allow us to consider only a small part of the neXt-
Prot RDF database. The :activeSite property con-
nects isoforms with annotations of active sites. In a
relational database, these data are stored in table iso-
form_active_sites. Similarly, the :evidence
property connects annotations with their evidences, and
it is stored in table annotation_evidences. If the
string approach is used for the RDB-to-RDF mapping,
these tables directly contain parts of IRIs identifying the
given entities (i.e. the database with direct identifiers is
used). The corresponding relational-database schema is
depicted in Fig. 1a. If the integer approach or the com-
bined approach is used, the tables contain only artificial
identifiers. To translate these artificial identifiers to iden-
tifiers used as parts of IRIs, the tables isoform_bases,
annotation_bases and evidence_bases are used
(i.e. the database with indirect identifiers is used). The
corresponding relational-database schema is shown in
Fig. 1b.

Now, we assume a simple SPARQL query selecting
active-site annotations of a specific isoform (see Fig. 2a).
If the string approach is used, the produced SQL code is
very simple (Fig. 2b). In the case of the integer approach,
the SQL code is also relatively simple, but SQL functions
have to be used for term mappings (Fig. 2c). In the exam-
ple, these functions translating artificial identifiers into
IRIs (and back) are expressed as SQL subqueries. If the
combined approach is used, the IRIs templates are uti-
lised in the same way as in the string approach. However,
three tables have to be joined in that case (Fig. 2d).

Among these three translations of the SPARQL query,
the string approach is probably optimal, as all the
required data are already available in one table. The com-
bined approach may seem to be the worst in this case,
but it is probably comparable to the integer approach.
The two approaches generate SQL codes that have to use

the same set of tables to obtain solutions. Depending on
the relational-database system used, their executing plans
can be very similar, especially if the nested-loop join
strategy is used.

Fig. 1  Examples of relational-database schemas

Page 7 of 14Galgonek and Vondrášek ﻿Journal of Cheminformatics (2023) 15:61 	

The situation is changed when a more complex query
is used, which can be demonstrated on a SPARQL query
selecting evidences of active-site annotations of a specific
isoform (see Fig. 3a).

If the string approach or integer approach is used, the
generated SQL codes need only one table join in both
cases (Fig. 3b and c). Nevertheless, a join according to
string values is not as effective as a join according to inte-
ger values in general. In this case, the string approach is
probably still the best, but in the case of more complex
patterns producing more table joins, the greater over-
head of string-based joins overcomes the overhead of the
functions translating artificial identifiers.

The situation is different especially if the combined
approach is used. If the generated SQL code is not
optimised, it is necessary to join six tables in this case
(Fig. 3d). This is extremely suboptimal. However, the sys-
tem can use some key-based optimisations. If a table is
joined with itself according to its primary key column,
this join can be eliminated. Similarly, if tables are joined
according to a foreign key, the join can be eliminated in
some cases as well. After these optimisations, the com-
bined approach thus produces the SQL code (Fig. 3e),
which is evaluated similarly to the SQL code produced by
the integer approach, as it is in the case of the previous
SPARQL query.

Database sizes
Although this is not our primary goal, we measure the
spaces required to store the data by the individual data-
base systems. We do not focus directly on the maximum
reduction of the necessary space. However, disk I/O
operations have a great impact on query performance.
Therefore, we try to keep the sizes within reasonable
limits.

The size of a database is mainly affected by its stor-
age format. For example, the PostgreSQL database sys-
tem typically uses a 23-byte row header. In an indirectly
referenced database, two integer values having 8 bytes
in total are stored in each row of a property table. This
means that these 8-byte data are stored in 31-byte rows,
which represents a significant overhead in this case.

Nevertheless, the total size may be affected by many
settings and various tricks, especially in the case of
relational-database systems. In relational databases, we
index all columns (except for two long text columns).
The fine-tuning of the selection of the columns to be
indexed can dramatically reduce size. MariaDB has
many possibilities to select a store engine and its row
format. It can have a great influence on the database
size as well. Nevertheless, we keep the default settings
here. In Jena and Blazegraph, disabling quad indexes
reduces the space requirements by approximately half.

The sizes of loaded and indexed databases are
expressed in Table 1. Due to the differences in individ-
ual systems, the sizes are measured only very roughly,

Fig. 2  Example of translations of a simple SPARQL query

Page 8 of 14Galgonek and Vondrášek ﻿Journal of Cheminformatics (2023) 15:61

yet sufficiently for a basic comparison. Regardless of the
relational-database system used, the size of a database
with indirect identifiers is significantly smaller than
the size of the corresponding database with direct ref-
erences. Without the need for special tuning, the Vir-
tuoso RDF database is clearly the smallest. Other RDF
databases are overcome by relational databases with
indirect identifiers. Jena is even surpassed by relational
databases with direct identifiers. Overall, in terms of
space requirements, it has thus been proved that the

relational-database systems used by RDB-to-RDF map-
ping systems are competitive with native RDF database
systems in general.

Possible sources of bias
Before focusing on the discussion of the performance
of the individual methods, it is very important to draw
attention to possible sources of bias. Since the neXtProt
server from which the query set has been obtained uses
Virtuoso, it is to be expected that the query set contains

Fig. 3  Example of translations of a more complex SPARQL query

Page 9 of 14Galgonek and Vondrášek ﻿Journal of Cheminformatics (2023) 15:61 	

only queries that can be evaluated correctly and in a
reasonable time by Virtuoso if it is used as a native RDF
database system.

Other possible sources of bias are related to method
settings. Although we have tried to configure all the
tested methods for the greatest possible performance,
it is important to note that our experience with indi-
vidual methods is very diverse. We have many years of
experience running Virtuoso. As authors of the IDSM

SPARQL engine, we have deep knowledge of tuning
this system. Since the IDSM SPARQL engine is based
on PostgreSQL, we also have more experience tuning
PostgreSQL than MariaDB.

Query performance
The evaluation time of individual queries varies greatly,
and some queries are not even completed within the rea-
sonable time limit at all. For this reason, it does not make
sense to compare individual methods based on their
average query times. Instead, we use the same method
as in our previous work [28]. The query-evaluation times
obtained by each of the methods are transformed into
plots (Figs. 4, 5 , 6 and 7), where, in each of the plots,
the x-axis represents a query-evaluation time limit and
the y-axis represents the percentage of the queries not
completed within the limit (i.e. the percentage of the que-
ries with query-evaluation times exceeding the limit). It
is worth mentioning that it is not necessary to run mul-
tiple measurements with different query time limits. All
the required values can be derived from a single meas-
urement with a sufficiently large limit. This makes it
possible to present the results as continuous plots. It is

Table 1  The sizes of loaded and indexed databases

Database system Database size (in GB)

Directly
referenced

Indirectly
referenced

Native RDF

PostgreSQL for IDSM
SPARQL engine

123 84 –

PostgreSQL for Ontop 119 80 –

MariaDB for Ontop 117 85 –

Virtuoso 138 96 27

GraphDB – – 101

Blazegraph – – 106

Jena using TDB2 – – 239

Table 2  Method performance

Method Queries not completed within the time limit (%)

System Approach Parallel 0.1 s 1 s 10 s 100 s 1000 s

Ontop/MariaDB String No 63.57 33.57 19.29 11.43 4.29

Ontop/MariaDB Combined No 62.14 32.14 18.57 7.86 0.71

Ontop/PostgreSQL String No 69.29 42.14 21.43 10.71 2.86

Ontop/PostgreSQL Combined No 65.71 35.71 22.86 11.43 4.29

Ontop/PostgreSQL String Yes 70.00 36.43 14.29 5.71 1.43

Ontop/PostgreSQL Combined Yes 67.86 32.86 16.43 7.14 2.86

IDSM SPARQL engine String No 64.29 31.43 15.00 5.71 2.14

IDSM SPARQL engine Combined No 64.29 30.71 17.14 4.29 2.14

IDSM SPARQL engine Integer No 59.29 30.71 12.86 4.29 2.86

IDSM SPARQL engine String Yes 64.29 27.14 11.43 3.57 1.43

IDSM SPARQL engine Combined Yes 64.29 28.57 13.57 3.57 2.14

IDSM SPARQL engine Integer Yes 57.14 25.00 11.43 3.57 2.14

Virtuoso String No 57.86 34.29 16.43 5.71 1.43

Virtuoso Combined No 65.71 35.00 15.71 8.57 3.57

Virtuoso Integer No 50.71 23.57 10.71 2.14 1.43

Virtuoso Native No 35.00 17.14 6.43 2.14 0.71

Virtuoso String Yes 55.00 33.57 14.29 2.86 0.71

Virtuoso Combined Yes 62.86 34.29 14.29 5.71 2.86

Virtuoso Integer Yes 48.57 23.57 9.29 2.86 1.43

Virtuoso Native Yes 34.29 15.71 6.43 1.43 0.71

Blazegraph Native No 65.00 36.43 20.71 11.43 6.43

GraphDB Native No 65.00 40.00 27.14 5.00 2.86

Jena TDB2 Native No 83.57 46.43 38.57 16.43 4.29

Page 10 of 14Galgonek and Vondrášek ﻿Journal of Cheminformatics (2023) 15:61

also important to note that if a method is better than the
other tested methods for all query-evaluation limits, it
does not imply that all queries are evaluated more quickly
by the method than by the others.

When comparing the performance of the methods
tested, we mainly focus on the values corresponding to
limits exceeding 0.1 s, because anything below this value
is probably not very distinguishable by users, especially
in situations where the internet-communication over-
head must also be taken into account. For a better com-
parison, the derived values of all the methods for the time
limits of 0.1, 1, 10, 100 and 1000 s are summarised in
Table 2.

Query performance in the non‑parallel query mode
As shown by the measurements of query-evaluation
times obtained for methods in the non-parallel query
mode (see Fig. 4), Virtuoso when operated as a native
RDF database system is clearly the best method. Among
the RDB-to-RDF mapping systems, Virtuoso using the
integer approach outperforms the other RDB-to-RDF
mapping systems and even all the other native RDF data-
base systems (except for Virtuoso itself). Taken from
the other side, the Jena method is outperformed by all

methods. The performance of the other methods is much
closer to each other. Overall, RDB-to-RDF mapping sys-
tems can be competitive with native RDF database sys-
tems in general.

The effect of parallelism
Enabling parallel-query support has a good impact on
query-evaluation times in general (Fig. 5). This impact is
relatively low in the case of Virtuoso, because Virtuoso
uses multiple threads mainly in the parallel computation
of hash indexes. In contrast, PostgreSQL makes it pos-
sible to split a query-execution plan between multiple
worker processes, where every worker process executes a
parallel portion of the plan. As demonstrated by the eval-
uation times measured, this approach makes it possible
to achieve much more significant speedup.

Ontop: PostgreSQL vs. MariaDB
Ontop achieves good performance with both relational-
database systems tested (Fig. 6). It follows from the meas-
ured evaluation times that it has better performance in
combination with MariaDB, especially if the combined
approach is used. Since Ontop generates essentially iden-
tical SQL queries for both systems, the main differences

Fig. 4  The performance of the methods in the non-parallel query mode

Page 11 of 14Galgonek and Vondrášek ﻿Journal of Cheminformatics (2023) 15:61 	

in the times measured are probably caused by differences
in the ways that these relational-database systems use to
evaluate the SQL queries.

A comparison of RDB‑to‑RDF mapping approaches
The measured data can be used to infer general per-
formance characteristics of the RDB-to-RDF mapping
approaches (Fig. 7). In general, the integer approach has
better performance than the string approach on the same
RDB-to-RDF mapping system. The performance of the
combined approach is comparable with the performance
of the string approach in the cases of the IDSM SPARQL

engine and Ontop/PostgreSQL, or even slightly better in
the case of Ontop/MariaDB. In Virtuoso, the combined
approach is outperformed by the other two approaches.
However, it is probably a consequence of the fact that
Virtuoso does not perform all the join optimisations
described above. In general, the integer approach seems
to be the best choice. If an RDB-to-RDF mapping system
does not allow the use of this approach, then the com-
bined approach seems to be a good choice, because its
performance is comparable to the string approach, but its
storage requirements are lower.

Fig. 5  The effect of parallelism. For each method, the red line represents the values measured when the parallel-query support is enabled, the blue
line when it is disabled

Page 12 of 14Galgonek and Vondrášek ﻿Journal of Cheminformatics (2023) 15:61

Fig. 6  Ontop and the effect of the relational-database system used. For each RDB-to-RDF mapping approach used by Ontop, the red and blue lines
represent the values measured for Ontop in combinations with PostgreSQL and MariaDB, respectively

Fig. 7  Comparisons of RDB-to-RDF mapping approaches. For each RDB-to-RDF mapping system, the red, green and blue lines represent the values
measured for string, integer and combined approaches, respectively

Page 13 of 14Galgonek and Vondrášek ﻿Journal of Cheminformatics (2023) 15:61 	

Conclusion
The review shows that RDB-to-RDF mapping systems
can be useful for making the existing biological and
chemical databases available via SPARQL. It demon-
strates that these systems have sufficient performance
to evaluate complex queries in a non-trivially large life-
science database. Some of them have even outperformed
some of native RDF database systems.

The best results have been achieved by Virtuoso. This
database system outperforms the other approaches
regardless of whether it is used as a native RDF database
system or as an RDB-to-RDF mapping system. Unfortu-
nately, while working with this system, we encountered
the highest number of issues, especially when it was used
as an RDB-to-RDF mapping system. We were able to
find workarounds for most of these issues. Nevertheless,
it would have been nearly impossible to identify these
issues in many cases if we had not had the results of other
methods, which we could use for comparison.

The performance of the other two tested RDB-to-RDF
mapping systems is comparable. Ontop supports more
relational-database systems, but, unfortunately, it does
not support all features of the SPARQL language. In addi-
tion, it is more user-friendly, because it uses a simple and
easy-to-use RDB-to-RDF mapping language to describe
RDB-to-RDF mappings. The disadvantage of this lan-
guage, however, is that it is not as expressive as other lan-
guages, and it does not make it possible to express all the
mapping approaches tested.

The IDSM SPARQL engine fully supports the SPARQL
standard, but it is closely tied to PostgreSQL and can-
not be used with other relational-database systems.
Currently, it does not use any RDB-to-RDF mapping
language, and RDB-to-RDF mappings have to be con-
structed directly from the Java code. This is not very user-
friendly; on the other hand, it is a very flexible solution,
because it allows users to extend the engine and thereby
directly influence the SQL code produced.

The comparison of different approaches to RDB-to-
RDF mappings demonstrates that it is better to utilise
approaches based on the use of artificial identifiers.
In general, the performance of these approaches is
typically better, and the database also has lower space
requirements in such cases. Of course, in a real-life
situation, a relational database is typically already
created, and it is thus not directly tailored to a par-
ticular RDB-to-RDF mapping approach. However,
relational databases themselves typically already use
suitable identifiers to achieve good SQL-query per-
formance and low space requirements. Moreover, the
comparison shows that to keep good performance,
it is not necessary to utilise these identifiers directly
as parts of constructed IRIs that are used to identify

entities. Consequently, it is typically possible to design
nice user-friendly IRIs without a significantly nega-
tive impact on performance. Therefore, when using
such a real-life database, the performance of a created
RDB-to-RDF mapping should be comparable with the
approaches using relational databases with indirect
identifiers.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13321-​023-​00729-5.

Additional file 1: Details of the used versions of the selected systems.

Acknowledgements
This work was supported by the ELIXIR CZ research infrastructure project
(MEYS Grant No: LM2018131), including access to computing and storage
facilities.

Author contributions
JG and JV have designed the study. JG has implemented the RDB-to-RDF
mappings and the software to compare the methods tested. JG has written
the manuscript. Both authors have participated in preparing the manuscript.
Both authors have read and approved the final manuscript.

Funding
This project was supported by ELIXIR CZ (MEYS), Grant No. LM2018131.
Funding for open access publication was provided by the Institute of Organic
Chemistry and Biochemistry of the CAS, Project No. RVO:61388963.

Availability of data and materials
The benchmark database used for the comparison is openly available on
Zenodo (https://​doi.​org/​10.​5281/​zenodo.​70711​35). Other resources used for
the comparison are available in the GitHub repository (https://​github.​com/​
galgo​nek/​r2rms-​review).

Declarations

Competing interests
The authors declare that they have no competing interests except that they
develop the IDSM SPARQL engine, one of the RDB-to-RDF mapping systems
compared in the review.

Received: 15 September 2022 Accepted: 30 May 2023

References
	1.	 Wilkinson MD et al (2016) The FAIR Guiding Principles for scientific data

management and stewardship. Sci Data 3:160018
	2.	 Wang Y et al (2014) PubChem BioAssay: 2014 update. Nucleic Acids Res

42:D1075–D1082
	3.	 Mendez D et al (2019) ChEMBL: towards direct deposition of bioassay

data. Nucleic Acids Res 47:D930–D940
	4.	 Alcantara R et al (2012) Rhea—a manually curated resource of biochemi-

cal reactions. Nucleic Acids Res 40:D754–D760
	5.	 Juracka J, Srejber M, Melikova M, Bazgier V, Berka K (2019) MolMeDB:

molecules on membranes database. Database 2019:baz078
	6.	 W3C (2014) RDF 1.1 primer . https://​www.​w3.​org/​TR/​rdf11-​primer/.

Accessed 15 Sep 2022
	7.	 W3C (2013) SPARQL 1.1 query language . https://​www.​w3.​org/​TR/​sparq​

l11-​query/. Accessed 15 Sep 2022

https://doi.org/10.1186/s13321-023-00729-5
https://doi.org/10.1186/s13321-023-00729-5
https://doi.org/10.5281/zenodo.7071135
https://github.com/galgonek/r2rms-review
https://github.com/galgonek/r2rms-review
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

Page 14 of 14Galgonek and Vondrášek ﻿Journal of Cheminformatics (2023) 15:61

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	8.	 UniProt C (2021) UniProt: the universal protein knowledgebase in 2021.
Nucleic Acids Res 49:D480–D489

	9.	 Bansal P et al (2022) Rhea, the reaction knowledgebase in 2022.
Nucleic Acids Res 50:D693–D700

	10.	 Zahn-Zabal M et al (2020) The neXtProt knowledgebase in 2020: data,
tools and usability improvements. Nucleic Acids Res 48:D328–D334

	11.	 Pinero J et al (2020) The DisGeNET knowledge platform for disease
genomics: 2019 update. Nucleic Acids Res 48:D845–D855

	12.	 Wikidata. https://​www.​wikid​ata.​org. Accessed 15 Sep 2022
	13.	 Rutz A et al (2022) The LOTUS initiative for open knowledge manage-

ment in natural products research. Elife 11:e70780
	14.	 W3C (2014) RDF 1.1 concepts and abstract syntax . https://​www.​w3.​

org/​TR/​rdf11-​conce​pts/. Accessed 15 Sep 2022
	15.	 Codd EF (1970) A relational model of data for large shared data banks.

Commun ACM 13:377–387. https://​doi.​org/​10.​1145/​362384.​362685
	16.	 W3C (2012) R2RML: RDB to RDF mapping language . https://​www.​w3.​

org/​TR/​r2rml/. Accessed 15 Sep 2022
	17.	 OpenLink Software: Virtuoso. https://​virtu​oso.​openl​inksw.​com. Accessed

15 Sep 2022
	18.	 Blazegraph. https://​blaze​graph.​com. Accessed 15 Sep 2022
	19.	 Zong N et al (2022) BETA: a comprehensive benchmark for computa-

tional drug-target prediction. Brief Bioinform. https://​doi.​org/​10.​1093/​
bib/​bbac1​99

	20.	 Ontotext GraphDB. https://​graph​db.​ontot​ext.​com. Accessed 15 Sep 2022
	21.	 Zhao S et al (2018) GlycoStore: a database of retention properties for

glycan analysis. Bioinformatics 34:3231–3232
	22.	 Zaki N, Tennakoon C (2017) BioCarian: search engine for exploratory

searches in heterogeneous biological databases. BMC Bioinf 18:435
	23.	 Apache Jena. https://​jena.​apache.​org. Accessed 15 Sep 2022
	24.	 Linked data views over RDBMS data source. http://​docs.​openl​inksw.​com/​

virtu​oso/​rdfvi​ewsrd​bms/. Accessed 15 Sep 2022
	25.	 Ontop. https://​ontop-​vkg.​org. Accessed 15 Sep 2022
	26.	 Galgonek J, Vondrasek J (2021) IDSM ChemWebRDF: SPARQLing small-

molecule datasets. J Cheminform 13:38
	27.	 neXtProt SNORQL. https://​snorql.​nextp​rot.​org. Accessed 15 Sep 2022
	28.	 Kratochvil M, Vondrasek J, Galgonek J (2018) Sachem: a chemical car-

tridge for high-performance substructure search. J Cheminform 10:27

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.wikidata.org
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.1145/362384.362685
https://www.w3.org/TR/r2rml/
https://www.w3.org/TR/r2rml/
https://virtuoso.openlinksw.com
https://blazegraph.com
https://doi.org/10.1093/bib/bbac199
https://doi.org/10.1093/bib/bbac199
https://graphdb.ontotext.com
https://jena.apache.org
http://docs.openlinksw.com/virtuoso/rdfviewsrdbms/
http://docs.openlinksw.com/virtuoso/rdfviewsrdbms/
https://ontop-vkg.org
https://snorql.nextprot.org

	A comparison of approaches to accessing existing biological and chemical relational databases via SPARQL
	Abstract
	Introduction
	Resource Description Framework
	Relational database
	RDB-to-RDF mapping
	Querying mapped RDF data

	Methods
	Selected database systems
	The selection and preparation of a benchmark database
	RDB-to-RDF mapping approaches
	Query set
	Benchmark setup

	Results and discussion
	Database sizes
	Possible sources of bias
	Query performance
	Query performance in the non-parallel query mode
	The effect of parallelism
	Ontop: PostgreSQL vs. MariaDB
	A comparison of RDB-to-RDF mapping approaches

	Conclusion
	Anchor 23
	Acknowledgements
	References

