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Abstract 

Time-split cross-validation is broadly recognized as the gold standard for validating predictive models intended 
for use in medicinal chemistry projects. Unfortunately this type of data is not broadly available outside of large phar-
maceutical research organizations. Here we introduce the SIMPD (simulated medicinal chemistry project data) algo-
rithm to split public data sets into training and test sets that mimic the differences observed in real-world medicinal 
chemistry project data sets. SIMPD uses a multi-objective genetic algorithm with objectives derived from an exten-
sive analysis of the differences between early and late compounds in more than 130 lead-optimization projects run 
within the Novartis Institutes for BioMedical Research. Applying SIMPD to the real-world data sets produced training/
test splits which more accurately reflect the differences in properties and machine-learning performance observed 
for temporal splits than other standard approaches like random or neighbor splits. We applied the SIMPD algorithm 
to bioactivity data extracted from ChEMBL and created 99 public data sets which can be used for validating machine-
learning models intended for use in the setting of a medicinal chemistry project. The SIMPD code and simulated data 
sets are available under open-source/open-data licenses at github.com/rinikerlab/molecular_time_series.
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Introduction
Validating the performance of a new machine learn-
ing (ML) approach or descriptor requires a large collec-
tion of data sets which are reflective of the types of data 
the method will eventually be applied to. For methods 

intended for use in the context of medicinal chemistry 
projects, the gold standard for model validation is to use 
data from other medicinal chemistry projects and to split 
the data into training and test sets based on the order in 
which the compounds were actually made or tested. This 
approach, known as time-split cross-validation [1], tests 
models the way that they are intended to be used. Despite 
the name, the important factor here is not the time itself, 
but the ordering of the compounds into early (training) 
and late (test) sets. This recognizes that the compounds 
made and tested later in a medicinal chemistry project 
are typically designed (or selected) based on the knowl-
edge derived from data obtained by testing earlier project 
compounds. This “continuity of design” is a key feature of 
lead-optimization data sets.
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Unfortunately, time-split cross-validation is not possi-
ble when working with public data sets, where we nor-
mally do not have access to large sets of data generated 
within a single project and where information about the 
order in which compounds were made and tested is typi-
cally not available. Although resources like ChEMBL [2] 
do include dates for many of the scientific publications 
from which data was curated, these publications are often 
from different research groups and/or projects and thus 
lack the design connection between early and late com-
pounds. Common alternatives typically rely on randomly 
splitting the data set or using some form of chemical 
information (like fingerprints or scaffolds) to construct 
training/test splits (termed neighbor splits in the follow-
ing). These methods have well-known shortcomings: the 
random approaches tend to overestimate model perfor-
mance and the neighbor splits tend to be overly pessimis-
tic about model accuracy (see Figure 2 in Ref. [1]). Both 
of these failure modes can lead us astray when assessing 
the utility of a new method: overly optimistic validation 
results make us use a model which does not perform well 
when used prospectively, while overly pessimistic results 
can lead to the rejection of a model which may actually 
be useful.

We focus here on project-specific assay data from 
medicinal chemistry projects (i.e., no service assays for 
e.g. ADMET). This type of data mainly comprises bio-
chemical and cellular assays that measure potency/effi-
cacy against a target or an off-target and usually contains 
a strong shift over time in terms of both chemical mat-
ter (the independent variable) and measured values (the 
dependent variable). The more that is known about a 
target, the better the design of the compounds get over 
time. Typically, this leads to an overall trend of increasing 
potency from the earliest to the most recent compounds. 
However, as other properties are optimized at the same 
time as activities, project teams will sometimes accept 
minor trade-offs on activity during optimization. The size 
of these data sets is usually relatively small, comprising 
tens to low thousands of measured values. All of these 
characteristics make project data sets challenging to 
model with ML methods. It is also important to note that 
the limited chemical diversity of project data sets means 
that models built upon them are generally only applicable 
to related compounds. These data sets typically do not 
produce models for virtual screening of diverse chemi-
cal collections, however, they can be useful for virtual 
screening of focused chemical spaces which are chemi-
cally related to what a team knows already. The other 
important properties mentioned above for compounds in 
medicinal chemistry projects, like physico-chemical and 
ADME properties, are typically measured in so called 

“service assays”. Such assays are generally used across 
medicinal chemistry projects to profile compounds, 
and therefore consist of a much larger number of more 
diverse compounds. Data sets from service assays do not 
show the pronounced time-dependent trends in proper-
ties seen for project assays and can thus be more reliably 
modeled assuming a random distribution. For this rea-
son, we do not consider service assays in this study.

In this study we introduce a method to divide data 
sets into training/test sets that differ in ways similar to 
what is observed in temporal splits of real-world medici-
nal chemistry project data (Fig. 1). We start by curating 
a large collection of data sets from small-molecule drug 
discovery projects run within the Novartis Institutes for 
Biomedical Research (NIBR) in order to identify a small 
number of properties which consistently change in the 
same way between the early and late phases of the pro-
jects. These properties are used as objectives in a (multi-
objective) genetic algorithm that can be applied to new 
data sets to generate training/test splits with similar 
property differences. We validate the approach, which we 
call simulated medicinal chemistry project data (SIMPD), 
by demonstrating that the splits it generates for the NIBR 
project data sets do mimic the real-world time splits 
and that they are, in general, more predictive of tempo-
ral split ML performance than either random or neigh-
bor splits. Finally, we apply SIMPD to data drawn from 
ChEMBL in order to create a collection of open data sets 
with simulated time splits. We anticipate that the data 
sets constructed using the SIMPD algorithm will be use-
ful for benchmarking the utility of new ML approaches or 
descriptors to building project-specific models.

Methods
Curating medicinal chemistry project data
Project assays were extracted from an internal NIBR data 
set of bioactivity assays that had already been curated and 
cleaned. Only assays from terminated or completed pro-
jects were used. Repeat measurements of the same assay 
on the same compounds were combined using the arith-
metic mean of the pAC50 values. As we are focusing in 
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Fig. 1  Schematic of the process of time-split cross -validation
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this work on data sets from single projects, we removed 
assays where no clear assignment to a specific internal 
project could be achieved (i.e., assays without a pro-
ject code) as well as those with > 10, 000 compounds 
(these can be project assays that became service or panel 
assays). In addition, we removed assays with < 200 com-
pounds, as these were likely only measured sporadi-
cally in the respective projects and only provide limited 
information.

Compounds with high variability of the activity meas-
urement (standard deviation > 0.1∗mean pAC50) were 
removed from the data set, as the corresponding meas-
urements are likely unreliable. Furthermore, only mole-
cules with a molecular weight between 250 and 700 g/mol  
are used. The NIBR substructure filters [3] were applied 
to remove unwanted molecules (small peptides, macro-
cycles, etc). Similarly, we only kept compounds with a 
fraction of nitrogen and oxygen > 0.0 and < 0.6.

Over the course of a drug discovery project it is not 
uncommon that compounds which were not explicitly 
synthesized for a project will be tested in the project 
assays. To reduce the chances of having these unrelated 
“extra” compounds appear in our data sets, we deter-
mined the main time period of the assay. Given the sam-
ple registration dates of the compounds, all years with 
> 50 compounds were identified and the beginning/end 
of the main period were defined to be the first/last of 
these dates. Only compounds registered during this main 
period were kept for each assay.

The set of assays was further pruned by removing all 
assays with a pAC50 range smaller than three log units. 
To enable the use of classification models, we used a 
pAC50 threshold of 6.3 to group compounds into active 
and inactive sets (inactive: < 6.3 , active: ≥ 6.3 ). Based on 
this classification, we removed all assays with active or 
inactive ratios < 0.05 in either the entire data set or either 
the earliest 80 % or latest 20 % of compounds (based on 
registration date). To focus on assays from lead-optimiza-
tion projects, we removed those that do not contain any 
pharmacokinetic data associated with the compounds as 
well as those where less than 25 % of all measured com-
pounds were registered with the project code of the cor-
responding assay.

Finally, we wanted to remove highly correlated assays 
from the set, i.e., assays with similar compounds and 
measurement results. Using the compound IDs together 
with their active-inactive classifications, we clustered the 
set of assays for each assay project code using a Jaccard 
similarity threshold of 0.5. From these clusters, we then 
only keep the assay with the most measurements.

Temporal, random, and neighbor splitting
A subset of the available data is usually used to train 
and optimize the hyperparameters of bioactivity models 
with the rest of the data being used to assess their per-
formance. Such a partition, as previously explained, can 
be done in different ways. In this work three main split-
ting strategies are considered, together with the proposed 
SIMPD: temporal, random, and neighbor splits.

Temporal splits are constructed by ordering the data 
according to the date on which the measurements have 
been made in ascending order and using the first X % of 
the data for training the models and the last 100-X % for 
testing. In this way, one can simulate the process of pro-
spective validation and assess the model performances in 
the most realistic manner.

Random splitting is realized by randomly selecting a 
fraction of the compounds for training and using the rest 
to test the models. The split is done in a stratified man-
ner based on the activity class. Thus, the training and test 
sets both contain the same ratio of active to inactive com-
pounds. To reduce any accidental performance bias given 
by the selection of a specific random test/training set, ten 
different random seeds were used to create ten different 
random splits. The final performance values are provided 
as medians and standard deviations over the ten repeats.

Neighbor splits were obtained by ordering the data set 
according to the decreasing number of neighbors each 
molecule in the data set has and then using the first X % 
for training and the last 100-X % for testing. In our set-
up, two compounds are considered neighbors if their 
Tanimoto similarity based on the Morgan fingerprint [4] 
as implemented in the RDKit v2021.09.5 [5] with radius 2 
is ≥ 0.55 . For this type of split, it is possible that the com-
pounds around the train/test separation threshold have 
the same number of neighbors, but they fall into the two 
different sets. In this case, one can randomly rearrange 
them according to the different seeds, obtaining slightly 
different training and test sets. Here, ten different seeds 
were used.

In this work, all training/test splits were done 80/20, 
i.e., 80 % of the data was used for training and the remain-
ing 20 % for testing.

Building models for bioactivity
To build models for bioactivity, Morgan fingerprints [4] 
with radius 2 were used as features and the random forest 
classifier was selected as the estimator. Random forests 
[6] were built using the implementation in scikit-learn, 
version 0.24.2 [7].

The hyperparameters optimized for the random forest 
include max_depth, min_samples_leaf, and n_estimators. 
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Two possible values were used for each of these: [20, 40], 
[2, 4], and [100, 300], respectively. A nested grid-search 
cross-validation was used to identify the best set of 
hyperparameter values. In this case, five folds and two 
folds were used for the outer and the inner loop, respec-
tively. The set of hyperparameter values that was selected 
most often among the five folds was the one used to train 
the final model on the entire training set. The instabil-
ity of the model was identified by considering the cases 
where five different sets of hyperparameter values were 
selected in the outer loop. None of the models built here 
was flagged as instable by this procedure.

The training set used for hyperparameter optimiza-
tion was obtained by different splitting strategies, e.g., 
random, temporal, neighbor, and the SIMPD algorithm. 
When ten different random number seeds were used to 
split the original data set into ten test/train sets, only 
the first one was taken to determine the best hyper-
parameters. The other nine partitions employed this 
hyperparameter set. Because some of the data sets are 
imbalanced, the probability threshold was adjusted 
for each classifier by using the ghostml library [8]. The 
adjusted thresholds were selected to optimize Cohen’s κ 
score [9] on the training data.

The evaluation of classifier quality is based on different 
metrics: balanced accuracy, F1 score, precision, recall, 
and Cohen’s κ score [9]. These metrics are calculated 
using scikit-learn, version 0.24.2 [7]. For each metric, the 
lists of the means and standard deviation values (calcu-
lated over the ten repeats) were collected for each split-
ting strategy. Since there is only one temporal split per 
data set, the corresponding standard deviation here was 
set to zero.

The process of computing the best random forest clas-
sifier for each assay, each split and eventually, each seed, 
was fully automated using the PREFER library [10]. An 
80 % / 20 % training / test split was used for all splitting 
strategies.

Evaluating the differences between molecules 
in training‑test splits
Descriptor‑based methods
Our goal was to identify a small set of non-correlated, 
ideally interpretable descriptors whose distributions con-
sistently change over the course of medicinal chemistry 
projects. A set of 418 descriptors was generated for all 
compounds. The descriptor set consists of 209 standard 
RDKit descriptors (see the Additional file 2 for the com-
plete list) in both their standard and “normalized” (i.e., 
divided by 1000 times the number of heavy atoms in the 
molecule) forms.

The distributions of each descriptor in the sets of 
early and late compounds were compared using the 

Brunner-Munzel test (as implemented in scipy, version 
1.8.1 [11]). Only descriptors with a p-value < 0.01 were 
considered for further analysis. We ranked the descrip-
tors based on how consistent the direction of the shift in 
their median values between early and late compounds 
was across all projects. From the top ranked ones, we 
manually picked a small set of interpretable descriptors 
whose values are not strongly correlated with each other 
according to the Spearman rank-order correlation coef-
ficient (as implemented in scipy, version 1.8.1 [11]).

Similarity‑based methods
To get an unbiased view of the chemical changes between 
the early (training) and late (test) sets of compounds, 
we applied a variation of the refined nearest neighbor 
analysis first used for chemical problems by Rohrer and 
Baumann [12]. This approach is driven by the cumula-
tive probability distribution functions (CDF) of the dis-
tances between nearest-neighbor compounds in two data 
sets. We use two different functions to characterize the 
data sets: G(t), which is the CDF for distances from com-
pounds in the late (test) set to nearest neighbors in the 
late (test) set, and F ′(t) , which is the CDF for distances 
from compounds in the late (test) set to nearest neigh-
bors in the early (training) set. So G(t) is generated by 
finding the distance between each compound in the late 
(test) set and its nearest neighbor in the late (test) set and 
then plotting the fraction of compounds with a neighbor 
distance < a threshold t as a function of t. F ′(t) is anal-
ogous but the distances are between compounds in the 
late (test) set and their neighbors in the early (training) 
set. Note that the definition of F ′(t) differs from Rohrer 
and Baumann’s F(t) [12], which considers distances from 
a bootstrap sample of early and late compounds to their 
nearest neighbors in the late (test) set. Finally, we also 
generated S′(t) , which is defined to be G(t)− F ′(t).

The G(t), F ′(t) , and S′(t) curves can all be usefully 
summarized by summing the values on a grid of possi-
ble t values. Large values of 

∑
G(t) indicate clustering/

clumping in the test set, while large 
∑

F ′(t) values occur 
for data sets where the compounds in the test set all have 
close neighbors in the training set. Positive/negative ∑

S′(t) values indicate that the test set compounds are 
closer to/farther from the training set compounds than 
they are to each other, with the magnitude of 

∑
S′(t) 

showing the degree to which this is true.
In this work, 

∑
G(t) , 

∑
F ′(t) , and 

∑
S′(t) were all cal-

culated with t values on a grid from 0.0−1.0 in 100 steps.

SIMPD algorithm
The idea of the simulated medicinal chemistry pro-
ject data (SIMPD) algorithm is to use a multi-objective 
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genetic algorithm (MOGA) to split a set of compounds 
with bioactivity data into one or more training and test 
sets that differ from each other in ways resembling the 
differences between the temporal training/test splits 
observed in medicinal chemistry projects. The key steps 
are: 

1.	 Choose starting populations for the MOGA
2.	 Choose objectives to be used in the MOGA
3.	 Choose constraints to be used in the MOGA
4.	 Run the MOGA to generate a set of solutions
5.	 Rank the solutions from the MOGA and select one 

or more to be used for model building and validation

Each of these is discussed in detail below.

Choosing starting populations
The MOGA requires an initial population of solutions, 
which are derived from the full data set. Here, the initial 
populations were chosen by clustering the full data set 
(see below) and then randomly assigning clusters to the 
test set until the desired number of compounds was pre-
sent in the test set. If the assignment of a cluster to the 
test set would make the test set too large, a random sub-
set of the cluster containing only the required number of 
compounds was added. The rest of the compounds from 
that cluster remained in the training set.

To start from reasonably sized initial clusters and have 
a fully automated procedure, we performed a Taylor-
Butina clustering [13, 14] of the compounds in the data 
set using Morgan fingerprints with a radius of 3 and a 
similarity threshold of 0.35. The clustering was done 
using the RDKit’s implementation with the reordering 
option enabled. Since Taylor-Butina clustering can yield a 
large number of singletons, we combined singletons and 
compounds from small clusters (size < 2 % of the com-
pounds) into larger clusters. Compounds were merged 
into the closest large cluster, where the compound–clus-
ter distance was defined to be the minimum distance 
between the compound to be merged and a compound 
in the cluster.

Objectives
Based upon analysis of descriptor differences and the spa-
tial statistics between training and test sets in the NIBR 
medicinal chemistry projects (see Results and Discussion 
section), we selected eight objectives for the MOGA: 

1.	 �test-train median(SA_Score) = 0.28
2.	 �test-train median(HeavyAtomCount) = 3.1
3.	 �test-train median(TPSA) = 13.2
4.	 �test-train median(fr_benzene/1000 HeavyAtoms) = −

8.8

5.	 fracactive(train) = value from data set
6.	 fracactive(test) = value from data set
7.	 10 <

∑
G −

∑
F ′ < 30

8.	
∑

G > 70

The target values for objectives 1–4, 7, and 8 were the 
same for every data set (and the source of these values is 
discussed below in the Results and Discussion section), 
while the targets for objectives 5 and 6 were determined 
by the temporal splits of the original data set. Definitions 
of, and references for, the descriptors used for the first 
four objectives are also below in the Results and Discus-
sion section.

Constraints
The optimization used two constraints, the first to ensure 
that the test set has the desired size and the second to 
ensure that at least some of the clusters survive: 

1.	 The number of compounds in the test set must be 
20 % of the total number of compounds in the data 
set.

2.	 The relative cluster population entropy of the test set 
must be < 0.9.

Relative cluster population entropy was determined by 
dividing the information entropy [15] of the cluster pop-
ulations by log2(number of clusters) (i.e., the maximum 
possible information entropy for the number of clusters). 
The values range from 0.0 (i.e., all test set compounds are 
in a single cluster) to 1.0 (i.e., the test set compounds are 
evenly distributed across the clusters).

Running the genetic algorithm
We performed the MOGA using the NSGA2 algorithm 
[16] as implemented in the package pymoo, version 0.50 
[17]. The optimization was done using binary crossover 
and a mutation operator that randomly replaces 10 % of 
the test set with compounds from the training set. For 
each data set, the GA was run for 300 generations from a 
starting population of 500 members.

Selecting solutions
The MOGA provides a set of up to 500 solutions, each of 
which are located on the Pareto front for the eight objec-
tives. As working with 500 versions of each data set is 
impractical, we used a simple strategy to rank the solu-
tions and select a single one. Since each solution from the 
NSGA2 optimization is Pareto optimal, we do not have 
any quality metric directly available from the GA itself to 
rank the solutions. Therefore, we chose to score how well 
each objective was satisfied and then to generate a score 
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for the solution based on a weighted sum of the objective 
scores,

where the weights ( wj ) are 10 for the 
∑

F ′(t)−
∑

G(t) 
objective, 5 for the 

∑
G(t) objective, and 1 for the oth-

ers, and the xij are the scaled objective values for solution 
i. Since the objectives themselves have different magni-
tudes, each objective value was scaled such that its value 
is 1 at the 90th percentile of the values observed across 
all 500 populations. The solution with the highest score 
from Eq. 1 was used.

In this weighting scheme, we have chosen to favor solu-
tions that better satisfy the two objectives derived from 
spatial statistics. This reflects our hypothesis that the 
relationship of the chemical similarities within the test 
set and between the training and test sets are an essential 
part of what makes temporal data splits from medicinal 
chemistry project data different from random or neigh-
bor splits.

Validation of the SIMPD algorithm
We validated the SIMPD algorithm by applying it to the 
NIBR medicinal chemistry project data sets and asking 
two questions: 

1.	 Do the differences between the training and test 
compounds in the SIMPD splits look similar to those 
in the actual temporal splits?

2.	 Do the SIMPD splits provide a better estimate of the 
time-split based ML performance than the random 
or neighbor splits?

The first question is straightforward to answer by looking 
at how well the simulated time splits from SIMPD repro-
duce the trends from the project data sets which were 
used as objectives in the MOGA.

Our primary motivation for generating simulated time 
splits with SIMPD is to be able to predict the perfor-
mance of a predictive model when applied prospectively 
to project data. The performance of an ML model trained 
and validated using SIMPD splits should be more simi-
lar to the performance of a model built using a temporal 
split than models built with either random or neighbor 
splits are. To do this evaluation and answer the second 
question, we applied the ML setup described above to the 
SIMPD data sets and compared the area under the ROC 
curve (AUC) values of the different approaches.

(1)scorei =

8∑

j=1

wj ∗ e
−xij ,

Selecting public data sets
We curated a collection of baseline bioactivity data sets 
from ChEMBL32 [2]. Our goal was to have a collection 
of data sets for the SIMPD algorithm that are similar to 
what we observed in the NIBR medicinal chemistry pro-
ject data. This means that we need a reasonable range of 
activity values and a good degree of clustering in the data.

To avoid the potential pitfalls and noise associated with 
combining data from different ChEMBL assays, we lim-
ited ourselves to measured K i data sets associated with 
publications where pChEMBL values have been assigned 
[18] and with measurements for 300–1000 unique com-
pounds for any given target. The focus on K i data sets 
with a date and the upper limit of 1000 unique com-
pounds were imposed to exclude screening assays. To 
ensure that the data sets are maximally consistent, we 
were very strict in our curation of the K i assays which 
would be combined for a given data set and only com-
bined assays with consistent values for target id, assay 
organism, assay category, and BAO format. The full 
details of the 99 data sets in ChEMBL32 that fulfilled 
these criteria are given in the Additional file 2.

In order to assign active/inactive labels to the data, we 
picked a pChEMBL threshold for each assay which led to 
a 60/40 inactive/active split – a value that is consistent 
with our observations from the NIBR project data sets 
(Fig. 2).

Applying SIMPD to public data sets
Once the SIMPD algorithm was validated using the NIBR 
data sets, we applied it to the 99 public bioactivity data 
sets from ChEMBL32 in order to generate an initial col-
lection of diverse data sets that can be used to bench-
mark ML algorithms.

The temporal splits for the medicinal chemistry project 
data sets provided the target values for fracactive(train) 
and fracactive(test) in the SIMPD algorithm. When cre-
ating simulated splits from public data sets, however, 
these values are not available, so target values have to 
be selected. Rather than optimizing fracactive(train) and 
fracactive(test) independently, we decided to optimize the 
single objective �fracactive(test - train) for the public data 
sets: the 50th and 90th percentile values of �fracactive

(test - train) from the NIBR project data sets (see Addi-
tional file 1: Fig. S1). As the results for these two different 
values did not differ qualitatively from each other (data 
not shown), we present only the results for the median 
(50th percentile) value of �fracactive(test - train) = 0.11 in 
the following. The specific objective for the GA to mini-
mize here was thus |�fracactive(test− train)− 0.11|.
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Results and discussion
Summary of the project data sets
Overview
The curation of the NIBR medicinal chemistry data sets 
led to a set of 138 different project data sets, contain-
ing a total of 207,172 different assay measurements and 
157,885 unique compounds. Figure  2B shows the dis-
tribution of the sizes of the individual project data sets. 
Most of the data sets are small (in an ML context) and 
consist of < 1000 different compounds (42 % of the data 

set) with the smallest containing 335 molecules and the 
largest 6585 compounds. The time-span of these project 
data sets ranges from 2.5 up to 15 years with an average 
of 5.7 years. Several different target classes are included 
with the most common being enzymes (31), followed by 
kinases (24) and GPCRs (16), a detailed distribution can 
be found in Fig. 2A. As discussed above, this set of assays 
does not include service assays like those used to meas-
ure ADME/toxicity or physical properties like solubility.

A

B C

Fig. 2  Composition of the NIBR medicinal chemistry project data sets. A: Target classes for the assays. The black numbers denote the number 
of the 138 assays with this target class. 39 of the assays do not have a target class assigned. B: Histogram of data set sizes. C: Scatter plot 
of the fraction of active compounds in the test set versus the fraction of active compounds in the training set based on the temporal splits
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The 138 data sets have measured pAC50 values that 
stem from biochemical as well as cellular assays with 
a mean range of 4.7 log units. To enable classification 
models, we used a threshold of pAC50 = 6.3 (500 nM) to 
label compounds as being active or inactive (see Meth-
ods section). We used the timestamp information to split 
our data sets into training and test sets (20 % of the most 
recent data) as described above. This can lead to a differ-
ent fraction of active compounds in the training and test 
sets (Fig.  2C) and might cause inverse imbalance ratios 
(actives versus inactives) between training and test set. 
This is a major difference between public and typical 
project data sets [8]. Overall, all data sets have a reason-
able fraction of actives in the training and test sets rang-
ing from approximately 10  % up to 90  % (Fig.  2C). For 
the data sets with a very high fraction of actives (upper 
right corner in Fig. 2C), a stricter activity threshold may 
have been more appropriate. Only a few data sets have 
the same distribution of actives in training and test set 
(diagonal in Fig. 2C). As expected for late-stage medici-
nal chemistry projects (i.e., the structure-activity rela-
tionships are well studied), most of the data sets show 
a higher fraction of actives in the test set (the latest 
compounds).

Machine‑learning performance
In Ref. [1], regression models built on random/neigh-
bor splits were found to be generally more/less accurate 
than the models built on temporal splits of the same data 
sets. To see if this is also the case for classification mod-
els built on the NIBR medicinal chemistry project data 
sets, we compared the AUC values for the three differ-
ent split types in Fig.  3. To facilitate direct comparison, 

the AUC values for the temporal splits are presented as 
a dashed line (the right axis), while the �AUCs relative 
to the temporal splits for the neighbor and random splits 
are plotted with squares and triangles (left axis). The data 
sets have been ordered by decreasing AUC of the tem-
poral splits. These data clearly demonstrate that random 
splits tend to be more “optimistic” about model perfor-
mance than neighbor splits. They generally have �AUC 
values which are positive and larger than the correspond-
ing value for the neighbor split.

It is important to notice in Fig. 3 that there are data sets 
for which �AUC is positive for both random and neigh-
bor splits. This is a trivial result for data sets at the far 
right-hand side of the plot, where the AUC values for the 
temporal split are very low, but non-obvious, and perhaps 
surprising, for the data sets in the middle and left-hand 
side of the plot where temporal AUC values exceed 0.65 
or 0.70. This observation highlights that the conventional 
wisdom of neighbor splits leading to overly pessimistic 
estimates of model quality does not always hold for real-
world data sets.

Descriptor and similarity differences in the temporal splits
The final set of descriptors selected consists of the “syn-
thetic accessibility” score (SA_Score) [19], heavy atom 
count, topological polar surface area (TPSA) [20], and 
the number of benzene rings per 1000 heavy atoms (fr_
benzene/1000 HeavyAtoms), see Table 1. The first three 
of these tend to increase over the course of a project 
while the frequency of benzene rings tends to decrease. 
These trends match what we expect to observe in medici-
nal chemistry projects: As the project progresses, com-
pounds tend to get more complex/difficult to synthesize 

Fig. 3  Validation performance of random forest models on the NIBR medicinal chemistry project data sets. The black dashed line and right hand 
y-axis show the AUC values for the temporal splits. The gray triangles and blue squares show � AUC values (left hand y-axis) for the random 
and neighbor splits, respectively. The points are ordered by decreasing temporal AUC values
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(higher SA scores indicate compounds which are harder 
to synthesize), larger, and more polar (this is reflected 
both in the increase in TPSA as well as the decreasing 
frequency of benzene rings). These trends are not sur-
prising based upon other studies of this type (see e.g., 
Ref. [21] and references therein).

A summary of the 
∑

G , 
∑

F ′ values for the NIBR 
medicinal chemistry project data sets is shown in Fig. 4. 
The full spatial statistics curves for all of the data sets 
are provided in Additional file  1: Fig. S2. The points 
from the three different splitting strategies are reasona-
bly distinct in the scatter plot in Fig. 4, with the random 
split points above the diagonal (comparatively higher ∑

F ′ ). There is some overlap between the neighbor and 
temporal splits, which both appear below the diagonal 

(comparatively higher 
∑

G ), but the temporal splits 
tend to be shifted to the upper right (higher values of 
both 

∑
F ′ and 

∑
G).

We would expect the points for random splits to lie 
above the diagonal in Fig.  4, indicating that test com-
pounds have closer neighbors in the larger training 
set than they do in the smaller test set, since any given 
compound is more likely to have a close neighbor in a 
larger set than a smaller one when the division is done 
randomly. The converse of this argument applies to 
the neighbor splits, where compounds are selected to 
be in the test set because they have few neighbors in 
the overall data set. Lying below the diagonal in Fig. 4 
where 

∑
G >

∑
F ′ also implies that 

∑
S′ should be 

negative. This can be seen in the S′ curves in Additional 
file 1: Fig. S2.

While the location of the points with the random and 
neighbor splits in Fig. 4 can be rationalized, it is not pos-
sible a priori to predict location of the temporal splits. 
The observed behavior, that the points for the temporal 
split lie below the diagonal, indicates that the test (later) 
compounds are more likely to have close neighbors in the 
later compounds than they are in the earlier compounds. 
The distribution of 

∑
G values indicates that compounds 

in the test sets for the temporal splits are more similar to 
each other than what is observed in either the random or 
neighbor splits.

Validation of SIMPD using project data
MOGA objectives
Figure 5 shows the difference in imbalance ratios in the 
test set between random, neighbor, and SIMPD splits 
compared to the temporal splits. Given that this was 
one of the objectives used in the SIMPD optimization, it 
is not surprising that the SIMPD values are consistently 
closer to those from temporal splits than the value with 
the other two splitting strategies.

Figure  6A, B shows the differences in the median  
SA_Score values of the training and test sets for each of the 

Table 1  Summary of the distribution changes for the descriptors chosen

The meanings of the columns are: Sign = sign of the difference between training and test; Frac = fraction of the data sets showing a change with that sign; 
Median(frac change) = median fractional change of the value across the data sets; Median(train) = median value of the property in the training set; Number of 
projects = number of projects where the difference in the training/test distributions was statistically significant (see text)

Property Sign Frac Median (frac change) Median (train) Number 
of 
projects

SA score 1 0.88 0.09 2.8 109

HeavyAtomCount 1 0.75 0.09 31.0 114

TPSA 1 0.76 0.14 88.6 109

fr_benzene/1000 HeavyAtoms -1 0.81 0.19 43.5 118

Fig. 4  Spatial statistics summary plot 
∑

G against 
∑

F
′ for the NIBR 

medicinal chemistry project data sets with temporal (black crosses), 
random (gray triangles), and neighbor (blue squares) training/test 
splits
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project data sets. As discussed above, the median SA_Score 
is larger in the temporal test set than the training set for most 
of the data sets. The SIMPD splits reproduce this well. The 
random and neighbor splits, on the other hand, do not 
take descriptor values into account and thus, show com-
pletely different behaviors. As expected for points that 
are drawn randomly from a distribution, the random 
splits show no statistically significant difference (as meas-
ured by a Wilcoxon signed-rank test) between the train-
ing and test values. Given that computed property values 
were not used when introducing the neighbor splits, their 
impact on descriptor values is not known a priori. For 
the NIBR data sets, the neighbor splits tend to have lower 
median SA_Score values in the test set than the training 
set. Similar plots for the other three descriptors used in 
SIMPD, all behaving similarly to SA_Score, are provided 
in Additional file 1: Fig. S10.

Figure 6C shows that the SIMPD splits have 
∑

G val-
ues closer to those from the temporal splits than either 
random or neighbor splits. The 

∑
F ′ values (y-axis of 

Fig.  6C) for the SIMPD splits tend to fall between ran-
dom and neighbor splits (like the temporal splits). As dis-
cussed above, the temporal, random, and neighbor splits 
are generally in separate regions of the plot with both 
the temporal and random sets below the diagonal and 
slightly overlapping. The splits from SIMPD are almost all 
located below the diagonal and are shifted towards high ∑

G , indicating that test-set compounds tend to have at 
least one quite similar neighbor in the test set. This is in 
excellent agreement with the temporal splits.

Machine‑learning performance
The goal of SIMPD is to produce training/test splits for 
machine learning which are more similar to the temporal 
splits observed in medicinal chemistry project data than 
random or neighbor splits. We have shown above that the 
SIMPD sets reproduce the differences in descriptors and 
spatial statistics observed in temporal splits. An addi-
tional validation that SIMPD is working as intended is to 
compare the performance of ML models built and tested 
using the non-temporal splits with the performance of 
models built using temporal splits. As can be seen in 
Fig. 7, the SIMPD splits – like the random splits – tend to 
be overly optimistic and yield AUC values that are larger 
than those seen for the temporal splits. The performance 
of the SIMPD splits is, however, generally closer to the 
temporal performance than the random splits. To visual-
ize the differences relative to random splits more clearly, 
results for the neighbor splits were not included in Fig. 7. 
A plot which includes these values is shown in Additional 
file 1: Fig. S5.

We also evaluated the performance of the models 
using Cohen’s κ , F1 score, and balanced accuracy and the 
numeric results (along with those for AUC) are in the 
Additional file  2. Plots analogous to Fig.  7 for Cohen’s 
kappa and F1 score can be found in Additional file 1: Figs. 
S7 and S8.

Another way of looking at the ML results is to group 
the AUC values into bins and then construct “confusion 
matrices” comparing the AUC values of the neighbor, 
random, and SIMPD splits with those of the temporal 

Fig. 5  �fracactive(test) values for the random (gray triangles), neighbor (blue squares), and SIMPD (orange circles) splits. The � values were 
computed relative to the temporal split. The points are ordered by increasing random �fracactive(test)
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A B

C

Fig. 6  (Top): Comparison of the median SA_Score values in the test and training sets for the four different splitting strategies. The plot is divided 
into two parts for clarity. A: temporal (black crosses) and SIMPD splits (orange circles). B: neighbor (blue squares) and random splits (gray triangles). 
(Bottom, C: Spatial statistics summary plot 

∑
G against 

∑
F
′ for the NIBR medicinal chemistry project data sets with temporal (black crosses), 

random (gray triangles), neighbor (blue squares), and SIMPD (orange circles) training/test splits
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splits (Fig. 8). Here, we see the same trends as discussed 
above: Neighbor splits tend to be overly pessimistic com-
pared to temporal splits (i.e., larger values below the 
diagonal in the matrices), while random splits tend to be 
overly optimistic (i.e., larger values above the diagonal). 
The results for the SIMPD splits are, again, more similar 
to random than neighbor, but they are significantly closer 

to the diagonal than the random splits. This further sup-
ports the conclusion that the ML performance from the 
SIMPD splits is more predictive of the temporal split per-
formance than either random or neighbor splits.

Applying SIMPD to public data sets
Summaries of the number of compounds in each of the 
99 ChEMBL32 K i data sets along with the median AUC 
values from random forests built and tested using Mor-
gan fingerprints with radius 2 (MFP2) and random split-
ting are shown in Fig. 9. The models for the vast majority 
of the assays have an AUC > 0.8 . This type of high per-
formance is, in our experience, fairly typical for K i mod-
els built and tested using random splits of ChEMBL data. 
Although these data sets are slightly more diverse than 
the NIBR project data sets (see Additional file 1: Fig. S12 
for a comparison of the numbers of clusters found in 
both collections of data sets) and are not small (each data 
set has at least 300 points), random splits are still too 
“easy” for use in validating ML models.

Figure  10A show spatial statistics values for the top 
solutions from the weighted scoring scheme for each data 
set. The corresponding values for the four descriptors are 
given in Fig. 10B. The MOGA was able to do a very good 
job of satisfying the spatial statistics objectives (compare 
the orange circles in Fig.  10A with those for the NIBR 
data sets in Fig. 6C) and a reasonable job of satisfying the 
descriptor objectives, i.e., the values in the histograms are 
close to zero.

Finally, we compared the ML performance of the 
SIMPD splits with random splits for the ChEMBL32 data 

Fig. 7  Validation performance of random forest models on the NIBR medicinal chemistry project data sets. The black dashed line and right hand 
y-axis show the AUC values for the temporal splits. The gray triangles and orange circles show �AUC values (left hand y-axis) for the random 
and SIMPD splits, respectively. The points are ordered by increasing random �AUC​

Fig. 8  Confusion matrices for the performance of the different splits 
based on binned AUC values. In each matrix, the rows correspond 
to the temporal splits while the columns refer to the neighbor (a), 
random (b), or SIMPD (c) splits
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sets (Fig. 11). As we observed for the NIBR project data 
sets, the SIMPD splits generally show lower AUC values 
than random splits. Note that SIMPD is sensitive to ini-
tialization (selection of the starting population, stochas-
tic process of the MOGA). When applying the algorithm 
for real-world model validation, it may be worthwhile 
use multiple SIMPD splits of each data set. We plan to 
explore this in the future.

Conclusion
Our primary goal in this study was to develop an 
approach to generate training/test splits of data sets, 
which mimic the differences observed in temporal splits 
of medicinal chemistry lead-optimization project data 
better than standard random or neighbor splits. The 
initial analysis on temporal splits of 138 NIBR medici-
nal chemistry project data sets allowed us to identify 

a number of consistent differences in the descriptor 
distributions and spatial statistics between the early 
compounds in a project (training set) and the later com-
pounds (test set). Applying our SIMPD algorithm to the 
project data sets yielded simulated time splits that repro-
duced these descriptor and spatial statistics differences. 
We also demonstrated that the SIMPD splits are better 
at predicting the performance of standard ML models 
validated on time splits than either random or neighbor 
splits do.

It is natural to ask whether or not it is possible to avoid 
the complexity of the SIMPD approach and estimate tem-
poral performance by simply averaging the performance 
of random splits (which tend to be overly optimistic) and 
neighbor splits (which tend to be overly pessimistic). We 
had tested this approach and seen that it does, indeed, 
lead to error estimates which tend to be closer to the 

Fig. 9  Summary of the 99 data sets extracted from ChEMBL32 (Top): Number of compounds in each data set. (Bottom): Distribution of median AUC 
values for random forest models built using MFP2 and random splitting for these data sets
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Fig. 10  A: Spatial statistics summary plot 
∑

G against 
∑

F
′ for the 99 CHEMBL32 data sets with both random (gray triangles) and SIMPD 

(orange circles) training/test splits. The objectives used in the GA were 10 <
∑

G −
∑

F
′ < 30 and 

∑
G > 70 . B: Histograms of the deviations 

in the observed training-test descriptor differences from their target values for the SIMPD splits of the 99 ChEMBL32 data sets. The objective used 
by the MOGA for each of these descriptors was 0



Page 15 of 16Landrum et al. Journal of Cheminformatics          (2023) 15:119 	

Fig. 11  Comparison of ML model performance for SIMPD 
and random splits of the 99 ChEMBL32 data sets

temporal splits than either of the starting points (Addi-
tional file 1: Fig. S9). We opted not to further pursue this 
since the approach is purely ad hoc and has no statistical 
justification.

The curation of high-quality public data sets that 
resemble the data available in industrial medicinal chem-
istry projects is a time-consuming and challenging task. 
In our opinion, SIMPD will be a useful tool for this as it 
allows us to split a set of compounds into training and 
test sets which differ in ways similar to what is observed 
in real project data. However, realistic sets of compounds 
are needed for this. The collection of 99 ChEMBL32 
data sets presented here with training/test splits from 
SIMPD is a good starting point and a useful comple-
ment to  or replacement for standard public validation 
sets. Nevertheless, we intend to continue working to cre-
ate additional starting points for SIMPD in order to have 
a broader selection of simulated time-split data sets for 
use in benchmarking and validating new ML approaches 
which are intended for use on lead-optimization type 
problems.
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