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Abstract 

Conventional machine learning (ML) and deep learning (DL) play a key role in the selectivity prediction of kinase 
inhibitors. A number of models based on available datasets can be used to predict the kinase profile of compounds, 
but there is still controversy about the advantages and disadvantages of ML and DL for such tasks. In this study, 
we constructed a comprehensive benchmark dataset of kinase inhibitors, involving in 141,086 unique compounds 
and 216,823 well-defined bioassay data points for 354 kinases. We then systematically compared the performance 
of 12 ML and DL methods on the kinase profiling prediction task. Extensive experimental results reveal that (1) 
Descriptor-based ML models generally slightly outperform fingerprint-based ML models in terms of predictive 
performance. RF as an ensemble learning approach displays the overall best predictive performance. (2) Single-task 
graph-based DL models are generally inferior to conventional descriptor- and fingerprint-based ML models, however, 
the corresponding multi-task models generally improves the average accuracy of kinase profile prediction. For exam-
ple, the multi-task FP-GNN model outperforms the conventional descriptor- and fingerprint-based ML models 
with an average AUC of 0.807. (3) Fusion models based on voting and stacking methods can further improve the per-
formance of the kinase profiling prediction task, specifically, RF::AtomPairs + FP2 + RDKitDes fusion model performs 
best with the highest average AUC value of 0.825 on the test sets. These findings provide useful information for guid-
ing choices of the ML and DL methods for the kinase profiling prediction tasks. Finally, an online platform called 
KIPP (https://​kipp.​idrug​lab.​cn) and python software are developed based on the best models to support the kinase 
profiling prediction, as well as various kinase inhibitor identification tasks including virtual screening, compound 
repositioning and target fishing.
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Introduction
The human kinome comprises more than 500 kinases, 
constituting approximately 1.7% of all human genes [1]. 
Protein kinases (PKs) play central roles in mediating 
most signaling pathways involved in cellular metabolism, 
transcription, cell cycle, apoptosis, and differentiation. 
Therefore, PKs have become one of the most interest-
ing classes of drug targets for various diseases, including 
cancers [2–4], inflammation [5, 6], central nervous sys-
tem disorders [7], cardiovascular diseases [8], compli-
cations of diabetes [9], and Alzheimer’s disease [10]. As 
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such a significant class of targets, kinase inhibitors have 
been the focus of drug discovery. There are currently 71 
FDA-approved small-molecule kinase inhibitors. In addi-
tion, approximately 110 innovative kinases are emerging 
as targets for drugs development in clinical trials [11]. 
Most FDA-approved drugs (63/71) targeting kinases are 
ATP-competitive inhibitors which inhibit kinases activity 
by binding to the ATP binding site of the kinase domain. 
However, the intrinsically highly conserved ATP bind-
ing sites of kinases may lead to off-target effects (i.e., low 
selectivity) of kinase inhibitors, potentially leading to 
undesirable side effects. Accordingly, identifying selec-
tive PK inhibitors remains an important challenge in the 
development of kinase-targeted drugs. Traditional kinase 
inhibitor assays are low-throughput methods that pri-
marily measure the ability of compounds to reduce the 
phosphorylation activity for a given kinase (e.g. IC50) or 
their binding affinities to a kinase (dissociation constant, 
such as Ki and Kd). Notably, such measurement methods 
typically do not extend to the ability of a compound to 
inhibit the entire kinome. High-throughput kinase profil-
ing assay has also become feasible in recent years, but the 
excessive cost makes it difficult to use as a routine early 
stage of drug discovery efforts [12].

Based on experimental data, a number of computa-
tional methods have been developed and published else-
where, aiming to significantly reduce the cost, time and 
laborious involved in experimental identification. Gener-
ally, these computational methods can be classified into 
two major categories: structure- and ligand-based kinase 
inhibition and/or profiling prediction approaches (called 
virtual assay). Molecular docking, commonly used in 
structure-based prediction methods for kinase inhibition, 
has good generalizability, but its accuracy depends on the 
crystal structure of the kinase and the accuracy of the 
scoring function [13, 14]. Ligand-based methods include 
pharmacophore modelling, and quantitative structure–
activity relationship (QSAR) [15–21]. Based on different 
kinase inhibitors-associated datasets, ML and DL algo-
rithms such as naive Bayesian (NB) [22–24], k-nearest 
neighbors (KNN) [24–26], random forest (RF) [27–30], 
support vector machine (SVM) [25, 26, 31], and deep 
neural network (DNN) [32, 33] have been used to con-
struct models on the basis of various molecular descrip-
tors and fingerprints for predicting a larger spectrum of 
kinases inhibition activities for a molecule. These estab-
lished models play a key role in the theoretical predic-
tion of kinase profiling due to their accuracy and speed of 
prediction results, and have accelerated the identification 
and optimization of kinase inhibitors in the early stage of 
drug discovery.

However, the existing kinase profiling models have the 
following shortcomings. Firstly, there are two major flaws 

in the modelling dataset for the kinase profiling predic-
tion task. For one thing, the number of kinases involved 
in constructing the kinase profiling prediction models is 
small, limiting its versatility (narrow kinome prediction) 
compared to the human kinome containing more than 
500. For example, the kinase profiling prediction mod-
els proposed by Bora and coworkers only includes 107 
kinases [29, 34]. For another, the number of compounds 
in dataset are relatively small, which may lead to the lim-
ited generalization ability of the established models. For 
example, in 2020, Li et al. [34] proposed a virtual kinase 
profiling model against a panel of 391 kinases, however, 
there are approximately 40 kinases with less than 10 com-
pounds (actives and inactives). Apparently, the predictive 
models based on these insufficient compound datasets 
may not achieve good generalization performance. Sec-
ondly, for different tailored modelling datasets, the exist-
ing models are constructed based on a specific molecular 
representation (i.e. molecular descriptors or fingerprints) 
by using only single or limited ML methods. Obviously, 
this lack of combined screening of molecular features 
and ML algorithms will result in the built models that 
may not be able to achieve the highest accuracy. In other 
words, it is impossible to assess which ML methods can 
achieve higher performance in building kinase profiling 
models from the existing studies. Thirdly, most of the 
existing kinase profiling predictive models are trained 
using conventional ML (e.g., KNN, NB, SVM and RF) 
algorithms, hile the advanced DL (especially graph neural 
network, GNN) algorithms, which have been successfully 
used to predict molecular properties and bioactivities, 
have seldom conducted for the kinase profiling predic-
tion [35–38]. In addition, the reported kinase profiling 
predictive models have not been integrated into easy-to-
use tools (e.g., local software package or online platform), 
which limits the use of these models by experts and non-
experts in the field.

To address the above-mentioned shortcomings regard-
ing the kinase profiling prediction task, herein, we con-
structed a comprehensive kinase profiling prediction 
benchmark dataset (called KinaseNet) from multiple 
sources for 354 kinases. A total of 136,290 predictive 
models were then built based on three types of molecular 
representations (i.e. a set of molecular descriptors, five 
different molecular fingerprints, and molecular graphs) 
using five mainstream ML methods (e.g., KNN [39], NB 
[40], SVM [41], RF [42], and XGBoost [43]) and seven 
advanced DL algorithms including DNN [44], graph con-
volutional network (GCN) [45], graph attention network 
(GAT) [46], message passing neural networks (MPNN) 
[47], Attentive FP [48], D-MPNN (Chemprop) [49] and 
FP-GNN [50]. The performances of these ML and DL 
models were comprehensively compared and evaluated. 
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The influences of the sizes of the modelling datasets and 
features selection on the performances of the kinase pro-
filing models are also explored. Finally, the best models 
based on the comprehensive comparison results were 
used to develop an online platform and its python soft-
ware for supporting kinase inhibitor drug discovery 
related tasks. The scheme and workflow of this work are 
shown in Fig. 1.

Materials and methods
Benchmark dataset for kinase profiling prediction
All quantitative compound-kinase associations were 
collected from ChEMBL (Version 29) [51], PubChem 
[52], BindingDB [53], and Zinc [54]. We then pro-
cessed the raw data using the following steps: (1) only 

ATP-competitive kinase inhibition assay data (assay 
type: B) for each compound was kept, and compounds 
with detailed biological activities recorded as IC50, EC50, 
Kd, or Ki were maintained; (2) the bioactivity units (g/
mL, M, and nM) were translated to the standard unit in 
μM, molecules whose labels could not be unequivocally 
assigned (e.g., IC50, EC50, Ki, or Kd < 100 or > 1 μM) were 
excluded; and if a compound has multiple inhibitory 
activity test data for a kinase, we averaged the reported 
bioactivity records as the final inhibitory activity value; 
(3) all molecular structures in the kinase profiling dataset 
were processed using the Standardizer package (https://​
github.​com/​flatk​inson/​stand​ardis​er, version 0.1.9), 
including removal of counter ions, solvent fractions and 
salts, and adding hydrogen atoms, and once all molecules 

Fig. 1  The scheme and workflow of this work. A Dataset collection. B Models construction and selecting the optimal model for the kinase profiling 
prediction task. C ML methods for the construction of fingerprint- and RDKitDes-based models. D DL methods for the construction of graph-based 
models. (E) Combined-features- and fusion-based models construction

https://github.com/flatkinson/standardiser
https://github.com/flatkinson/standardiser
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were standardized, those with molecular weight greater 
than 1000  Da as well as duplicated molecules were 
removed; (4) compounds were labeled as actives (pKi/
pKd/pIC50/pEC50 ≥ 6) and inactives (pKi/pKd/pIC50/
pEC50 < 6) in each kinase [34, 55], and we preserved com-
pound − kinase associations only for those kinases with 
at least 20 active molecules. After applying those crite-
ria, the final comprehensive kinase profiling dataset con-
sists of 141,086 molecules with 216,823 bioactive data 
points for 354 kinases. Each kinase dataset was randomly 
divided into three sub-datasets: training set (80%), valida-
tion set (10%), and test set (10%). The modelling datasets 
utilized in the present study are freely available at https://​
kipp.​idrug​lab.​cn/​about.

Molecular representations calculation
In this study, five molecular fingerprints including Mor-
gan fingerprints (ECFP-like, 1024-bits) [56], MACCS 
keys (166-bits) [57], AtomParis fingerprints (1024-
bits) [58], FP2 fingerprints (1024-bits) [59] and 2D 
pharmacophore fingerprints (PharmacoPFP, 38-bits) 
[60] were used to construct fingerprint-based predic-
tive models. A set of 208 RDKit molecular descriptors 
(termed RDKitDes) was chosen for the development of 

descriptor-based predictive models. The fingerprints 
and descriptors were calculated using open source 
RDKit software (http://​www.​rdkit.​org/, version: 
2020.03.1).

In a molecular graph, the atomic and atomic pair 
features are used together as a feature matrix [61]. 
Chemprop and FP-GNN utilize RDKit software (ver-
sion: 2020.09.5) to calculate molecular graphs. Other 
molecular graph-based representations were gener-
ated using DeepChem (version: 2.5.0). For example, the 
MolGraphConvFeatureizer module was used to cal-
culate the molecular graphs for the GAT, MPNN, and 
Attentive FP models, while the ConvMolFeaturizer [62] 
module was used to compute the molecular graph rep-
resentation for GCN models.

Selection of ML and DL algorithms for the assessment 
and model construction
Five mainstream ML and seven advanced DL algo-
rithms were used to build the kinase profiling predic-
tive modes for 354 kinases. These modelling methods 
(Table 1) are briefly introduced as follows.

Table 1  Detailed ML and DL modelling methods used in this study

a  RF: Random forest
b  NB: Naïve Bayesian
c  SVM: Support vector machine
d  KNN: K-Nearest Neighbor
e  XGBoost: Extreme gradient boosting
f  DNN: Deep neural networks
g  GCN: Graph convolutional network
h  GAT: Graph attention network
i  MPNN: Message passing neural networks
j  Attentive FP
k  Chemprop: D-MPN
l  FP-GNN

Method Molecular feature Hyperparameter optimization Website

RFa RDKitDES or fingerprints (Morgan, MACCS, AtomPairs, FP2, 
and PharmacoPFP)

Grid search https://​github.​com/​scikit-​learn/​scikit-​learn

NBb Grid search https://​github.​com/​scikit-​learn/​scikit-​learn

SVMc Grid search https://​github.​com/​scikit-​learn/​scikit-​learn

KNNd Grid search https://​github.​com/​scikit-​learn/​scikit-​learn

XGBooste Grid search https://​github.​com/​dmlc/​xgboo​st

DNNf Grid search https://​deepc​hem.​io/

GCNg molecular graphs Grid search https://​deepc​hem.​io/

GAT​h molecular graphs Grid search https://​deepc​hem.​io/

MPNNi molecular graphs Grid search https://​deepc​hem.​io/

Attentive FPj molecular graphs Grid search https://​deepc​hem.​io/

Chempropk molecular graphs Bayesian Optimization https://​github.​com/​chemp​rop/​chemp​rop

FP-GNNl molecular graphs and fixed molecular fingerprints 
(MACCS, PubChem, and Pharmacophore ErG fingerprints)

Bayesian optimization https://​github.​com/​idrug​Lab/​FP-​GNN

https://kipp.idruglab.cn/about
https://kipp.idruglab.cn/about
http://www.rdkit.org/
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://github.com/dmlc/xgboost
https://deepchem.io/
https://deepchem.io/
https://deepchem.io/
https://deepchem.io/
https://deepchem.io/
https://github.com/chemprop/chemprop
https://github.com/idrugLab/FP-GNN
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Random forest (RF)
RF, developed by Svetnik et al.[42], is an ensemble recur-
sive partitioning approach in which each recursive par-
titioning ‘tree’ is built from a bootstrapped sample of 
compounds, and each branch of a tree uses a random 
subset of descriptors [27]. The following five hyperpa-
rameters were tuned to achieve the optimal RF model: 
n_estimators (10–500), criterion (‘gini’ and ‘entropy’), 
max_depth (0–15), min_samples_leaf (1–10), and max_
features (‘log2’, ‘auto’ and ‘sqrt’).

Naïve Bayesian (NB)
NB classifier is developed based on Bayes’ theorem [40] 
and widely used in molecular properties prediction and 
virtual screening (VS) projects [63–66]. Two hyperpa-
rameters were optimized for NB models construction: 
alpha (0.01–1) and binarize (0, 0.5, 0.8).

Support vector machine (SVM)
SVM was formally developed in 1995 [41] and quickly 
became a mainstream ML method due to its excellent 
performance in text classification tasks [67]. The prin-
ciple of SVM is to determine the optimal hyperplane in 
the feature space by maximizing the boundaries between 
classes in N-dimensional space, which can distinguish 
objects with various class labels. Two hyperparmeters, 
Kernel coefficient (gamma, ‘auto’, 0.1–0.2) and penalty 
parameter C of the error term (C, from 1 to 100), were 
optimized for the development of SVM models.

K‑nearest neighbor (KNN)
KNN is a commonly used supervised learning method 
with a simple mechanism. For a given test sample, it finds 
the k closest training samples in the training set based on 
distance measures (e.g., Manhattan, Euclidean, and Jac-
card distance), and then makes a prediction based on the 
information of these k ‘neighbors’ [39]. In the training of 
KNN models, the default Euclidean distance metric was 
utilized, and three hyperparameters including n_neigh-
bors (1–5), p (1–2), and weight function (‘uniform’, ‘dis-
tance’), were optimized.

Extreme gradient boosting (XGBoost)
XGBoost is one of the most representative ensemble ML 
algorithms under the gradient boosting framework [43]. 
It has been shown to achieve state-of-the-art (SOTA) 
performance on many standard classification benchmark 
datasets [37, 68, 69]. Seven hyperparameters were opti-
mized: learning_rate (0.01–0.1), n_estimators (50–100), 
max_depth (3–5), min_child_weight (1–3), gamma 
(0–0.1), subsample (0.8–1.0), and colsample bytree 
(0.8–1.0).

Deep neural networks (DNN)
DNN is essentially an artificial neural network with an 
input layer, an output layer, and multiple hidden layers, 
which mimics the behavior of biological neural networks 
[44]. DNN consists of a large number of individual neu-
rons [70, 71], and each neuron in the DNN architecture 
collects information from its associated neurons and a 
non-linear activation function was then used to activate 
the aggregated information. Three hyperparameters were 
optimized: dropouts (0.1, 0.2, 0.5), layer_sizes (64, 128, 
256, 512) and weight_decay_penalty (0.01, 0.001, 0.0001).

Graph convolutional network (GCN)
GCN uses graph-structured data as features input [45], 
and consists of graph convolution layers, a readout layer, 
fully linked layers, and an output layer. The basic princi-
ple of GCN is to use edge information to aggregate node 
information, resulting in a new node representation. 
Several frameworks of GCN and variants have been pro-
posed so far. For example, Duvenaud et al. [62] proposed 
a convolutional neural network that operates directly on 
molecular graphs, allowing end-to-end learning of pre-
diction pipelines to exhibit better predictive performance 
for molecular property prediction tasks. Here, this GCN 
architecture was used to establish GCN models, and the 
following hyperparameters were optimized: weight decay 
(0, 10e-8, 10e-6, 10e-4), graph conv layers ([64, 64], [128, 
128], [256, 256], learning rate (0.01, 0.001, 0.0001), and 
dense layer size (64, 128, 256).

Graph attention network (GAT)
GAT introduces an attention mechanism based on the 
GCN [46], which calculates the weights of the features of 
nodes and adjacent nodes through aggregation, and fol-
lows a self-aggregation strategy. GAT can better extract 
the spatial feature relationships of nodes compared to 
the GCN in the application of directed graphs [72]. Six 
hyperparameters were optimized in the training of the 
GAT models, including weight_decay (0, 10e-8, 10e-6, 
10e-4), learning rate (0.01, 0.001, 0.0001), n_attention_
heads (8, 16, 32), and dropouts (0, 0.1, 0.3, 0.5).

Message passing neural network (MPNN)
MPNN, first proposed by Gilmer and coworkers in 2017 
[47], represents a commonly used GNN framework 
for various chemical prediction tasks. Many new GNN 
architectures have been developed based on the excel-
lent performance and flexibility of MPNN framework 
for molecular property prediction [49, 73–75]. Herein, 
the main hyperparameters were optimized as follows: 
weight_decay (10e-8, 10e-6, 10e-4), learning rate (0.01, 
0.001, 0.0001), graph_conv_layers ([64, 64], [128, 128], 
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[256, 256]), num_layer_set2set (2, 3, 4), node_out_feats 
(16, 32, 64), and edge_hidden_feats (16, 32, 64).

Attentive FP
Attentive FP is an advanced GNN model that allows the 
model to focus on the most important elements of the 
input using graph attention mechanism [48]. It has been 
reported to exhibit SOTA performance for predicting 
molecular properties. Herein, the primary hyperparam-
eters including dropout (0, 0.1, 0.5), graph feat size (50, 
100, 200), num timesteps (1, 2, 3), num layers (2, 3, 4), 
learning rate (0.0001, 0.001, 0.01), and weight decay (0, 
0.01, 0.0001), were optimized for the development of the 
Attentive FP models.

D‑MPNN (Chemprop)
D-MPNN (Chemprop) was developed upon the MPNN 
framework by adopting a message-passing paradigm 
based on updating representations of directed bonds 
rather than atoms [49]. Chemprop has been successfully 
applied for the discovery of structurally distinct antibiot-
ics [76]. Herein, the hyperparameters were optimized as 
follows: dropout (2, 3), dropout gat (0, 0.05), dim (1, 2), 
and gat scale (300, 400).

FP‑GNN
Recently, FP-GNN as a novel DL architecture [50] was 
developed in our Lab for enhanced molecular properties 
prediction. FP-GNN not only learns to characterize the 
local atomic environment by propagating node informa-
tion from nearby nodes to more distant nodes using the 
attention mechanism in a task-specific encoding, but also 
simultaneously learns a strong prior knowledge based 
on the fixed and complementary molecular fingerprints 
(MACCS, PubChem, and Pharmacophore ErG finger-
prints). We used FP-GNN algorithm to build models for 
the kinase profiling prediction task. The hyperparam-
eters were optimized as the following: dropout (0, 0.05, 
0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6), drop-
out gat (0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 
0.5, 0.55, 0.6), dim (300, 350, 400, 450, 500, 550, 600), gat 
scale (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8), nheads (2, 3, 4, 5, 6, 7, 
8), and nhid (40, 45, 50, 55, 60, 65, 70, 75, 80).

The RF, SVM, KNN, and NB models were constructed 
using the Scikit-learn python package (https://​github.​
com/​scikit-​learn/​scikit-​learn, version: 0.24.1) [77]; the 
XGBoost models were developed using the XGBoost 
python package (https://​github.​com/​dmlc/​xgboo​st, ver-
sion: 1.3.3) [43]; four graph-based models (GCN, GAT, 
MPNN and Attentive FP) were established using the 
DeepChem python package (https://​deepc​hem.​io/); 
D-MPNN (Chemprop) models were constructed using 
the Chemprop python package (https://​github.​com/​

chemp​rop/​chemp​rop); and FP-GNN models were devel-
oped using the FP-GNN software (https://​github.​com/​
idrug​Lab/​FP-​GNN). All ML and DL models were trained 
on CPU (Intel(R) Xeon(R) Silver 4216 CPU@2.10  GHz) 
and GPU (NVIDIA Corporation GV100GL [Tesla V100 
PCIe 32  GB]), respectively. Additionally, Bayesian opti-
mization was applied to optimize hyperparameters 
for FP-GNN and Chemprop models, while grid search 
method was employed to optimize hyperparameters for 
other models.

Performance evaluation metric
To benchmark the performance of different ML and 
DL tools for the kinase profiling prediction, six metrics, 
including specificity (SP/TNR), sensitivity (SE/TPR/
Recall), Balanced accuracy (BA), F1 score, Matthew’s cor-
relation coefficient (MCC), and area under the receiver 
operating characteristic (ROC) curve (AUC), are used 
and defined as follows:

where TP, TN, FP, and FN represent the number of true 
positives, true negatives, false positives, and false nega-
tives, respectively.

AUC was the most commonly used criterion for kinase 
inhibitor activity prediction tasks [15, 29, 30, 34, 35, 78], 
we therefore selected AUC value as the indicator of the 
accuracy of the classification models for a fair compari-
son. Given that active compounds outnumbered inac-
tive compounds in the current kinase profiling modelling 
dataset, with a positive-to-negative ratio of 3.83, F1 score 
was also utilized to judge the accuracy of the models [34, 
79–81].

Results and discussion
Benchmark dataset analysis and model construction
We obtained a comprehensive kinase profiling modelling 
dataset from multiple sources by applying the criteria 

(1)SP =
TN

TN + FP

(2)SE =
TP

TP + FN

(3)BA =
TPR+ TNR

2
=

SE + SP

2

(4)

F1 =
2× Precision× Recall

Precision+ Recall
=

2× TP

2× TP + FN + FP

(5)

MCC =
TP × TN − FN × FP

√
(TP + FN )× (TP + FP)× (TN + FN )× (TN + FP)

https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn
https://github.com/dmlc/xgboost
https://deepchem.io/
https://github.com/chemprop/chemprop
https://github.com/chemprop/chemprop
https://github.com/idrugLab/FP-GNN
https://github.com/idrugLab/FP-GNN
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mentioned in the Methods section. This dataset contains 
141,086 unique molecules involving in 216,823 inhibitory 
activity data points, which covers 354 kinases from nine 
groups in the human kinome: TK family (88 kinases), 
CMGC family (48 kinases), AGC family (44 kinases), 
CAMK family (46 kinases), STE family (38 kinases), TKL 
family (30 kinases), Atypical family (16 kinases), CK1 
family (6 kinases), and Others (38 kinases), Detailed 
information of the dataset are shown in Additional file 2: 
Table S1. The average ratio of positive (actives) to nega-
tive (inactives) was approximately 3.83, implying that the 
modelling dataset is relatively unbalanced. Nonetheless, 
in order to objectively explore and evaluate the predic-
tive performance of different computational methods, 
we preferred to utilize the raw data from experimentally 
validated molecules against these kinases, without adding 
theoretical decoys to deliberately balance the modelling 
dataset. Bemis–Murcko scaffold analysis was conducted 
to analyze the structural diversity of molecules in the 
dataset. The proportion of scaffolds to molecules for 
each kinase falls between 10 and 100%, with an aver-
age value of 51.0%, suggesting that the molecules of the 
dataset were structurally diverse. Besides, compounds 
have broad distributions of molecular weight (36.461–
998.013) and AlogP (-8.895–11.509), indicating that the 
compounds in the modelling dataset have an extensive 
chemical space (Additional file 2: Table S2). Such results 
imply that the predictive models based on this dataset 
could exhibit better reliability and robustness.

For this comprehensive kinase profiling modelling 
dataset, a total of 148,680 classification predictive mod-
els were generated based on the three different types of 
molecular features using the selected 12 ML and DL algo-
rithms. To fairly compare the performance of the ML and 
DL methods for the kinase profiling predictive task, the 
average of the evaluation metrics of the established mod-
els for each algorithm were calculated as the final result. 
The details of performance of the established models are 
described and discussed in the following sections.

Performance evaluation results of fingerprint‑based ML 
and DL models
Five ML (KNN, NB, RF, SVM, and XGBoost) and one 
DL (DNN) approaches were used to build 106,200 pre-
dictive models based on five types of fingerprints (Mor-
gan, MACCS, AtomPairs, FP2 and PharmacoPFP). Each 
model is denoted as a combination of the ML method 
and the corresponding molecular representation (e.g., 
DNN::Morgan).

As shown in Table  2, most of the fingerprint-based 
models performed well for the kinase profiling predictive 
task, with an average AUC value > 0.73 and average F1 
value > 0.72 on the test sets. Despite the differences in the 

characteristics of the five molecular fingerprints, the RF 
method performed the best for 354 kinases (Fig. 2), with 
the highest average AUC value (0.769) and MCC value 

Table 2  Performance comparison results of the fingerprint-
based models on the test sets of 354 kinases

a  RF: Random forest
b  NB: Naïve Bayesian
c  SVM: Support vector machine
d  KNN: K-Nearest Neighbor
e  XGBoost: Extreme gradient boosting
f  DNN: Deep neural networks
g  AUC: Area under the receiver operating characteristics curve
h  F1 scores: F1-measure
i  BA: Balanced accuracy. “ ± ” values represent standard deviations

Molecular 
feature

Method AUC g F1 score h BA i

AtomPairs RFa 0.779 ± 0.161 0.736 ± 0.259 0.625 ± 0.124

NBb 0.733 ± 0.135 0.716 ± 0.186 0.680 ± 0.117

SVMc 0.698 ± 0.214 0.712 ± 0.286 0.620 ± 0.157

KNNd 0.743 ± 0.152 0.747 ± 0.222 0.665 ± 0.126

XGBooste 0.759 ± 0.167 0.750 ± 0.212 0.653 ± 0.127

DNNf 0.752 ± 0.171 0.714 ± 0.238 0.631 ± 0.128

Mean 0.744 ± 0.027 0.729 ± 0.017 0.646 ± 0.024

FP2 RF 0.786 ± 0.150 0.731 ± 0.258 0.634 ± 0.118

NB 0.743 ± 0.141 0.728 ± 0.173 0.692 ± 0.121

SVM 0.682 ± 0.259 0.686 ± 0.288 0.590 ± 0.191

KNN 0.748 ± 0.149 0.760 ± 0.200 0.671 ± 0.121

XGBoost 0.761 ± 0.163 0.752 ± 0.218 0.659 ± 0.125

DNN 0.753 ± 0.179 0.722 ± 0.237 0.626 ± 0.132

Mean 0.746 ± 0.035 0.730 ± 0.026 0.645 ± 0.036

MACCS RF 0.751 ± 0.166 0.732 ± 0.257 0.613 ± 0.121

NB 0.724 ± 0.142 0.720 ± 0.177 0.662 ± 0.117

SVM 0.670 ± 0.253 0.681 ± 0.292 0.577 ± 0.190

KNN 0.719 ± 0.147 0.750 ± 0.201 0.646 ± 0.119

XGBoost 0.739 ± 0.168 0.741 ± 0.224 0.639 ± 0.124

DNN 0.705 ± 0.181 0.697 ± 0.249 0.591 ± 0.121

Mean 0.718 ± 0.028 0.720 ± 0.027 0.621 ± 0.033

Morgan RF 0.774 ± 0.166 0.722 ± 0.282 0.612 ± 0.122

NB 0.772 ± 0.143 0.745 ± 0.176 0.702 ± 0.124

SVM 0.680 ± 0.268 0.685 ± 0.292 0.594 ± 0.192

KNN 0.755 ± 0.154 0.755 ± 0.211 0.674 ± 0.124

XGBoost 0.761 ± 0.164 0.749 ± 0.223 0.653 ± 0.128

DNN 0.761 ± 0.176 0.715 ± 0.245 0.621 ± 0.132

Mean 0.751 ± 0.035 0.729 ± 0.027 0.643 ± 0.041

Pharma-
coPFP

RF 0.757 ± 0.174 0.735 ± 0.258 0.620 ± 0.121

NB 0.726 ± 0.144 0.722 ± 0.174 0.670 ± 0.123

SVM 0.684 ± 0.240 0.689 ± 0.281 0.587 ± 0.184

KNN 0.740 ± 0.147 0.761 ± 0.193 0.664 ± 0.120

XGBoost 0.748 ± 0.175 0.745 ± 0.225 0.649 ± 0.129

DNN 0.735 ± 0.183 0.709 ± 0.249 0.614 ± 0.130

Mean 0.732 ± 0.026 0.727 ± 0.026 0.634 ± 0.032
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(0.395), and relatively high F1 score (0.731) and BA value 
(0.621). In addition, another ensemble learning methods, 
XGBoost, also showed considerable predictive perfor-
mance, achieving the second highest AUC value (0.754) 
and F1 score (0.747), and relatively high BA value (0.651) 
and MCC value (0.367).

The Morgan fingerprints achieved highest mean AUC 
value (0.751 ± 0.035, Table  2), which implies that it is a 
relatively better molecular representation for kinase pro-
filing prediction. In addition, combining different ML 
methods and different molecular fingerprints yielded 
different performance results, indicating that it is neces-
sary to screen the combination of modelling algorithms 
and feature expressions to achieve the best performance. 
For example, the RF and XGBoost algorithm tends to use 
the FP2 fingerprints as input features to achieve the best 
model rather than the Morgan fingerprints. In contrast, 
the NB algorithm tends to utilize the Morgan fingerprints 
as input features to generate the best models rather than 
the FP2 fingerprints (Table 2).

We further analyzed the interval distribution of the 
average AUC values of the test sets of 354 kinase tar-
gets for each method. As shown in Fig.  3, although dif-
ferent combinations of fingerprints and modelling 
methods can produce different distributions of AUC 
values, statistical analysis found that the AUC values ​​of 
the majority of the fingerprint-based models (~ 72.2%) 
were greater than 0.7. For example, the numbers of 
high quality (HQ, AUC > 0.7) for the RF::AtomPairs and 
XGBoost::AtomPairs models were 262 (Fig. 3A) and 248 
(Fig.  3E) kinases, respectively. In addition, the RF::FP2 
models showed obvious advantage, achieving the highest 
average AUC value (0.786 ± 0.150, Table 2). Importantly, 
it can achieve AUC values ​​greater than 0.7 on 269 kinases 
(Fig. 3A).

The Morgan fingerprints owns the relatively better 
predictive performance with highest average AUC value, 
however, this does not necessarily mean that other fin-
gerprints cannot outperform the Morgan fingerprints 
on individual kinases. Figure  4A showed that the FP2, 

Fig. 2  Performance comparison results of fingerprint-based models using different ML algorithms. A, B, C and D represent the comparison results 
based on the average F1 score, AUC, BA, and MCC values from the test sets, respectively
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AtomPairs, MACCS, and PharmacoPFP fingerprints con-
tributed eight, eight, two, and two unique kinase targets 
in the models with an AUC ≥ 0.8. Although the Morgan 
fingerprints also contributed the most models with an 
AUC ≥ 0.8, and the majority of these models were com-
monly found by at least two of other four fingerprints (i.e. 
FP2, MACCS, Morgan and PharmacoPFP fingerprints). 
The most unique HQ models was obtained by the Atom-
Pairs fingerprints with an average AUC greater than 0.9 
(Fig.  4B), i.e. the FP2, MACCS, Morgan and Pharma-
coPFP fingerprints can generates two, three, six, and 

seven unique HQ models that cannot be obtained by the 
AtomPairs fingerprints.

Recently, Merget et al. [30] reported RF models based 
Morgan fingerprints for the profiling prediction of kinase 
inhibitors, with an average AUC of 0.76 on 291 kinases, 
and achieving HQ (AUC > 0.7) on ~ 200 kinases. Appar-
ently, the RF::FP2 models proposed in this study are 
superior to the models from Merget et al. study in terms 
of the total of number of kinases (354) and the overall 
accuracy (mean AUC = 0.786), as well as the number of 
HQ models (269, AUC > 0.7). In addition, the RF::Morgan 

Fig. 3  The interval distribution of the AUC values of fingerprint-based models for 354 kinases by using RF (A), NB (B), SVM (C), KNN (D), XGBoost (E), 
and DNN (F) algorithms
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models proposed herein have comparable or superior 
performance to the models of Merget et al., i.e. it exhib-
ited average AUC value of 0.774 on 354 kinases and 
achieved HQ models on 259 kinases. The results illus-
trated that the comprehensive kinase profiling dataset 
with large structural diversity and chemical space con-
structed in this paper is necessary for building robust and 
reliable kinase profiling prediction models, as well as the 
optimal combination of ML algorithms and molecular 
feature representations can help to develop more accu-
rate models for the virtual profiling prediction of kinase 
inhibitors.

Performance evaluation results of descriptor‑based ML 
and DL models
Subsequently, a total of 21,240 descriptor-based pre-
dictive models were successfully constructed and com-
pared using the same modelling methods. The optimized 
RDKit-descriptors obtained using the SelectPercentile 
module (Percentile = 30) implemented in the scikit-learn 
package were utilized as input features for model con-
struction. Detailed performance results of the descriptor-
based models are listed in Additional file 2: Table S3. The 
average F1, AUC, and BA values for the test sets of these 
models are summarized in Table 3.

As shown Table  3, most descriptor-based predictive 
models performed quite well, with mean F1 scores = 0.74, 
and average AUC value greater than 0.75. In accord-
ance with the fingerprint-based models evaluation 
results where RF method achieved the best performance, 
RF::RDKitDes also performed best with the highest 
average AUC value (0.798 ± 0.120) (Table  3) on these 

descriptor-based models, which by the way is higher than 
any other fingerprint-based models (Table  2). Accord-
ing to the average AUC values of these descriptor-based 
models (Table  3), KNN method achieved the second-
ranked predictive performance, followed by NB and 
XGBoost methods.

Figure  5A illustrates that approximately 73% of the 
descriptor-based models are HQ models, which outper-
form the aforementioned fingerprint-based models. Tak-
ing the RF::RDKitDes model as an example, it not only 

Fig. 4  Overlap analyses of various fingerprint-based high-quality (HQ) models with an average AUC of ≥ 0.8 (A) and ≥ 0.9 (B), respectively

Table 3  Performance comparison results of RDKit descriptor-
based predictive models on the test sets of 354 kinases

a  RF: Random forest
b  NB: Naïve Bayesian
c  SVM: Support vector machine
d  KNN: K-Nearest Neighbor
e  XGBoost: Extreme gradient boosting
f  DNN: Deep neural networks
g  AUC: Area under the receiver operating characteristics curve
h  F1 scores: F1-measure
i  BA: Balanced accuracy. “ ± ” values represent standard deviations

Molecular 
feature

Method AUC​g F1 scoreh BAi

RDKitDes RFa 0.798 ± 0.120 0.759 ± 0.225 0.650 ± 0.113

NBb 0.763 ± 0.099 0.739 ± 0.155 0.681 ± 0.090

SVMc 0.727 ± 0.206 0.723 ± 0.245 0.611 ± 0.165

KNNd 0.774 ± 0.116 0.776 ± 0.186 0.684 ± 0.104

XGBooste 0.755 ± 0.148 0.747 ± 0.216 0.650 ± 0.117

DNNf 0.718 ± 0.180 0.693 ± 0.254 0.589 ± 0.117

Mean 0.756 ± 0.030 0.740 ± 0.029 0.644 ± 0.038
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achieved the highest mean AUC value, but achieved 
288 HQ models (Fig.  5A) for 354 kinases. Clearly, the 
RF::RDKitDes model outperforms the corresponding 
RF-based fingerprint models in terms of both the aver-
age AUC metric and the number of HQ models (Table 2 
and Fig. 3A), regardless of which molecular fingerprints 
is used as input features.

To further confirm whether descriptor-based mod-
els outperform fingerprint-based models, we system-
atically compare the evaluation metrics of these models. 
As shown in Fig.  5B, RDKitDes-based models slightly 
outperformed fingerprint-based models due to their 
best performances in terms of the high average F1 score, 
AUC, SE and MCC values. The detailed comparison 
results of descriptor- and fingerprint-based models for 
each ML algorithm are shown in Additional file  1: Fig. 
S1. For example, RDKitDes-based models achieved the 
highest F1 scores and AUC values on the RF, SVM, and 
KNN algorithms (Additional file 1: Figs. S1A, C and D), 
and slightly weaker and/or comparable performance on 
the NB, XGBoost and DNN methods (Additional file  1: 
Figs. S1B, E and F), when compared to fingerprint models 
based on these ML algorithms. These results highlighted 
that RDKitDes may be suitable for achieving the optimal 
performance of ML methods in the kinase profiling pre-
diction task.

Performance evaluation results of graph‑based DL models
Currently, various graph-based DL algorithms, which 
have recently been developed and achieved the SOTA 
performance in molecular property prediction tasks 
[48, 49, 82], have not been used for the kinase profiling 

prediction task. Accordingly, we introduced six GNN-
based DL algorithms (Table 4) to model the kinase profil-
ing prediction task. As shown in Table 4, GCN exhibited 
the overall best performance on the test sets compared 
to other GNN-based DL methods, achieving the high-
est average AUC (0.729 ± 0.206) and BA (0.604 ± 0.127) 
values, and second high F1 score (0.658 ± 0.271). A violin 
plot analysis of the overall AUC values also demonstrated 
that GCN performed the best (Fig. 6A), followed by FP-
GNN and GAT methods.

Further analysis of the distribution of AUC values 
shows that the GCN models and FP-GNN models exhib-
ited comparable performance in terms of HQ models, 
achieving 78 models in the interval where the AUC value 
is greater than 0.9 (Fig. 6B). Additionally, the GCN mod-
els and FP-GNN models, respectively, outperformed the 
RF::RDKitDes models on 140 and 143 kinases in terms 
of AUC metric (Additional file  2: Tables S4-S5. Conse-
quently, the predictive models based on the GCN and FP-
GNN algorithms are more applicable overall compared to 
other graph-based DL methods.

However, the use of graph-based DL methods (Table 4) 
may not be suitable as they do not show any advan-
tage in the kinase profiling prediction task compared to 
the models based on the fixed prior molecular features 
such as molecular fingerprints (Table 2) and descriptors 
(Table 3). Even GCN and FP-GNN models only achieved 
226 and 203 HQ models (AUC > 0.7) for 354 kinase tar-
gets. Typically, graph-based DL algorithms have an inher-
ent self-learning mechanism, which may result in poor 
performance due to the insufficient modelling datasets 
in individual kinases. To confirm this point, we further 

Fig. 5  A Detailed distribution of the average AUC values of RDKitDes-based models for 354 kinases. B Heatmap analysis results of the average 
metrics of RDKitDes- and fingerprint-based models on the test sets
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analyze whether the size of the modelling dataset for 
each kinase has an impact on the accuracy of the graph-
based DL models. Figure 7 summarizes the relationship 
between the AUC values in the test sets and compound 
quantity intervals in the training sets for the graph-based 
DL models. In general, the prediction performance is 
positively correlated with the number of compounds in 
the training set. Taking the GCN method as an example 
(Fig. 7A), if the number of molecules in modelling dataset 
is less than 100, few HQ models can be obtained. Similar 

phenomena are observed in other DL methods (Figs. 7B–
F), albeit with some differences. In other words, graph-
based DL models possibly acquire better predictive 
performance on large datasets. Our findings further illus-
trate the shortcomings of graph-based DL algorithms in 
the field of kinase prediction, especially for kinases with 
insufficient activity data. In the future, as the number of 
kinases and their inhibitors continues to increase, graph-
based DL algorithms may be more suitable for many indi-
vidual kinases to achieve better predictive performance.

Table 4  Performance comparison results of different graphs-based DL models on the test sets

a  GCN: Graph convolutional network
b  GAT: Graph attention network
c  MPNN: Message passing neural networks
d  Attentive FP
e  Chemprop: D-MPNN
f  FP-GNN
g  AUC: Area under the receiver operating characteristics curve
h  F1 scores: F1-measure
i BA: Balanced accuracy. “ ± ” values represent standard deviations

Molecular feature Method AUC​g F1 scoreh BAi

Molecular graphs GCNa 0.729 ± 0.206 0.658 ± 0.271 0.604 ± 0.127

GAT​b 0.675 ± 0.225 0.636 ± 0.272 0.582 ± 0.145

MPNNc 0.658 ± 0.202 0.621 ± 0.298 0.557 ± 0.128

Attentive FPd 0.674 ± 0.207 0.661 ± 0.295 0.581 ± 0.116

Chemprope 0.717 ± 0.173 0.640 ± 0.291 0.573 ± 0.108

FP-GNNf 0.704 ± 0.223 0.627 ± 0.367 0.604 ± 0.142

Mean 0.693 ± 0.028 0.641 ± 0.016 0.584 ± 0.018

Fig. 6  A Violin plot of the overall distribution of AUC values for six graph-based DL models. White spheres represent the medians, and boxes 
represents 1.5 the interquartile range (1.5IQR) from the median. B Detailed distribution of the average AUC values of different graph-based DL 
models on 354 kinases
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Comparison performance results of fingerprint‑, 
descriptor‑, and graph‑based ML and DL models
Boxplots analysis for AUC values of descriptor-, fin-
gerprint-, and graph-based models on the test sets are 
shown in Fig. 8. If considering the commonly used AUC 
value as the final evaluation metric, the RF::RDKitDes 
models (Fig.  8F) performed best, followed by RF::FP2, 
RF::AtomPairs, and RF::Morgan models. It is clear that 
RF method usually achieved the best performance (Fig. 8) 
for the kinase profiling prediction task when molecular 
descriptors and fingerprints are used as input features. 
When F1 score, BA and MCC values were used as the 
final assessment metric (Additional file 1: Figs. S2-S4), RF 
also showed comparable performance. In addition, the 
average predictive performance of graph-based DL algo-
rithms (Fig. 8G and Figs. S2G-S4G) are inferior to finger-
prints- and descriptor-based ML models. The optimal in 
silico predictive models for each kinase in terms of AUC 
metric are shown in Additional file 2: Table S6.

For better comparison of the predictive performance 
of deep learning to a variety of other prediction meth-
ods, based on KinaseNet dataset, we added multi-task 
GCN, GAT, DNN, FP-GNN, Chemprop and Attentive 

FP models. A total of six deep learning methods were 
adopted to construct the corresponding multi-task deep 
learning models, and hyperparameters optimazation 
were performed to stretch the ability of algorithms. As 
shown in Table  5, compared with single model, multi-
task learning can promote the comprehensive prediction 
ability of the model, and improve the prediction abil-
ity of models on the multi-task data set. In addition, the 
multi-task FP-GNN model achieves the highest average 
AUC of 0.807, which is higher than the best descriptor 
models (0.798) and fingerprint models (0.786). Besides, 
the multi-task FP-GNN model’s performance is close to 
but slightly worse than RF::AtomPairs + FP2 + RDKitDes 
fusion model (0.825). These results show that the effects 
of descriptor-based and graph-based models vary from 
data set to data set. Although current research focuses 
on graph-based multitask modeling strategies, and many 
graph-based deep learning and multi-task models claim 
to have the most advanced performance in predictive 
tasks, there is still much debate about the performance 
of algorithms based on molecular fingerprints and 
descriptors versus those based on molecular pictures and 
structures.

Fig. 7  Relationships between the interval distribution of AUC values in the test sets and the corresponding interval of different compound 
quantities in the training sets of GCN (A), GAT (B), MPNN (C), Attentive FP (D), Chemprop (E), and FP-GNN (F) models
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Fig. 8  Comparison of average AUC values of A AtomPairs-, B FP2-, C MACCS-, D Morgan-, E PharmacoPFP-, and F RDKitDes-, G Graph-based models 
using five ML and one DNN DL methods. The average AUC values of the test sets for various ML and DL algorithms are displayed as boxplot. Middle 
spheres represent the median, and boxes represent the interquartile range (IQR) from the median
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Exploring whether combining descriptors and fingerprints 
could improve the performance of models
To investigate whether the combined features of finger-
prints and descriptors could improve the performance 
of the kinase profiling prediction task, the combined fea-
tures were used to establish 10,620 models using six ML 
algorithms. As shown in Table 6, the combined-features-
models based on the RF, XGBoost and DNN algorithms 
slightly outperformed their corresponding descriptor- 
and fingerprint-based models in terms of AUC met-
ric. For example, the best combined-features-model 
(RF::Morgan::RDkitDes, AUC = 0.815, Table  6) is supe-
rior to RF::RDKitDes and RF::Morgan. Similar trends 
occurred in the comparative performance of the com-
bined-features-models and individual descriptor- and 
fingerprint-based models in terms of F1 score (Additional 
file 2: Table S7). However, the predictive performance of 
the combined-features-models constructed using KNN, 
NB, and SVM methods did not outperform the cor-
responding descriptor-based models (Table  6, because 
the average AUC values of these combined models were 
slightly larger than that of the fingerprint-based models, 
but smaller than that of the descriptor-based models. A 
possible reason is that more input of feature information 
is conducive to building accurate prediction models for 
the ensemble learning RF and XGB algorithms and DNN 
method.

Exploring whether model fusion could improve 
performance on the kinase profiling prediction task
We further explore whether fusion models can improve 
classification accuracy of a single model in the kinase 
profiling prediction task. Given that the RF, KNN and 
NB algorithms outperformed other ML and DL meth-
ods on the kinase profiling prediction task (Additional 
file 2: Table S8), both voting and stacking methods were 
therefore used construct fusion model based on the 

three ML algorithms. As shown in Fig. 9, both voting- 
and stacking-based fusion models were slightly bet-
ter than the corresponding single-based RF and KNN 
models, albeit with some differences in terms of NB 
models. For example, the voting fusion models based 
on RF achieved the best overall performance with the 
highest average values of AUC (0.825 ± 0.124).

Collectively, RF::AtomPairs + FP2 + RDKitDes voting 
fusion models achieved the overall best performance 
in the kinome-wide profiling prediction task in terms 
of AUC metric. As shown in Fig.  10A, 301 HQ mod-
els were obtained in the voting fusion models and dis-
tributed over the entire kinome tree covering all kinase 
families.

KIPP online webserver construction and application
Although several kinases profiling prediction mod-
els have been reported (Additional file  2: Table  S9), 
easy-to-use software and/or online webserver are not 
available. To this end, an online platform called KIPP 
(https://​kipp.​idrug​lab.​cn/) was developed based on the 
overall optimal RF::AtomPairs + FP2 + RDKitDes mod-
els (default). A collection of the best models based on 
each kinase and the multi-task FP-GNN model are also 
provided. KIPP includes five main modules: compound 
basic information display, kinase profiling predic-
tion and display, kinase tree construction and display, 
selectivity index calculation and display, and similarity 
search results display. Overall selectivity and selectiv-
ity towards a kinase subfamily will be generated based 
on the predicted kinase profile. The overall selectivity 
is represented by the two quantitative evaluation meth-
ods, standard score [84] and Gini coefficient [85]. Odds 
ratio (OR) is adopted to calculate sub-family selectivity 
to represent the strength of the association between an 
inhibitor and a sub-family [86].

Taking CHMFL-BMX-078 (a highly potent and selec-
tive Type II irreversible BMX kinase inhibitor) [87] as 
an example, users can easily upload the SMILES or draw 
the structure online of CHMFL-BMX-078 (Fig.  10B) 
to quickly predict the inhibitory activity of this com-
pound against 354 kinase across the kinome. Once the 
calculation task is completed, users can click on differ-
ent modules to query the calculation results, including 
basic compound information (Fig.  11A), kinase profil-
ing prediction results in heat map (Fig.  11B) and list 

Table 5  Performance of AUC values based on multi-task models

Single models AUROC Multi-task models AUROC

GCN 0.729 Multi-GCN 0.785

GAT​ 0.675 Multi-GAT​ 0.713

FP-GNN 0.704 FP-GNN 0.807

Chemprop 0.717 Chemprop 0.798

AttentiveFP 0.674 AttentiveFP 0.667

MPNN 0.658 Multi-DNN::Morgan 0.556

https://kipp.idruglab.cn/
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(Fig.  11C), kinase tree diagram (Fig.  11D), selectivity 
index results (Fig. 11E) and similarity search results for 
the CHMFL-BMX-078 (Fig. 11F). The predicted kinase 

profiling results of CHMFL-BMX-078 by KIPP were 
overall consistent with the experimental kinases inhibi-
tion results (Additional file 2: Table S10), with an AUC 

Table 6  Performance comparison results of AUC values between the combined-features-based models and individual descriptor- and 
fingerprint-based models

a  DNN: Deep neural networks
b  KNN: K-Nearest Neighbor
c  NB: Naïve Bayesian
d  RF: Random forest
e  SVM: Support vector machine
f XGBoost: Extreme gradient boosting

Method Combined features AUC​ Molecular feature AUC​ Difference

DNNa AtomPairs::RDKitDes 0.749 AtomPairs 0.752 − 0.003

FP2::RDKitDes 0.762 FP2 0.753 0.009

MACCS::RDKitDes 0.741 MACCS 0.705 0.036

Morgan::RDKitDes 0.774 Morgan 0.761 0.013

PharamacoPFP::RDKitDes 0.748 PharamacoPFP 0.735 0.013

RDKitDes 0.718

KNNb AtomPairs::RDKitDes 0.745 AtomPairs 0.743 0.002

FP2::RDKitDes 0.754 FP2 0.748 0.006

MACCS::RDKitDes 0.742 MACCS 0.719 0.023

Morgan::RDKitDes 0.767 Morgan 0.755 0.012

PharmacoPFP::RDKitDes 0.749 PharmacoPFP 0.740 0.009

RDKitDes 0.774

NBc AtomPairs::RDKitDes 0.738 AtomPairs 0.733 0.005

FP2::RDKitDes 0.747 FP2 0.743 0.004

MACCS::RDKitDes 0.750 MACCS 0.724 0.026

Morgan::RDKitDes 0.781 Morgan 0.772 0.009

PharmacoPFP::RDKitDes 0.737 PharmacoPFP 0.726 0.011

RDKitDes 0.763

RFd AtomPairs::RDKitDes 0.792 AtomPairs 0.779 0.013

FP2::RDKitDes 0.803 FP2 0.786 0.017

MACCS::RDKitDes 0.799 MACCS 0.751 0.048

Morgan::RDKitDes 0.815 Morgan 0.774 0.041

PharmacoPFP::RDKitDes 0.801 PharmacoPFP 0.757 0.044

RDKitDes 0.798

SVMe AtomPairs::RDKitDes 0.699 AtomPairs 0.698 0.001

FP2::RDKitDes 0.686 FP2 0.682 0.004

MACCS::RDKitDes 0.681 MACCS 0.670 0.011

Morgan::RDKitDes 0.685 Morgan 0.680 0.005

PharmacoPFP::RDKitDes 0.687 PharmacoPFP 0.684 0.003

RDKitDes 0.727

XGBoostf AtomPairs::RDKitDes 0.763 AtomPairs 0.759 0.004

FP2::RDKitDes 0.768 FP2 0.761 0.007

MACCS::RDKitDes 0.758 MACCS 0.739 0.019

Morgan::RDKitDes 0.768 Morgan 0.761 0.007

PharmacoPFP::RDKitDes 0.763 PharmacoPFP 0.748 0.015

RDKitDes 0.755



Page 17 of 22Wu et al. Journal of Cheminformatics           (2024) 16:13 	

value of 0.763, indicating the accuracy and usability 
of the KIPP platform. Importantly, native versions of 
Python software are also provided for various kinases, 
allowing users to perform large-scale VS.

Conclusions
In this paper, we provided a comprehensive assessment 
of the performance of five ML (NB, RF, XGBoost, KNN, 
and SVM) and seven DL (DNN, GCN, GAT, MPNN, 
D-MPNN, Attentive FP, and FP-GNN) methods in kinase 

profiling prediction task. To obtain a more objective 
performance evaluation, we constructed a comprehen-
sive KinaseNet dataset covering 354 kinases cross the 
entire kinome to benchmark all tools. Three types of 
commonly used molecular features, including a set of 
molecular descriptors, a collection of five molecular fin-
gerprints (Morgan, MACCS keys, AtomParis, FP2, and 
PharmacoPFP), and molecular graphs, were used as input 
features to build predictive models using these com-
pared methods. We found that RF outperform the other 

Fig. 9  Comparison of the prediction results between fusion models and single models. The fusion models are constructed based on RF (A), KNN 
(B), and NB (C) models using voting and stacking methods
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methods for kinase profiling prediction. This finding 
generalizes across different types of molecular descrip-
tors and fingerprints. Meanwhile, the RDKitDes-based 
models generally outperform fingerprint-based models. 
Specifically, the RF::RDKitDes models performed best, 
followed by RF::FP2, RF::AtomPairs, and RF::Morgan 
models. Although single-task graph-based DL methods 
do not achieve the best overall predictive performance 
on the KinaseNet dataset, the predictive performance 
of multi-task DL models such as multitask FP-GNN and 
Chemprop models can still achieve comparable or even 
better predictive performance than conventional descrip-
tor- and fingerprint-based models, due to the existence 
of certain data linkages between the various kinase data. 
In addition, these performance of DL methods improves 
as the training dataset increases. Accordingly, we envi-
sion that with the increasing amounts and quality of 

data from industry and academia, further performance 
improvements could be gained by DL methods. Combin-
ing descriptors and fingerprints could improve the per-
formance of models, especially for the fingerprint-based 
models. In addition, fusion models based on the voting 
and stacking methods further improve performance on 
the kinase profiling prediction task. Finally, an easy-to-
use online platform KIPP and its local version software 
were constructed based on the optimal models for vari-
ous kinase inhibitor identification related tasks, includ-
ing kinase profiling prediction, virtual screening, drug 
repositioning, and target fishing. It is expected that this 
study can provide valuable guidance for researchers who 
are interested in developing innovative and even more 
powerful kinase profiling prediction models, as well as 
for medicinal chemists and pharmacologists in designing 
and discovering new kinase inhibitors.

Fig. 10  A Kinome map analysis of the RF::AtomPairs + FP2 + RDKitDes models. Kinases are colored based on their AUC values. The kinase tree 
was generated using Kinmap tool (http://​kinhub.​org/​kinmap) [83]. B Chemical structure of CHMFL-BMX-078 and its predicted result. AUC value 
(0.763) was generated based on the predicted kinase profile of CHMFL-BMX-078 using KIPP and its experimentally tested kinase profile. BMX: bone 
marrow kinase in the X chromosome

http://kinhub.org/kinmap
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The online version contains supplementary material available at https://​doi.​
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Additional file 1: Fig S1. Detailed comparison performance of descrip-
tor- and fingerprint-based models using various ML algorithms. (A), (B), (C), 
(D), (E), and (F) represent the comparison results for the RF, NB, SVM, KNN, 
XGB, and DNN methods, respectively. Fig S2. Comparison of average F1 
scores of (A) AtomPairs-, (B) FP2-, (C) MACCS-, (D) Morgen-, (E) Pharma-
coPFP-, (F) RDKitDes-, and (G) Graph-based models. The assay-F1 scores for 
various ML algorithms are displayed as boxplot. Middle spheres represent 
the median, and boxes represents the interquartile range (IQR) from the 
median. Fig S3. Comparison of average BA values of (A) AtomPairs-, (B) 
FP2-, (C) MACCS-, (D) Morgen-, (E) PharmacoPFP-, (F) RDKitDes-, and (G) 
Graph-based models. The assay-BA values for various ML algorithms are 
displayed as boxplot. Middle spheres represent the median, and boxes 

represent the interquartile range (IQR) from the median. Fig S4. Com-
parison of average MCC values of (A) AtomPairs-, (B) FP2-, (C) MACCS-, 
(D) Morgen-, (E) PharmacoPFP-, and (F) RDKitDes-, (G) Graph-based 
models. The assay-MCC values for various ML algorithms are displayed 
as boxplot. Middle spheres represent the median, and boxes represent 
the interquartile range (IQR) from the median.

Additional file 2: Table S1. Details on benchmark dataset for kinase 
profiling prediction task used in this study. Table S2. Structural 
diversity and chemical space analysis of the compounds in each kinase. 
Table S3. Detailed performance results of different ML methods. 
Table S4. Detailed individual kinases where the GCN models outper-
form the RF::RDKitDes models. Table S5. Detailed individual kinases 
where the FP-GNN models outperform the RF::RDKitDes models. 
Table S6. The optimal in silico predictive models for each kinase in 
terms of AUC metric. Table S7. Comparison performance of models 
based on combined features and single feature in terms of F1 score. 

Fig. 11  Website schematic diagram of KIPP for CHMFL-BMX-078 in the kinase profiling prediction task. A represents the basic information 
for submitted CHMFL-BMX-078. B and C represent kinase profiling prediction results of CHMFL-BMX-078 in heat map and list, respectively. D 
represents kinase tree diagram of CHMFL-BMX-078. E represents the selectivity index results. F represents the similarity search results

https://doi.org/10.1186/s13321-023-00799-5
https://doi.org/10.1186/s13321-023-00799-5
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Table S8. Ranking of all single models by AUC values. Table S9. Compari-
son of our models with the reported in silico prediction models for kinase 
profiling prediction task. Table S10. The predicted activity probability and 
experimental % activity of CHMFL-BMX-078.
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