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Abstract 

Background  Target identification and hit identification can be transformed through the application of biomedical 
knowledge analysis, AI-driven virtual screening and robotic cloud lab systems. However there are few prospective 
studies that evaluate the efficacy of such integrated approaches.

Results  We synergistically integrate our in-house-developed target evaluation (SpectraView) and deep-learning-
driven virtual screening (HydraScreen) tools with an automated robotic cloud lab designed explicitly for ultra-high-
throughput screening, enabling us to validate these platforms experimentally. By employing our target evaluation 
tool to select IRAK1 as the focal point of our investigation, we prospectively validate our structure-based deep 
learning model. We can identify 23.8% of all IRAK1 hits within the top 1% of ranked compounds. The model outper-
forms traditional virtual screening techniques and offers advanced features such as ligand pose confidence scoring. 
Simultaneously, we identify three potent (nanomolar) scaffolds from our compound library, 2 of which represent 
novel candidates for IRAK1 and hold promise for future development.

Conclusion  This study provides compelling evidence for SpectraView and HydraScreen to provide a significant 
acceleration in the processes of target identification and hit discovery. By leveraging Ro5’s HydraScreen and Strateos’ 
automated labs in hit identification for IRAK1, we show how AI-driven virtual screening with HydraScreen could offer 
high hit discovery rates and reduce experimental costs.

Scientific contribution  We present an innovative platform that leverages Knowledge graph-based biomedical data 
analytics and AI-driven virtual screening integrated with robotic cloud labs. Through an unbiased, prospective evalua-
tion we show the reliability and robustness of HydraScreen in virtual and high-throughput screening for hit identifica-
tion in IRAK1. Our platforms and innovative tools can expedite the early stages of drug discovery.

*Correspondence:
Gintautas Kamuntavičius
gkamuntavicius@ro5.ai
Alvaro Prat
aprat@ro5.ai
Sarah J. L. Flatters
sflatters@ro5.ai
Roy Tal
rtal@ro5.ai
Povilas Norvaišas
pnorvaisas@ro5.ai
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-024-00914-0&domain=pdf


Page 2 of 18Kamuntavičius et al. Journal of Cheminformatics          (2024) 16:127 

Keywords  Computational chemistry, Artificial intelligence, Machine learning, Knowledge graph, Deep learning, Drug 
discovery, SBDD, MLSF, Docking, High-throughput screening, Hit identification, Virtual screening, Automated labs, 
IRAK1, Interleukin 1 receptor associated kinase

Introduction
Drug discovery is a notoriously lengthy, expensive and 
inefficient process [1]. Many of its major challenges and 
bottlenecks are now being tackled using modern data 
management [2], lab automation [3, 4] and machine 
learning (ML) [5–7] solutions that aim to transform the 
pharmaceutical industry’s legacy workflows [8]. Target 
identification and hit identification in the early stages of 
drug discovery are perfect examples of such transforma-
tions [8]. Traditionally, target identification has always 
been a largely manual process driven by experts with 
specialized domain-knowledge [9]. Recent advances in 
data management and analysis systems have enhanced 
researchers’ workflows, enabling seamless integration, 
summarization and retrieval of biomedical data to facili-
tate hypothesis generation. Examples of such systems 
include knowledge graphs [10] and platforms for target 
identification and evaluation [11]. Similarly, traditional 
high-throughput screening (HTS) methods for hit iden-
tification have been relying on slow and costly unguided 
experimentation platforms [12, 13]. In contrast, recently 
emerging automated robotic labs can now offer highly-
reproducible data at greater throughput volume with bet-
ter control of the experimental conditions [4, 14, 15].

Virtual screening for hit identification is one of the 
areas where ML, and in particular, deep learning (DL), 
techniques can now offer previously unattainable solu-
tions and improved performance with respect to tradi-
tional alternatives [16]. Computational structure-based 
drug discovery (SBDD) techniques such as docking [17], 
and quantitative structure-activity relationship (QSAR) 
models [18], are now being augmented [19, 20] or com-
plemented [21, 22] with these data-driven methods. A 
wide range of machine learning scoring functions (MLSF) 
are now available for application in virtual screening [16]. 
These methods are often extensively evaluated and com-
pared using retrospective publicly available data [23]. 
However, their translation to practice is still limited with 
only a few prospective validation studies available [24], 
especially in comparison to the widely used computa-
tional chemistry techniques such as docking [13]. The 
impact of these methods in the real-world drug discovery 
programs will ultimately depend not only on their raw 
performance, as tested in benchmarking studies, but also 
on their ability to prioritize targets and compounds that 
could be brought to later stages of drug development.

In this study, we showcase an early-stage drug discov-
ery workflow by integrating the Strateos robotic cloud 
labs for high-throughput screening with Ro5’s drug dis-
covery suite, leveraging target evaluation (SpectraView)1 
and DL-driven virtual screening (HydraScreen)2 [25] 
tools. We perform data-driven target evaluation and pro-
spectively validate HydraScreen for virtual screening. 
Using the HTS results collected by the robotic cloud labs 
we also compare HydraScreen against traditional and 
machine learning, SBDD and QSAR techniques. Finally, 
we evaluate the identified hits in terms of their potential 
for further development.

Methods
Target evaluation using SpectraView
Target selection and evaluation was performed using 
Spect​raView application. This tool allows data driven 
evaluation of prospective protein targets in drug dis-
covery projects. The evaluation criteria encompass both 
scientific (e.g. biological, chemical) and commercial (e.g. 
novelty, competition) considerations, aligning with the 
typical questions posed by researchers in drug discov-
ery campaigns. Results from these queries are presented 
as interactive plots that allow exploration of different 
criteria.

SpectraView draws all of its information for target 
evaluation from Ro5’s Knowledge Graph. The Knowledge 
Graph provides a comprehensive data resource consist-
ing of four main components:

•	 Ontologies: databases containing entities with unique 
identifiers (e.g. Ensemble, HGNC, OpenTargets).

•	 Unstructured (textual) data: over 34 million PubMed 
abstracts and more than 90 million patents, from 
which we extract relevant entities and their relation-
ships.

•	 Structured (database) data: 20 relational databases 
that provide contextual information for each entity 
type.

•	 Metadata and metrics: data origin metadata and cus-
tom metrics for data science analytics.

1  https://​spect​raview.​ro5.​ai/.
2  https://​hydra​screen.​ro5.​ai/, https://​github.​com/​Ro5-​ai/​hydra​screen.

https://spectraview.ro5.ai/
https://spectraview.ro5.ai/
https://hydrascreen.ro5.ai/
https://github.com/Ro5-ai/hydrascreen
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In total, the graph contains 12 entity types (Disease, 
Target, Mechanism, Compound, Species, Anatomical 
location, Cell line, Biomarker, Publication, Patent/Appli-
cation, Author, Organization). Each entity is based on an 
ontology that provides unique identifiers for the associ-
ated concepts. For example, Disease and Target entities 
rely on the corresponding OpenTargets ontologies [26]. 
Entity-to-entity edges are extracted for all of these entity 
pairs. A Publication entity is introduced to preserve full 
contextual information when parsing text. As a result, 
conditional queries can be formulated for all combina-
tions of extracted entities (e.g. Target—Diseases in the 
context of a Mechanism in a given Publication). Addi-
tionally, extensive metadata is extracted, including jour-
nal, author and organization affiliation. Corresponding 
entities (e.g. Author, Organization) are represented in the 
Knowledge Graph and are used in competitive landscape 
analyses. Finally, the Knowledge Graph is populated 
with metrics that allow quantitative analysis of the graph 
structure (e.g. network connectivity, point-wise mutual 
information, etc.) and entity relationship dynamics over 
time (e.g. edge emergence). Altogether, such detailed rep-
resentation of entities and their relationships provide an 
in-depth and up-to-date data for drug discovery queries 
presented in SpectraView.

Strateos cloud lab
All in vitro experiments were performed at the Strateos 
Cloud Lab in San Diego, CA. The Strateos Cloud Lab 
consists of a collection of online software applications 
that integrate Strateos’ automated chemistry and biol-
ogy workstations, inventory management, data genera-
tion, and data management. All experiments are coded 
in autoprotocol (www.​autop​rotoc​ol.​org), an open-source 
standard developed by Strateos, which coordinates 
instrument actions in specific work cells based on scien-
tific intent. This platform allows scientists to configure 
experiments and experimental parameters, remotely ini-
tiate and monitor automated experiments, oversee proto-
col management and inventory, generate data, and access 
real-time outputs of experimental data in a closed-loop 
fashion.

47k diversity library
A diverse library of 46,743 commercially available com-
pounds was employed as the primary screening resource. 
This library was made from a broader pool of ∼500,000 
compounds through cheminformatics evaluation. The 
chosen compounds were characterized by properties 
such as scaffold diversity and favorable physicochemical 
attributes. Compounds prone to interference were sys-
tematically removed, aligning with the exclusion of Pan 
Assay Interference Compounds (PAINS) from screening 

libraries. Compound stocks were stored at a concentra-
tion of 10  mM in dimethylsulfoxide (DMSO). For the 
screening process, 50 µ L of each compound was dis-
pensed into Echo-qualified 384-well polypropylene 
microplates. It is important to note that this 50 µ L vol-
ume refers to the 10 mM stock compounds in the library 
plates, not the assay plates. These library plates were then 
used to create assay-ready plates, where 10 nL of each 
compound was transferred into screening plates using a 
Beckman Echo.

47k diversity library ligand preparation & stereoisomer 
treatment
The SMILES representations of the compounds in the 
47k diversity set were processed by removing salts and 
converting them into a canonical form. Stereoisomers 
of the same compound were treated as different ligands 
in silico. For compounds with four or fewer undefined 
stereocenters, we generated and stored all possible ste-
reoisomers, which amounted to a maximum of 16. For 
compounds with more than four stereocenters we ran-
domly selected a subset of 16 stereoisomers to be used 
in virtual screening. Since empirical values collected 
from assays in vitro will correspond to racemic-averaged 
results, we compute a final per-compound score by aver-
aging the scores across all stereoisomers in silico.

HydraScreen
HydraScreen is a machine learning scoring function 
(MLSF) composed of a CNN-based (convolutional neural 
network) deep learning framework designed to predict 
protein-ligand affinity and pose confidence scores [25]. 
HydraScreen consists of an ensemble of models trained 
on more than 19K protein-ligand pairs and 290K docked 
conformations. It has been shown to outperform tradi-
tional SBDD and novel MLSFs solutions in both affinity 
and pose estimation tasks [25]. In this study, HydraS-
creen is employed to classify between strong and weak 
binders during virtual screening.

HydraScreen estimates the affinity of a query ligand for 
a given target protein in a two-step process. First, it gen-
erates a set of conformations for protein-bound ligand, 
creating a docked pose ensemble. Second, it estimates the 
affinity and pose for each conformation and calculates a 
final aggregate affinity value using a Boltzmann-like aver-
age over the entire protein-ligand conformational space. 
A schematic of the described procedure is presented in 
Fig. 1.

Docked poses are generated in a similar fashion to that 
outlined in [25]. Briefly, we use the open-source Smina 
[17] software to generate poses of a query ligand in the 
binding pocket of our target protein. For each protein-
ligand pair, the docking process involves: (1) preparation 

http://www.autoprotocol.org
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of the protein structure; (2) preparation of the ligand 
(candidate) structure; (3) docking with Smina. To pre-
pare the protein for docking we perform a series of steps, 
including: (1) solvent and ion deletion, (2) repair of trun-
cated side-chains using Dunbrack 2010 rotamer library 
[27], (3) adding hydrogens (histidines were treated like 
other standard residues), (4) adding charges. Addition-
ally, non-standard residues were changed to the near-
est standard residue. As an example, selenomethionine 
(MSE) is converted to methionine (MET).

Each ligand undergoes sanitization through RDKit (ver. 
2021.09.03). Only 160 from the diversity set failed to san-
itize and were thus excluded. An initial ligand conformer 
is generated with RDKit and undergoes protonation 
with the ADFR suite [28] at pH 7.4. For each compound, 
an initial conformer is then used to generate up to 
20 docked poses via Smina, using the following input 
parameters: (num_modes = 20), (min_rmsd = 1Å). Fur-
thermore, we define the binding pocket with the auto-
box option, passing in the reference crystal ligand pose 
(DL1) from 6BFN, and including all protein atoms within 
4Å of any atom in the native ligand’s conformation. The 

ligand poses generated using this approach are available 
at https://​ro5-​public.​s3.​amazo​naws.​com/​47k_​poses.​zip.

In this study, we primarily use HydraScreen to find 
potential hits amongst compounds in a screening library, 
therefore we rely on its ranking to identify compounds 
that successfully bind to the pocket above a given affinity 
threshold.

HydraScreen is available as an open-source Python 
package (https://​pypi.​org/​proje​ct/​hydra​screen/) free for 
non-commercial use and can be downloaded from PyPi 
package repository using pip.

Benchmarks
We introduce a set of baselines consisting of structure-
based and ligand-based methods to better understand 
the performance of HydraScreen with respect to tradi-
tional approaches.

Smina
Smina [17] exploits a traditional docking approach. 

Herein, protein-ligand binding affinity is scored accord-
ing to the energy required to remove a ligand from the 

Fig. 1  End-to-end structure-based scoring via HydraScreen. interleukin 1 receptor associated kinase 1 (IRAK1) crystal structure 6BFN 
and the associated ligand DL1 were used to define the pocket and relevant residues (top). For each compound in the library a pose ensemble 
was created via docking. The pose ensembles were then used as an input in HydraScreen to predict the compound affinity and pose confidence 
scores

https://ro5-public.s3.amazonaws.com/47k_poses.zip
https://pypi.org/project/hydrascreen/
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pocket (free energy). In order to score our compounds, 
we leverage the already generated poses and, for each 
docked ensemble, extract the largest free energy calcu-
lated by Smina amongst all the poses.

DeCAF
Density-Encoded Canonically Aligned Fingerprint 

(DeCAF) [29] is a ligand-based approach that measures 
the similarity between two compounds. DeCAF can be 
used to rank compounds by rewarding similarity between 
the query candidate and the reference molecule (DL1). 
DeCAF score is computed by: (i) finding the maximal 
common subgraph between the corresponding molecu-
lar graphs, represented as a coarse network of pharma-
cophore descriptors; (ii) computing the modular product 
of the two graphical models and extracting the similarity 
between the maximal clique identified. The score ∈ [0, 1] 
can then be used to rank compounds, where higher and 
lower scores correspond to a higher and lower structural 
pharmacophore match. In contrast to other shape-based 
methods like USRCAT [30], DeCAF does not require 
conformer generation.

Random forest
We trained a Random Forest (RF) classifier using pub-

licly available IRAK1 data. The available pKi and pIC50 
values were converted from IRAK1 assays to boolean 
values based on whether they are above the 6.0 pIC50 
threshold (sub-micromolar concentration). Out of 689 
molecules available on PubChem, 142 were classified as 
active and 547 as inactive. The inactive class was further 
up-sampled by 5K using DeepCoy [31]. The compounds 
generated with DeepCoy were ensured to be structurally 
dissimilar to the actives while maintaining similar molec-
ular weight as well as synthetic accessibility. By adding 
additional negative data, the models not only become 
harsher in inference by broadening the gap between 
active (1) and inactive (0) scores, but also become more 
robust to false positives. Since the ratio of active to inac-
tive compounds in the training set is not representative 
of the typical ratio found in screening, we added addi-
tional data to reduce the model’s false positives. The clas-
sification model was trained using ECFP4 fingerprints 
[32] generated using RDKit.

Pharmit
Pharmit [33] provides an online, interactive environ-

ment for the virtual screening of large compound data-
bases using pharmacophores, molecular shape and 
energy minimization. We used the co-crystallized struc-
ture 6BFN to extract a 6-point pharmacophore hypothe-
sis, later used in scoring the 47k diversity set compounds. 
In order to create a continuous score that can be used to 
rank the compounds rather than a boolean match, we 
extended Pharmit’s compound and hypothesis match-
ing functionality. The continuous score was computed 

by evaluating subsets of the original pharmacophore 
hypothesis, performing conformer matching on them 
and then combining results from the subset matches to 
get the final score. Such a hypothesis-subset screening 
was made possible by the high efficiency of the Pharmit 
algorithm.

IRAK1 assay
The experimental method of LanthaScreenTM Eu Kinase 
Binding Assay for IRAK1 was developed based on the 
InvitrogenTM IRAK1-GST LanthaScreenTM binding 
assay. Purified recombinant IRAK1-His (cat. # 40202) 
was purchased from BPS Bioscience Inc. (San Diego, CA, 
USA). Kinase tracer 236 (cat. # PR9078A) was purchased 
from Thermo Fisher Scientific Inc. (Waltham, MA, 
USA). Eu-W1024-anti-6xHis antibody (cat. #AD0400) 
and 384-well white ProxiPlatesTM (cat. # 6008289) were 
purchased from Perkin Elmer, Inc. (Waltham, MA, 
USA). Echo-qualified 384 well COC low dead volume 
source microplates (cat. #001-16128) and Echo-qualified 
384 well polypropylene microplates (cat. #001-14615) 
were purchased from Beckman Coulter Inc.(Indianapo-
lis, IN, USA). The assay was carried out in an enclosed 
workcell with subdued lighting. All reagents were pre-
pared in the assay buffer (50  mM HEPES, 10  mM 
MgCl2 , 1  mM EGTA, 0.01% Brij-35, 1  mM DTT) and 
kept on ice. These included 2 x tracer 236 (0.2 µM), 2 x 
IRAK1 /antibody solution (20 nM IRAK1-His, 4 nM Eu-
W1024-anti-6xHis antibody) and 2 x antibody solution 
(4 nM Eu-W1024-anti-6xHis antibody). Five microlit-
ers of 2 x tracer 236 was dispensed into a 384-well white 
ProxiPlateTM, followed by either 5 µ l of 2 x IRAK1/anti-
body solution or 5 µ l of 2 x antibody solution on a Tem-
pest® dispenser (Formulatrix, Inc., Bedford, MA, USA). 
The plate was sealed on a Wasp plate sealer (KBiosciences 
Limited, Basildon, Essex, UK) and centrifuged at 1000 x g 
for 15 s on a HiGTM automated centrifuge (BioNex Solu-
tions Inc., San Jose, CA, USA) and incubated at room 
temperature for 30  min. The plate was then peeled and 
read on a PHERAstar® FSX (BMG LABTECH Inc., Cary, 
NC, USA) with a LanthaScreenTM module at 340/615, 
665 nm. The TR-FRET ratio (acceptor emission/donor 
emission x 10,000) was used as the readout.

Biovalidation
Biovalidation was carried out with identical assay set-

tings as for the anticipated production runs. Assay con-
ditions and the instrument settings were tested for their 
performance within the acceptance criteria. The accept-
ance criteria can be quantified by setting a minimum 
Z ′  (see Eq. 1) to 0.5, where p and n refer to positive and 
negative control wells in the plates. Compounds from 2 
library plates were dispensed at 10 nL/well in single point 
in columns 3 to 22 on assay plates (final concentration in 
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assay at 10 µ M) and 10 nL/well of DMSO was dispensed 
in columns 1, 2, 23 and 24 for controls. Ten nanoliter 
per well of DMSO was dispensed into all wells on posi-
tive and negative control plates. Control plates only have 
DMSO dispensed to all the wells. The measured differ-
ence in response is between the tracer (substrate) alone 
or the kinase with the tracer being dispensed in the wells 
to simulate fully inhibited enzyme or fully active enzyme.

Compounds and DMSO were dispensed on an Echo 
655 liquid handler in an Access workstation. For the 
kinase binding assay, the 2 x tracer solution was dis-
pensed into all wells on all plates. For the assay plates, 
the 2 x IRAK1/antibody solution was dispensed into col-
umns 1 and 3 to 23. The negative control plates have the 
same layout as the assay plates, with DMSO in place of 
the compounds. For the positive control plates, the 2 x 
antibody solution was used in place of the 2 x IRAK1/
antibody solution in columns 3 to 22. Six plates were dis-
pensed in total, including 2 assay plates, 2 negative con-
trol plates and 2 positive control plates. The compound 
dispense run and the binding assay run were both set up 
and launched in the Cloud Lab. The automated runs were 
carried out in the workcells, and with the autoprotocols 
designated for production. Z ′  , signal-to-background 
ratio and compound hit rate were analyzed as perfor-
mance parameters.

Pilot screen
Biovalidation was followed by a pilot screen with a 

plate number close to that in a production run for eval-
uation of the robustness of the assay, the automation 
scheduling and the data transfer. Compounds from 20 
library plates were dispensed onto 20 assay plates. Two 
positive and two negative control plates were used in the 
same manner as in biovalidation. The screen was car-
ried out with the same lot of reagents, procedure, instru-
ment settings and autoprotocols as in biovalidation. Z ′  , 
signal-to-background ratio and compound hit rate were 
analyzed as performance parameters. No issues were 
observed in the pilot screen and the primary screen could 
be commenced.

High‑throughput screen (HTS)
Primary screen

The primary screen runs were performed with the 
same reagents and procedures as the pilot screen. Up to 
40 plates were assayed per run. In total, 153 plates and 
46,743 compounds were screened at 10 µ M in single 
point. Plate quality control was performed using man-
ual inspection and Z′ analysis (Eq. 1). Plates not passing 
with Z′ ≥ 0.5 were re-run. Note that in the first run, 3 of 

(1)Z
′ = 1−

3(σp + σn)

|µp − µn|

the 153 plates did not satisfy Z′
≥ 0.5 ( 2%). These 3 plates 

were all repeated and subsequently satisfied the afore-
mentioned criteria, such that all 153 plates ultimately 
passed the Z′ ≥ 0.5 threshold.

We normalized the fluorescence data on a per-plate 
basis using the collected fluorescence measurements. 
Normalization used both negative (DMSO) and positive 
(Staurosporine) controls to scale the fluorescence in the 
ratio channel (see Eq. 2). Across each plate, mean values 
of the 32 negative control ( µDMSO ), and 32 positive con-
trol ( µSS - Staurosporine) wells were used to normalize 
the raw ratio channel kraw . Normalized values represent 
the relative inhibition of IRAK1, where 0% corresponds 
to the negative control - no inhibition, and 100% corre-
sponds to the positive control - inhibition to the level of 
staurosporine.

The distribution of normalized fluorescence ratio values 
is presented in Fig. 2. Only normalized fluorescence ratio 
channel values were used in further analysis. The arbi-
trary threshold of 50% normalized fluorescence ratio was 
chosen for hit selection based on the approximate num-
ber of hits that could be considered for secondary assay. 
Using this threshold, 353 hit compounds were identified.

Single-dose hit confirmation
We performed a single-dose hit confirmation in trip-

licate to evaluate data consistency in the primary assay. 
Top-10 plates with the highest hit count were re-run in 
additional duplicate experiments. In these plates there 
were 94 hits in total, 88 of which were confirmed and 
no additional hits discovered, constituting a precision of 
93.4% and recall of 100%. The experiments were of high 
consistency and quality, with Z ′  values above 0.6 for all 
plates, and high correlation in normalized fluorescence 
ratio values between the pairs of replicates ( ≥ 0.8).

Compound clustering
The 353 hits identified via HTS were subsequently 

clustered by their structural similarity using the Louvain 
algorithm [34]. The algorithm identifies clusters (“com-
munities”) within a graph of related compounds that is 
constructed using compound Tanimoto similarity (TS) 
based on Morgan fingerprints. The Louvain algorithm 
was chosen for its compatibility with Tanimoto similarity 
and robustness to the number of clusters in the dataset. 
In total, 200 unique clusters were identified, 160 of which 
were singletons. Five compounds with the greatest ligand 
efficiency (LE) values were selected from each cluster to 
form a diversified set of 283 hits. A proxy for ligand effi-
ciency was used, computed by dividing the normalized 
ratio value by the molecular weight of the compound.

Hit dose-response assay

(2)knorm =
kraw − µDMSO

µSS − µDMSO
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A dose-response assay was conducted for each of the 
compound in the diversified set of 283 hits. Each com-
pound was assayed in an 8-point curve with approxi-
mately 4-fold dilutions (subject to Echo dispense volume 
limits), starting at 30 µ M, and the assays were run in trip-
licates. The exact concentrations are 30, 7.5, 1.875, 0.469, 
0.117, 0.029, 0.007, 0.002 µM . In each plate, three repli-
cates of a staurosporine titration curve starting at 3 µ M 
were assayed in parallel as a reference.

The IC50 of each dose-response curve was derived by 
fitting a four-parameter logistic (4PL) model, shown 
in Eq.  3, where the respective variables are defined as 
follows:

•	 A : Minimum asymptote. Response value when x 
approaches infinity.

•	 D : Maximum asymptote. Response value when x is 
very small or close to zero.

•	 B : Slope factor (Hill’s slope). Steepness of the curve.
•	 C : Inflection point. The concentration of the analyte 

that gives half-maximal response.

The 4PL model was fitted for each compound with data 
points for all three replicates all at once. As an additional 

(3)f (x) = A+
D − A

1+
(

x
C

)B

quality control, 4PL regression models for all sub-micro-
molar compounds were manually inspected. Computed 
IC50 were capped within the range of measured concen-
trations. In seven cases, where curve fits were erroneous 
and produced IC50 values above assay sensitivity range, 
IC50 values were reduced to the highest concentration 
used in the assay (30 µM).

The resulting pIC50 distribution is presented in Fig. 3. 
Note that the distribution contains two peaks, one at 
∼ 4.52 pIC50 and another at ∼ 5.7 pIC50 . The first peak 
is due to 30 µ M being the highest concentration and 
the fitting process described before. The second peak is 

Fig. 2  Normalized fluorescence values in the ratio channel from the IRAK1 HTS. Distributions from fluorescence values obtained from compounds 
in the diversity library, as well as the corresponding positive and negative control, are represented in different colors. Here, 0% corresponds 
to the mean normalized fluorescence ratio in negative control wells, and 100% to normalized fluorescence ratio in positive control wells 
across the whole library. Positive control represents IRAK1 inhibition with staurosporine

Fig. 3  Distribution of pIC50 values across the diversified set of 283 
hits
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an experimental artifact: due to the lack of assay resolu-
tion in between 1.9 µ M and 7.5 µ M, multiple model fits 
produced the same IC50 value (1.9 µM).

Results
Target evaluation using SpectraView
Multiple protein targets were considered for the joint 
Ro5-Strateos project. The targets were proposed by 
Strateos based on the availability of scalable assays and 
interest from collaborators. We employed SpectraView to 
perform a thorough assessment of each target and iden-
tify one that is therapeutically relevant, commercially via-
ble and could also be used for the prospective validation 
of HydraScreen. SpectraView relies on Ro5’s integrated 
Knowledge Graph to serve information from multiple 
data sources (see methods section  2.1) following these 
consideratons:

•	 Availability and quality of the crystal structure(s)
•	 Existing biochemical assay data
•	 Existing drugs and potent compounds
•	 Publication count and trends
•	 Novelty/Traction balance
•	 Target-disease associations
•	 Translation from academia to industry
•	 Competitive landscape

The desired availability and quality of the crystal 
structures were achieved through a combination of 
selecting high-resolution X-ray crystallographic struc-
tures (with resolutions below 2.5 Å) and prioritizing 
holo-conformations (structures of targets bound with 
ligands). One of the main criteria when selecting a 

target is its novelty/confidence trade-off [9]. We have 
assessed the novelty of a target by using information 
on PubMed-indexed publications, availability of crys-
tal structures, biochemical assay data, and approved or 
investigational drugs (Table 1). Most of the considered 
targets are very well-studied, as marked by the volume 
of PubMed publications mentioning them (e.g.   800 
articles published each year that mention KDR, see 
Appendix Fig. A1). We focused on the less established 
targets with lower volume of publications, fewer data 
points and only few known high activity compounds - 
IRAK1, FGFR3 and TAK1.

The availability of a crystal structure was a crucial 
consideration when selecting a target for the prospec-
tive validation of HydraScreen. The crystal structure is 
necessary to generate ligand poses in the protein bind-
ing site which are then used by HydraScreen to predict 
ligand affinity and pose confidence scores. Additionally, 
we have assessed the availability of assay data, which 
could be used as a reference to compare HydraScreen 
with QSAR-based machine learning models. All of 
the considered targets had at least 1 crystal structure 
(Table  1). The crystal structure of IRAK1, one of the 
least established targets, was only recently resolved [39] 
(6BFN, 2.23 Å). Moreover, 1.3k biochemical assay data 
points were available for IRAK1, that could be used in 
training a QSAR model. IRAK1 thus satisfied the mini-
mal requirements, while also being the most underex-
plored target.

Additional evidence was needed to substantiate 
IRAK1’s choice in terms of its therapeutic links. In 
contrast to many other kinases, IRAK1 is primarily 
associated with inflammation (Fig.  4, e.g. [40]), rather 
than cancer. It is only recently that IRAK1 has been 

Table 1  Targets considered for the Ro5-Strateos project with a subsample of the corresponding data used in target evaluation. Data 
was extracted from RSCB PDB [35], PubChem [36] and DrugBank [37] at the start of the project (January 2022)

a Early clinical studies of IRAK1 inhibitor R835 [38]

Target Crystal structures Assay Data Points (1000s) Max. affinity (nM) FDA approved drugs

JAK1 44 6.5 < 0.01 5

JAK2 115 10.0 < 0.01 5

JAK3 38 6.0 < 0.001 5

TYK2 38 3.5 < 0.7 1

IRAK1 1 1.3 < 5.6 0 / 1 inv.a

FGFR1 59 7.0 0.2 5

FGFR2 37 2.1 0.1 7

FGFR3 4 4.5 0.1 9

FGFR4 28 2.0 0.1 6

RIPK2 24 0.2 1.3 0 / 1 inv.

VGFR2 (KDR) 45 18.0 0.02 2

TAK1 (MAP3K7) 19 0.3 1 -

https://www.rcsb.org/structure/6bfn
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linked to multiple cancers, including breast cancer 
[41], lymphoma [42] and acute myeloid leukemia [43]. 
The combination of fewer publications and emerging 
new therapeutic links provided additional support for 
IRAK1’s selection.

Finally, IRAK1 was assessed in terms of the poten-
tial competitors in the drug development field. We 
conducted an analysis of the competitive landscape by 
querying the publications and patents held by major 
pharmaceutical companies, as well as the most potent 
drugs and compounds reported in the public domain. 
We identified a limited number of PubMed-indexed pub-
lications with affiliations linked to major pharmaceuti-
cal companies: Johnson and Johnson - 4, Genentech - 2, 
Roche - 2, GlaxoSmithKline - 2, Pfizer - 2, Novartis - 1, 
Rigel - 2 (Suppl. Figure A3. Additionally, in comparison 
to other targets in consideration, IRAK1 had relatively 
fewer publications with industry versus academia affili-
ations (Suppl. Figure A5). The industry versus academic 
publication ratio could be interpreted as a proxy of the 
translation of basic research to drug development for a 
given target. IRAK1 was below the trend observed for 
other targets, thus potentially indicating its lower rela-
tive translation. Similarly, we assessed patents and patent 
applications (Suppl. Figure  A4). The majority of patents 
or patent applications mentioning IRAK1 were owned by 
two academic instiutions - Dana Farber Cancer Institute 
and Yissum Research and Development Company of the 
Hebrew University, with each of these holding 14 patents. 
No major pharmaceutical companies (e.g. AstraZeneca, 

GlaxoSmithKline, Novartis, Sanofi) were found to hold 
patents linked to IRAK1.

Finally, we assessed the chemical matter linked to 
IRAK1 - the most potent compounds and drugs target-
ing it. Only a few high-affinity compounds have been 
reported for IRAK1 (42 with pIC50>7 and 2 with pIC50

>8, e.g. JH-X-119-01 with 9 nM affinity, [42]). Currently 
there are no FDA approved drugs that would target 
IRAK1. Rigel Pharmaceuticals has recently started pre-
clinical and clinical studies of IRAK1/4 inhibitor R835, 
demonstrating potential in murine models for multiple 
inflammatory diseases, including arthritis and lupus. 
However, this compound has not yet received an FDA 
approval [38]. An active metabolite R406 of an FDA 
approved drug Fostamatinib has been shown to have an 
off-target affinity for IRAK1 [44]. Fostamatinib was also 
developed by Rigel Pharmaceuticals for the treatment 
of chronic immune thrombocytopenia. The combina-
tion of largely academic research in IRAK1 with only 
recently emerging interest by pharmaceutical com-
panies (Suppl. Figure  A5), especially the supporting 
pre-clinical and clinical work [38, 44], provides corrob-
orative evidence for its potential as a prospective drug 
target. The lack of any FDA-approved drugs targeting 
IRAK1 leaves an opportunity for the development of 
novel small molecule inhibitors. Altogether, the nov-
elty/confidence trade-off balance, sufficient support in 
terms of biochemical and biological rationale as well as 
competitive considerations made IRAK1 an attractive 
target to be pursued in this study.

Fig. 4  Diseases, disease areas and symptoms co-mentioned with each of the considered targets. Colors represent the fraction of PubMed-indexed 
publications per disease for each of the targets
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Identification of IRAK1 hits using HydraScreen
HydraScreen virtual screen
Following the selection of IRAK1 using SpectraView, 
we performed in silico virtual screening and experi-
mental hit identification via HTS. The goal of this stage 
of the project was to prospectively evaluate HydraS-
creen’s [25] performance using in vitro data collected by 
Strateos’ HTS and compare it against traditional, indus-
try-standard methods including Smina [17] (molecular 
docking), DeCAF [29] & Pharmit [45] (pharmacophore 
modeling) and a RF model trained on publicly available 
IRAK1 assay data (QSAR modeling). These findings col-
lectively provide a comprehensive and unbiased evalua-
tion of HydraScreen as a virtual screening method.

Strateos 47k compound library was screened using 
HydraScreen, as described in methods section  2.5. 
Affinity predictions were used to rank the compounds 
and select the top 1% (470) to be considered as in sil-
ico hits. Strateos subsequently performed an in vitro 
primary assay HTS using the same library. HTS iden-
tified 353 hit compounds at the 50% normalized fluo-
rescence ratio threshold. Note that 359 hits were 
originally found. However, 6 of these were subsequently 
removed following the results from triplicate experi-
ments. A 50% threshold was chosen because it filtered 
out sufficient compounds to reach the desired number 
of candidates that could be validated in the secondary 
assay, with a surplus to account for potential compound 
detrition. These compounds were compared to the ones 
ranked in the top 1% by HydraScreen. In total, HydraS-
creen discovered 57 hits that were also identified in the 
HTS, constituting a 15.9% hit discovery rate via virtual 
screening (see Supplementary Table available with the 
pre-print).

We next investigated the impact that different normal-
ized fluorescence ratio thresholds used for hit selection 
in HTS can have for hit identification in the HydraScreen 
virtual screen (Fig. 5). As both virtual in silico and high-
throughput in  vitro screens rely on arbitrary thresholds 
for hit selection [12, 13], it is important to understand 
the model performance under a range of such thresholds. 
Here, we considered the comparison of virtual screening 
predictions against the HTS results for each individual 
compound in the ranking generated by HydraScreen. 
Virtual screening hit recovery rate for HydraScreen is 
estimated as the proportion of hits identified per number 
of compounds in the corresponding library rank. Stand-
ard HTS protocols randomly test compounds from the 
library (i.e. in the order in which they are stored); there-
fore, the hit recovery rate of traditional HTS is roughly 
proportional to the percentage of the library screened 
(diagonal dashed line in Fig. 5A). Any method that is able 
to prioritize active compounds over the inactive ones 

would provide a better hit recovery rate than random 
sampling (i.e. above the dashed diagonal line in Fig. 5A).

We find that ranking the compound library according 
to HydraScreen’s predictions greatly increases hit discov-
ery rates. This result is also consistent for any proportion 
of compounds selected in the ranking, as well as for any 
relative inhibition fluorescence threshold. Using the 50% 
IRAK1 inhibition threshold, as was used in the in vitro 
experiment, HydraScreen identified 35.4% of the hits 
within the top 5% and 63.7% within the top 20% of the 
ranking (Fig. 5B). Notably, close to 90% of the hits can be 
identified within the top 50% of the ranked compounds 
(see Fig.  5B). HydraScreen exhibits better performance 
at higher IRAK1 assay normalized fluorescence ratio 
thresholds. For example, HydraScreen identified 23.8% 
(30 out of 126) of hits at the top 1% of the compound 
ranking when using 80% relative inhibition threshold of 
IRAK1 (Fig. 5B).

We next assess HydraScreen’s performance in terms of 
its ability to prioritize highly active compounds that are 
also structurally diverse. The number of distinct highly 
active scaffolds identified in HTS can often be a more 
relevant metric in drug discovery campaigns than the 
raw hit rate: greater variety of scaffolds provides medici-
nal chemists with more opportunities for lead series 
development, which is crucial at the later stages of drug 

(A)

Library Screened (%)

Ratio (%) 1 5 20 50

80 23.8 48.4 66.7 90.5
60 18.5 38.5 64.6 86.9
50 15.9 35.4 63.7 86.1
40 12.6 30.4 57.8 84.2
20 7.7 21.5 49.1 79.3

(B)

Fig. 5  A HydraScreen hit discovery rate (% of hits discovered 
per library screened) for different IRAK1 inhibition thresholds in HTS 
(ratio %, marked by lines of in the shades of blue). For each IRAK1 
inhibition threshold the number of hits identified in HTS is presented 
together with the overall HTS hit rate. Dashed black line represents 
random compound ranking. Supporting data is presented in table (B) 
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discovery [46]. Moreover, high diversity of the identified 
hits increases the likelihood of discovering novel scaf-
folds which do not overlap with existing patents.

In order to conduct the secondary assay and identify 
IC50 values we performed further assessment of hits. 

We selected a diverse, representative and unbiased set 
of compounds to be screened in the secondary assay by 
clustering the 353 hits from HTS according to their struc-
tural similarity using the Louvain algorithm [34]. In total, 
we extracted 200 unique clusters, 160 of which belong to 
single compound members. We identified core scaffolds 
within each cluster via maximum common substruc-
ture (MCS) analysis and select five compounds with the 
greatest ligand efficiency (LE) from each cluster to form a 
diversified set of 283 hits, each originating from 200 dis-
tinct scaffolds. For these 283 diversified hit compounds, 
we collected dose-response data (see methods 2.8). Based 
on their pIC50 ( −log10(IC50) ) activity values, hits and 
their corresponding scaffolds are grouped into micromo-
lar, high nanomolar and nanomolar groups (Table 2). We 
identified 5 nanomolar and 25 high nanomolar hits, while 
the rest possessed micromolar activity (Fig. 6). Scaffolds 

Table 2  Dose-response assay results for 283 diversified hits. 
Compounds and scaffolds were labeled as micromolar, high 
nanomolar and nanomolar based on the their pIC50 values. For 
scaffolds, the highest activity found in the corresponding cluster 
of compounds was used as a label

Range pIC50 Compounds Scaffolds

Micromolar < 6 253 182

High nanomolar 6 ≤ x < 7 25 15

Nanomolar ≥ 7 5 3

Fig. 6  2D Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) [47] projection of the ECFP4 embeddings for 283 
hit compounds from HTS screen. The space in the plot represents relative similarity of the compounds. Nanomolar compounds from the three 
nanomolar scaffolds are highlighted with their pIC50 values indicated underneath. Marker size is proportional to compound activity. More details 
about the nanomolar compounds are given in Table B1
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were labeled based on the most active compound in each 
cluster. Out of the 200 defined scaffolds, 15 were labeled 
as high nanomolar and 3 as nanomolar. We refer to the 
union of high nanomolar and nanomolar compounds as 
sub-micromolar.

We used the dose-response data to evaluate HydraS-
creen’s performance in terms of discovery of highly 
active scaffolds (Fig.  7). We considered a scaffold “dis-
covered” by a model if at least one compound from the 
corresponding cluster is ranked by the model in the 
corresponding top rank of the library. Notably, HydraS-
creen successfully ranked compounds belonging to all 
3 nanomolar scaffolds within the top 1% of the library. 
Within the top 2%, HydraScreen ranked 8/18 of the sub-
micromolar scaffolds. The remaining 10 scaffolds were 
ranked in the top 50% of the ranked compounds.

HydraScreen comparison against other virtual screening 
techniques
Virtual screening can be performed using a range of dif-
ferent techniques [48]. It is therefore relevant to evaluate 
HydraScreen’s performance in comparison to different 
traditional methods. In parallel to the HydraScreen vir-
tual screen, we also prospectively generated predictions 
via SBDD through docking with Smina [17], a fork of 
AutoDock Vina with additional functionalities, shape 
similarity via 2D (DeCAF) and 3D (Pharmit) pharmaco-
phore matching, and a QSAR-based RF model trained 
on molecular fingerprints (see Methods 2.6). Note that 
an exhaustive benchmark across additional industry-
standard SBDD methods such as Gold [49] or Glide [50, 
51] is out of the scope of this prospective study. Par-
ticularly, based on previous studies, traditional phys-
ics-based SBDD approaches frequently report similar 

overall performances in identifying hits in HTS [52, 53] 
and assessing protein-ligand affinities [25, 54].

We selected a hit pool based on the 50% IRAK1 nor-
malized fluorescence ratio threshold used in primary 
assay, with 353 hits identified in total, and measure the 
hit discovery rates obtained across each method (Fig. 8). 
Notably, HydraScreen significantly outperforms other 
techniques, consistently achieving higher hit identifi-
cation rates across different selections of top ranked 
compounds. At the top 1% ranking, the model provides 
3.5x better performance than traditional docking, 3.2x 
higher EFs than ML-based QSAR models, and ∼20-fold 
higher rates compared to shape-based similarity methods 
(Fig. 8B).

We also assessed the ability to identify diverse chemi-
cal scaffolds across the aforementioned virtual screen-
ing methods. As previously outlined in HydraScreen’s 
scaffold recovery analysis, we considered a scaffold to be 
“discovered” if at least one compound from that scaffold 
is selected within the corresponding screening range. We 
present our findings in Fig. 9. Similar to the increased hit 
rates observed in Fig.  8, HydraScreen exhibits superior 
scaffold discovery rates. Within the top 1% of the library, 
HydraScreen ranked all three nanomolar scaffolds and, 
in total, 6 out of 18 submicromolar scaffolds (Fig. 9B). In 
comparison, Smina ranked the last nanomolar scaffold at 
18%, Pharmit at 27% and RF at 30%. Moreover, Random 

Fig. 7  HydraScreen distinct scaffold discovery rate (number 
of distinct scaffolds discovered per library screened). Dashed black 
line represents random compound ranking. Filled and empty circles 
represent nanomolar and high nanomolar scaffolds, respectively

Fig. 8  A Hit discovery rates provided by different methods in IRAK1 
virtual screen. Dashed black line corresponds to random compound 
ranking. Supporting data is presented in table (B) 
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forest QSAR model ranked one of the nanomolar scaf-
folds in the top 10 compounds (0.02%). However, this 
scaffold is a direct analogue to a compound present in 
an IRAK1 assay data which the RF model has trained on, 
reflecting on its ability to internalise a non-linear similar-
ity search, rather than generalising protein-ligand affinity 
prediction. More details on this particular scaffold and 
the analogue will be discussed in Sect.  Hit novelty and 
properties.

IRAK1 hits
In IRAK1 HTS we discovered 353 hit compounds out of 
which a diversified set of 283 compounds corresponding 
to 200 distinct scaffolds was selected for secondary assay. 
In the last stage of the project, we evaluate these com-
pounds and scaffolds in terms of their novelty, physico-
chemical properties and IRAK1 binding modes.

Hit novelty and properties
In order to assess the uniqueness of the 283 diversified 
hits, we compared them against IRAK1 actives available 
in PubChem. Out of the 689 compounds reported to be 
active against IRAK1, 141 have sub-micromolar activity. 
For each of the 283 hits, we found the nearest neighbor 
in the set of IRAK1 actives and scaffolds based on their 
Tanimoto Similarity (TS). The number of neighbors 

above a certain similarity threshold is reported in Table 3. 
We observe that the vast majority of hits are distinct 
from publicly known actives. Only 21 compounds, corre-
sponding to 13 distinct scaffolds, exhibit >0.4 TS. In the 
nanomolar range, only 1 of the 3 distinct scaffolds have a 
similar active compound in the public domain; the clos-
est structure is the Pan-RAF inhibitor LY3009120 [55] 
with a TS of 0.82. LY3009120 displays some IRAK1 inhi-
bition (390 nM IC50 ) in a whole cell-based kinase screen, 
however it is not the primary target of the compound.

We next investigated the structural diversity and phys-
ico-chemical properties of the most potent hits. The 30 
sub-micromolar hit compounds represent 18 distinct 
scaffolds, with the six most active compounds spanning 
three of these as indicated in Fig. 6 by A, B and C. The six 
most active compounds are synthetically tractable, with 
synthetic accessibility scores in a similar range to that 
of catalogue compounds (2–3) [56]. They border on the 
upper end of the Lipinski rule of 5 [57] with regards to 
molecular weight (466 to 521 g/mol) and Crippen LogP 
values of 4.7 to 6 [58]. Their high molecular weight and 
hydrophobicity will have to be further assessed during a 
medicinal chemistry program.

HydraScreen hit compound binding modes
HydraScreen provides insight into the likely bind-
ing modes of the compounds by predicting ligand 
pose confidence scores. We investigated the bind-
ing modes for the highest confidence poses from each 
of the nanomolar scaffolds (compounds A1, B1, and 
C2 in Fig.  6). The IRAK1-ligand interactions for these 
poses were assessed using PLIP profiler [59]. Across 
the highest confidence poses, the sequential aromatic 
heterocycles of the compounds were situated towards 
the back of the ATP binding pocket, with hydropho-
bic interactions with valine (V226), leucine (L347), and 
isoleucine (I218) residues (Fig. 10). The central hetero-
cycles of compounds B1 and C2 form hydrogen bonds 
(H-bonds) with the hinge region, whereas the urea in 
A1 forms H-bonds to the backbone. Both A1 and B1 

Fig. 9  A Scaffold discovery rates provided by different methods 
in IRAK1 virtual screen. Nanomolar and high nanomolar scaffolds 
are marked by filled and empty circles respectively. Dashed black 
line corresponds to random compound ranking. Supporting data 
is presented in table (B) 

Table 3  Numbers of hits and scaffolds that have at least one 
neighbor in the IRAK1 public dataset that is more similar than the 
specified Tanimoto similarity (TS) threshold

TS threshold Hits Scaffolds Nanomolar 
scaffolds

None 283 200 3

> 0.4 21 13 1

> 0.6 5 3 1

> 0.8 1 1 1

> 0.9 0 0 0
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interacts with the carbonyl of aspartic acid D358 in the 
back of the pocket, respectively through an H-bond 
and halogen bond. On the other hand, the highest con-
fidence pose of compound C2 highlights a pi-stacking 
interaction with the gatekeeper residue tyrosine Y288, 
as well as H-bonds to both Y288 and the catalytic lysine 
K239. Across the compounds, aliphatic sp3-rich motifs 
are situated toward the solvent exposed region of the 
pocket.

Insights gained from HydraScreen regarding the com-
pound poses and the different interactions of scaffold 
motifs aids further compound design by highlighting 
areas and interactions to exploit not only around a spe-
cific scaffold, but also from one scaffold to another. The 
hit compound activity, novelty, and ample positions to 
tailor, render them attractive scaffolds for further struc-
ture-activity relationship (SAR) exploration and subse-
quent hit-to-lead development.

Fig. 10  IRAK1-ligand poses with the highest HydraScreen confidence for selected nanomolar hits A1, B1, and C2. PLIP protein-ligand interactions 
are shown with grey dashes (hydrophobic interactions), blue lines (H-bonds), cyan line (halogen bond), and green dashes connecting white spheres 
(pi-pi stacking)
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Discussion
Accelerated hit discovery in IRAK1

In this study, we propose an augmented drug discov-
ery workflow that relies on Ro5’s AI and data science 
platform while utilizing Stateos’ robotic labs capabilities. 
We show how target evaluation driven by SpectraView 
guided the selection of IRAK1 serine-threonine kinase 
target. In comparison to other considered targets IRAK1 
exhibits favorable novelty/confidence balance with rela-
tively low number of publications from pharmaceutical 
companies and assay data points. Currently there are 
no FDA approved drugs targeting IRAK1 and only a few 
highly active compounds [42]. At the same time, emerg-
ing support for IRAK1’s therapeutic links to cancers and 
inflammation with recent pre-clinical and clinical work 
make it an attractive target to pursue.

We provide compelling evidence for HydraScreen’s vir-
tual screening performance. Notably, HydraScreen exhib-
its high hit discovery rates in IRAK1 virtual screening, 
with upwards of 15.9% hits and all of the 3 nanomolar 
scaffolds identified within the top 1% of the compound 
library. HydraScreen also successfully ranked all of the 
distinct nanomolar and high nanomolar scaffolds in the 
top 50% of the compound library. Moreover, HydraS-
creen’s performance increases with stricter thresholds for 
experimental hit selection, where up to 23.8% hits were 
found within top 1% of the ranked compounds when 
using a relative inhibition threshold greater than 80%. 
Thus, HydraScreen successfully prioritizes highly active 
compounds and does not exhibit structural biases.

The prospective evaluation of HydraScreen has shown 
it to be superior to traditional, industry-standard meth-
ods like Smina, DeCAF and a QSAR RF model, in both 
hit and scaffold discovery. These results support previ-
ous in silico benchmarking results where HydraScreen 
exhibited state-of-the-art performance in line and above 
of the most recent AI models available for protein-ligand 
binding affinity prediction [25]. Importantly, HydraS-
creen training set does not include IRAK1 data, so these 
results also reflect on the model’s ability to generalize to 
an unseen target.

This study successfully identified novel and potent 
IRAK1 inhibitors. One of the identified nanomolar scaf-
folds exhibits high similarity to a known Pan-RAF inhibi-
tor LY3009120 [55], while the other two are novel when 
compared to known IRAK1 actives. The five most potent 
nanomolar hits represent three distinct scaffolds, which 
are synthetically accessible. The high molecular weight 
and lipophilicity of the most potent hits will have to be 
further explored during a medicinal chemistry program. 
HydraScreen uniquely provides ligand pose confidence 
scores [25], a valuable feature for assessing the binding 
modes and potential modifications of the most potent 

hits during hit-to-lead and lead optimization stages of a 
drug discovery program. The highest confidence poses 
of the nanomolar hits indicated multiple IRAK1-ligand 
interactions to draw on for structure-activity relation-
ship (SAR) exploration, both around a single scaffold and 
between scaffolds.

The most important contribution of our work is the 
prospective validation of HydraScreen for virtual screen-
ing. We provide a robust assessment of HydraScreen 
by experimentally screening the entire 47k library and 
report a hit discovery rate of upwards of 15.9% for the top 
1% (470) of tested compounds. In contrast, prospective 
validation studies usually test only a small fraction of the 
library compounds, well below 1%, a median of 44 com-
pounds (401 studies) [13]. Such studies report median hit 
rates ∼ 11.8% across all target classes (385 studies) and 
∼ 9.6% for kinases (67 studies) [13]. However, these hit 
rates are prone to bias due to a small test size. Only 21 
studies have tested more than 470 compounds and they 
report a substantially lower median hit rate of ∼ 2.16% 
[13]. Moreover, a similar virtual screening study in 
IRAK1 reported a 2.83% hit rate [60]. HydraScreen’s hit 
rate is in the top 10% rank of the prospective validation 
studies that test at least 470 compounds and well above 
the median reported for kinases regardless of the test 
size [60]. Furthermore, HydraScreen can achieve even 
higher hit rates of up to 23.8%, in top 10% of similar or 
greater test size and greater than the 3rd quartile (23.5%) 
reported in [13] regardless of the test size. HydraScreen’s 
evaluation at stricter IRAK1 inhibition thresholds is 
potentially more representative of its true performance 
due to a higher confidence in the hits selected from the 
assay (i.e. lower false-positive rate).

Future work
There results presented in this study provide several 

directions for future work. First of all, it would be inter-
esting to explore the effect of HydraScreen model fine-
tuning on its performance. It is very probable that we 
could achieve even better results by fine-tunign the 
HydraScreen with publicly available data for IRAK1 
or other closely related kinases (e.g. IRAK2, IRAK3, 
IRAK4). This concept could also be extended to create 
an active learning system that integrates experimental 
result collection and model inference. Model could be 
fine-tuned with the data collected during the in-vitro 
screen. Generating model predictions, collecting in-vitro 
screening results for selected compounds and fine-tuning 
the model for the next round of prediction could poten-
tially enable screening of vast datasets. Finally, we have 
identifed promising IRAK1 hit series with favourable 
characteristics that could be pursued in a drug discovery 
program.
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Conclusion
This study provides compelling evidence for the 

effectiveness Ro5’s innovative tools, SpectraView and 
HydraScreen in early stage drug discovery. Using Spec-
traView target evaluation, we prioritize IRAK1 serine-
threonine kinase with emergent therapeutic links in 
inflammation and cancers. By leveraging Ro5’s HydraS-
creen and Strateos’ automated labs, we show how AI-
driven virtual screening with HydraScreen could offer 
high hit discovery rates and reduce experimental costs. 
In the top 1% of the ranked compounds, HydraScreen 
identified all three nanomolar classes, and almost a 
quarter of the total actives in the library at >80% rela-
tive inhibition of IRAK1. The unbiased, prospective 
evaluation of HydraScreen and comparison against 
industry-standard methods supports the reliability 
and robustness of our findings. Ro5’s SpectraView and 
HydraScreen provide innovative methods that can 
expedite the early stages of drug discovery.
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