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Abstract 

Discovering new chemical compounds with specific properties can provide advantages for fields that rely on mate‑
rials for their development, although this task comes at a high cost in terms of complexity and resources. Since 
the beginning of the data age, deep learning techniques have revolutionized the process of designing molecules 
by analyzing and learning from representations of molecular data, greatly reducing the resources and time involved. 
Various deep learning approaches have been developed to date, using a variety of architectures and strategies, 
in order to explore the extensive and discontinuous chemical space, providing benefits for generating compounds 
with specific properties. In this study, we present a systematic review that offers a statistical description and compari‑
son of the strategies utilized to generate molecules through deep learning techniques, utilizing the metrics proposed 
in Molecular Sets (MOSES) or Guacamol. The study included 48 articles retrieved from a query‑based search of Scopus 
and Web of Science and 25 articles retrieved from citation search, yielding a total of 72 retrieved articles, of which 62 
correspond to chemical language models approaches to molecule generation and other 10 retrieved articles cor‑
respond to molecular graph representations. Transformers, recurrent neural networks (RNNs), generative adversarial 
networks (GANs), Structured Space State Sequence (S4) models, and variational autoencoders (VAEs) are considered 
the main deep learning architectures used for molecule generation in the set of retrieved articles. In addition, transfer 
learning, reinforcement learning, and conditional learning are the most employed techniques for biased model 
generation and exploration of specific chemical space regions. Finally, this analysis focuses on the central themes 
of molecular representation, databases, training dataset size, validity‑novelty trade‑off, and performance of unbiased 
and biased chemical language models. These themes were selected to conduct a statistical analysis utilizing graphical 
representation and statistical tests. The resulting analysis reveals the main challenges, advantages, and opportunities 
in the field of chemical language models over the past four years.

Keywords Chemical language models (CLMs), Recurrent neural networks (RNNs), Transformers, Variational 
autoencoders (VAEs), Generative adversarial networks (GANs), Transfer learning, Reinforcement learning and 
conditional learning

Introduction
Chemical space and de novo molecule design
Molecule design aims to discover chemical entities that 
are distributed within a vast, intricate, and discontinuous 
space known as chemical space, which encompasses 
all possible atomic configurations that can produce 
molecules  [1].  The search for molecules with specific 
properties in chemical space is a time-consuming 
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and expensive task due to the irregular distribution of 
molecules, where even slight changes in a molecule 
can result in significant changes in physicochemical 
properties [2].  For years, researchers considered 
molecule design as a process based on trial and error 
to explore various arrangements of functional groups 
or atoms, yielding molecules with diverse structures 
that can map regions of chemical space. This approach 
relied heavily on human knowledge and was limited to 
the human ability to identify complex chemical patterns 
from structures [3]. However, since the introduction of 
computational methods in the field of chemical sciences 
and supported by the exponential growth of available 
molecular data (e.g. chemical structure, physicochemical 
properties, bioactivity, toxicity, and others), from the 
last decade, molecular design experienced one of the 
most important advances in its history, driven mainly by 
methods capable of learning from data to generate novel 
chemical entities with specific properties, such as deep 
learning [4].

Deep learning is a subset of machine learning that per-
forms predictive or generative tasks, specifically involving 
learning representation methods that enable computers 
to understand how to represent data from its raw form 
by performing multiple nonlinear matrix multiplications 
to learn multiple levels of abstraction  [5].  As such, deep 
learning can learn chemistry rules for prediction or gen-
erative tasks by using different molecular representations 
that can be understood in their natural form by humans 
such as Simplified Molecular Input Line Entry System 
(SMILES), IUPAC nomenclature or molecular graphs, 
molecular fingerprints, among others [6–9]. The imple-
mentation of learning-based method has proven to be 
successful in multiple fields of chemistry, such as Quan-
titative Structure − Activity Relationships (QSAR), Quan-
titative Structure–Property Relationships (QSPR), and 
molecular generative models.[10, 11].

Furthermore, deep generative models are gaining rapid 
attention in the design of molecules. They possess the 
ability to learn implicit chemical knowledge from data 
by identifying structural patterns such as valency rules, 
reactive groups, molecular conformations, hydrogen 
bond donors and acceptors, among others to produce 
molecules with specific properties. Unlike hand-encoded 
rules-based or enumeration methods, which require 
human intervention to define chemical rules based on 
human knowledge to generate molecules, these models 
are independent and less prone to generating molecules 
that are unavailable for chemical synthesis due to unsta-
ble groups  [12, 13].

Several deep learning architectures like recurrent 
neural networks (RNNs), transformers, variational 
autoencoders (VAEs), and generative adversarial 

networks (GANs) offer an efficient way to investigate 
chemical space using statistical techniques. These 
models can generate targeted molecules and investigate 
regions of the chemical domain through biased learning 
methods. Such methods can manipulate the molecular 
generator to yield molecules that meet specific 
conditions, showing analogous structures and therefore 
chemical properties  [14–17].  On the other hand, such 
models could map large areas of chemical space by 
solely acquiring chemical regulations to reconstruct 
molecular structures from encoded molecular spaces  
[18, 19].  Deep generative models have become a 
useful tool for designing molecules due to their cost-
effectiveness and time efficiency [20–22]. Due to the 
significance of deep learning models in contemporary 
molecule generation, it is imperative to use metrics for 
evaluating statistical methods that allow chemists and 
data scientists to compare the efficiency of different 
molecular generators. To address this requirement, 
benchmarking platforms have been introduced to 
quantify the quality and diversity of the distribution 
of generated molecules. Molecular Sets (MOSES) 
and GuacaMol are widely accepted benchmarks for 
measuring the quality, diversity, and fidelity of outputs 
generated by deep generative models, as well as their 
ability to explore chemical space [23, 24]. 

Since the start of the deep learning era in molecular 
design, other works have summarized the architectures 
mentioned above in terms of their theoretical back-
ground and applications for drug development or sta-
tistical approaches to explore the chemical space  [12, 
25–28].  Only a small portion of these reviews has sys-
tematically evaluated the implementation of deep learn-
ing architectures for molecular generation tasks. The 
primary challenges faced by deep learning architectures 
in molecule generation, as well as the most used deep 
learning architectures for de novo molecule generation 
and molecular representations, were examined through 
systematic evaluations of generative models  [29]. In 
addition, Koutroumpa et al. conducted a systematic anal-
ysis of deep generative models to relate the validation of 
target molecules produced by these models in biological 
models. Deep generative models demonstrated their rel-
evance in drug design and their capability for generating 
bioactive compounds, as evidenced in both in vitro and 
in  vivo models [30].  Although these analyses are bene-
ficial, it is essential to conduct a statistical evaluation of 
deep learning models using established standards like 
MOSES benchmark. This benchmarking platform can 
accurately reflect the robustness of models to generate 
novel, valid, and unique chemical entities.

The present study aims to comprehensively investigate 
the quality of deep learning architectures over the last 
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three years to generate chemical entities and to evaluate 
what are the most important features that affect the qual-
ity metrics of deep generative models through a system-
atic review. This work focuses on answering the following 
research questions:

1. How does the configuration of deep learning archi-
tectures and training size affect the quality metrics of 
the generated molecules?

2. Which deep learning architectures can achieve 
higher quality metrics of generated molecules?

3. Which hyperparameters have a higher impact on 
each deep learning architecture for better molecule 
generation performance?

4. What are the most common molecular representa-
tions for deep learning models?

5. What type of biased deep generative methods are 
most effective in generating novel molecules that 
show activity for a given target?

Therefore, a comprehensive systematic review is pre-
sented herein, encompassing a set of articles that assessed 
MOSES or Guacamol metrics from 2020- June 2024. This 
work presents a theoretical background on deep gen-
erative models and metrics found in the set of retrieves 
articles, followed by a detailed explanation of method-
ology using Prisma for article selection is provided, and 
a discussion section is presented highlighting the most 
significant finding from the systematic review. Finally, a 
statistical analysis is performed to analyze the robustness 
of deep learning models on molecular generation tasks.

Theoretical background
Since we aim to review, measure, and analyze deep learn-
ing techniques used in chemical language models, first 
we present some theoretical background of the concepts 
used in this area.

Molecule representations
Learning is a data-driven process. From the beginning, 
when computer science was introduced to chemistry, 
chemists have attempted to represent chemical enti-
ties through different methods that enable computer 
algorithms to acquire knowledge on how to build mol-
ecules. The implementation of deep generative models in 
chemistry requires the use of an appropriate and precise 
molecular representation that provides enough informa-
tion for computers to process and learn through matrix 
operations. Molecular representations must meet specific 
requirements to ensure an accurate representation of a 
real molecule. These requirements include permutation 
invariance to ensure no alteration by changes in the spec-
ified order of atoms, translational invariance to prevent 

changes from translations in space, and rotational invari-
ance to avoid changes from rotation operations [25] . On 
this basis, various representations have been developed 
through the years for deep learning applications depend-
ing on the challenges that deep generative models face 
and the requirements of the generation tasks. These 
molecular representations are illustrated in  Fig. 1A. 

Molecular graphs
Introduced more than 30  years ago, molecular graphs 
are one of the most revolutionary concepts for repre-
senting the chemical identities of covalently bonded 
molecules [32].  This approach involves mapping the 
atoms and bonds of a molecule onto a set of nodes (V) 
and edges (E) in a square matrix (G = (V, E)), where the 
matrix size reflects the total number of non-hydrogen 
atoms, usually called adjacency matrix. The adjacency 
matrix first enumerates each atom in the structure and 
then presents information about the types of atoms in 
its main diagonal, identified by their atomic numbers. 
Connectivity is determined by assigning a value of 0 to 
non-adjacent atoms in the structure or 1 to adjacent pairs 
of atoms, even this one for adjacency can be replaced by 
another number (between 1 and 4) to indicate the type of 
bond (single, double, triple, or aromatic), increasing the 
amount of information encoded in the matrix  [33, 34]. 
Although molecular graphs are not memory efficient due 
to the large amount of information required to represent 
a single molecule, one-dimensional representations have 
been developed to overcome this limitation. These rep-
resentations are based on strings, which require much 
less information and provide easily interpretable, human-
friendly representations [35].   Additionally, one-dimen-
sional representations have driven the rise of chemical 
language models in the recent era of deep learning in 
cheminformatics, changing the perspective of molecule 
generation.

Molecular representation for chemical language models
Nowadays, language models play a pivotal role in 
designing molecules through deep learning models  [36]. 
Chemical language models, which use one-dimensional 
molecule representations as inputs, can generate 
molecules and learn the syntax, coherence, and grammar 
rules necessary to build them through training. These 
models train architectures using one-dimensional string 
representations of molecules [37, 38]. This section offers 
a concise overview of the most frequently used molecular 
representations for chemical language models.

Simplified molecular input line entry specification (SMILES)
The SMILES notation is a prevalent method employed 
for molecular representation in the field of deep learning. 
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This approach has been in practice for over three 
decades and it is comprised of character strings in ASCII 
(American Standard Code for Information Interchange) 
format. SMILES enables molecules to be represented 
by a series of tokens based on their chemical structure, 

where each element in the periodic table is assigned to 
a corresponding token using its atomic symbol. In the 
absence of a specified bond type, the bond type can be 
inferred as a single bond type. Conversely, when tokens 
appear in lowercase form, the bond type is identified as 

Fig. 1 Illustration of molecular representations and chemical language models. A displays various molecular representations of propa‑2‑one 
(acetone). B showcases RNNs as chemical language models and their autoregressive approach for generating chemical entities where [SOS] 
and [EOS] stands for start of sentence and end of sentence tokens, respectively. RNNs cells are also shown where the symbols •, *, and + denote 
dot‑product, elementwise matrix multiplication, and addition, respectively. Each arrow corresponds to matrix multiplication utilizing a learnable 
matrix. Finally, in the context of RNNs, ‘x’, ‘a’, and ‘c’ correspond to the input, information matrix, and memory term, respectively. C illustrates 
the schematic representation of VAEs, while D presents the schematic representation of GANs. E displays the transformer model proposed 
by Vaswani and colleagues.31
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aromatic. Otherwise, the bond type is explicitly indicated 
using non-alphanumeric tokens. Additionally, SMILES 
employs a special token (brackets) to specify branches 
or cycles within chemical structures. These notations 
and rules for molecular representation can be considered 
as an analogous form of language (chemical language) 
where words are present in the form of chemical tokens 
and sentences are molecules. However, similar to spoken 
languages, SMILES carries the potential for syntactic and 
grammar errors when dealing with branches and cycles, 
presenting a challenge for deep learning architectures 
aiming to accurately reconstruct syntactically valid 
molecules from latent space  [39]. In addition, 
SMILES representation is a non-unique molecular 
representation, but this can be transformed into a unique 
molecular representation by implementing SMILES 
canonicalization algorithms, yet multiple SMILES can 
exist for a single molecule [40].

IUPAC international chemical identifier (InChI)
Introduced by IUPAC in 2013 as open-source software 
for molecule encoding, InChI is a string-based molecular 
representation that employs six layers and multiple sub-
layers to convey information about molecules. Each layer 
contains specific details regarding the chemical formula, 
atom connectivity, atomic charges, and stereochemistry, 
among others. It also provides information on the reac-
tivity of atoms that may undergo chemical equilibrium, 
leading to the formation of constitutional isomers and 
resonance structures. The incorporation of multiple lay-
ers of information and its ability to provide information 
about structural and stereo isomers makes InChI the first 
canonical representation of molecules. However, unlike 
SMILES, due to the complexity level of InChI syntaxis 
and grammar, this representation method is not a user-
friendly method and is also prone to valency and branch-
ing issues [41]. 

DeepSMILES
DeepSMILES is a SMILES-like molecule representation 
that encodes molecules using a syntax that avoids gram-
matical errors during molecule generation by utilizing 
one symbol for specifying branches and cycle closures. 
To indicate the length of a branch, n number of closing 
parentheses are used, where ’n’ represents the length of 
the branch. Similarly, cycles are represented by a num-
ber indicating the length of the cycle. This simplification 
of notation regarding SMILES allows DeepSMILES to 
solve grammar mistakes that arise when deep learning 
architectures learn molecular representations. However, 
this notation still leaves room for implementation that 
addresses valency constraints and the development of 
unique molecule representations [42].

Self‑referencing embedded strings (SELFIES)
In 2020 Krenn M, et  al., introduced SELFIES which 
represent molecules using string-based methods  [43]. 
They use derivation rules to produce valid molecules by 
avoiding the use of brackets for branches and cycles and 
employing special symbols to indicate the start of the 
cycle or branch, ensuring the production of only valid 
molecules. Instead of utilizing an end marker, the length 
of the branch or ring is defined by the subsequent token 
in the string. This method additionally addresses valency 
constraints that do not yield valency penalties in mole-
cules. Nonetheless, like SMILES notations, a single mol-
ecule corresponds to multiple SELFIES representations  
[43, 44].

Figure  1a illustrates an example of a molecular repre-
sentation, highlighting the primary distinctions between 
one-dimensional molecular representation and the 
SMILES notation. In the latter, explicit atom and bond 
characters are employed, following the aforementioned 
rules. Similarly, DeepSMILES CC = OC streamlines 
the representation of branching and ring closure, while 
maintaining a similar visual representation for linear 
molecules such as prop-2-one. In contrast, SELFIES 
employs brackets to delineate each token in a sequence 
and utilizes an explicit token to describe the branching in 
the sequence.

Chemical language models (CLMs) as deep generative 
models
The quality of learning data is contingent upon both data 
representation and the manner in which information is 
processed between layers in deep learning models until a 
continuous vectorial representation is achieved that can 
reliably represent a molecule. CLMs customize natural 
language processing (NLP) algorithms to learn chemical 
grammar and syntax from one-dimensional molecular 
data  [45–47]. Several successful deep learning architec-
tures have been introduced into molecular generative 
models to process sequential text data. Thus far, these 
models have demonstrated notable progress in text gen-
eration tasks.

Recurrent neural networks (RNNs)
Introduced more than 40  years ago by Hopfield, RNNs 
are neural networks capable of processing information 
in a sequential form. RNNs are used to generate and 
manipulate sequentially structured data, such as one-
dimensional molecular representations  [48].   RNNs 
receive a sequence input and use a set of hidden layers 
connected between them in a recurrent manner to 
transform the discrete token representation, generated 
from one-dimensional data, into a continuous 
representation. The continuous representation is then fed 
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into a feedforward network to predict the adjacent token 
in the sequence. Information from the hidden layers 
is subsequently distributed to adjacent RNNs units, 
enhancing predictions with shared context. Assuming a 
benefit in predicting tokens via context-sharing among 
recurrent units, RNNs face a challenge wherein gradients 
may vanish or explode during the backpropagation 
process if the sequences become lengthy enough. This 
results in a nearly impossible task for RNNs to learn the 
long-term dependencies within the sequence. To address 
this limitation of RNNs, gated RNNs-units such as Long-
Short Term Memory (LSTM) units and Gated Recurrent 
Units (GRU) are designed to implement short-term 
memory by adding trainable parameters that control the 
flow information of sequence dependencies, avoiding 
gradient vanishing or explosion at the cost of increasing 
the trainable parameters in the model (Fig. 1B) [49, 50].

Transformers
Since the successful performance of dynamic models 
for processing sequential data as RNNs, the search 
for novel architectures capable of capturing context 
from sequences began until meeting Transformers in 
2017 by Vaswani and coworkers [31]. Transformers 
rank among the top deep learning architectures, 
surpassing RNNs in their ability to learn one-
dimensional molecule representations, such as SMILES 
or SELFIES. This success results from their capacity to 
capture the relationship between tokens in sequences, 
independent of sequence length, which is attributed to 
the incorporation of attention mechanisms  [51]. This 
architecture consists of an encoder-decoder model, 
where the encoder learns how to map molecules (from 
string-based methods) into a continuous representation, 
and the decoder learns how to reconstruct these models 
from continuous representation into a string-based 
representation. Positional embeddings and attention 
mechanisms are crucial for acquiring chemical language 
cognition abilities. By establishing connections between 
token positions and computing the attention coefficient 
using scaled dot product and softmax operations, 
these mechanisms facilitate language acquisition. To 
accomplish this, tokens are first embedded using word 
and positional embeddings methods which converts 
discrete token representation into a continuous 
representation. Next, attention mechanism is applied 
several times in parallel through a series of trainable 
matrix that allows to linear transform the vectorial 
representation of chemical sequences. Finally, a 
feedforward layer is used to generate a fixed-length 
representation of molecules to allow matrix operations 
in further layers (decoder model or softmax layer for 
chemical token prediction).

Variational autoencoders (VAEs)
Sequential models have surpassed generative models in 
the realm of chemical language applications. Nonethe-
less, there have been successful introductions of alterna-
tive methods for generating molecules. These methods 
are founded upon the compression of discrete data, into a 
continuous value vector, which is later reconstructed into 
discrete data  [52]. First introduced in 2018 by Gómez-
Bombarelli for molecular generative models, VAEs have 
proven to be a powerful tool for generating novel mole-
cules. In principle, VAEs are generative models designed 
to model an unknown data distribution using a finite 
sample from the distribution. This model comprises an 
encoder and decoder components. The encoder maps the 
discrete representation of molecules into a continuous 
latent space using a low-dimensional vector  [53]. This 
latent vector can be utilized for further classification or 
regression tasks to organize the space based on specific 
properties  [53, 54]. On the other hand, the encoder is 
utilized to reconstruct molecules from latent space into 
its discrete representation. This process guarantees the 
capacity to learn how to generate molecules while com-
plying with syntax and grammar rules. The VAE encoder 
and decoder may be different types of deep learning neu-
ral networks, including transformers, RNNs, and multi-
layer perceptron, among others.

Generative adversarial networks (GANs)
Since the successful application of autoencoders in 
generative chemistry and supported by their success in 
other fields such as image and audio generation, GANs 
have been introduced to chemistry. These models can 
increase the diversity of molecules generated while 
maintaining the probability of the data distribution  [55]. 
GANs comprise two components: a generator and a 
discriminator. The generator component of GANs may 
employ various deep learning architectures like RNNs, 
transformers, or VAEs, among others. Once trained 
to build molecules, this component generates random 
molecules by inputting random noise into the model. In 
contrast, generating molecules with specific structural 
patterns depends on a discriminator component, a neural 
network that identifies if the created data represents 
an actual molecule or not. This element is essential for 
retraining the complete model until it can no longer 
differentiate between genuine and artificial data and 
updating the generator’s parameters  [56, 57].

Biased generative models
Until this point, a brief theoretical framework of the deep 
generative architectures involved in this work has been 
illustrated. Even though these models can generate large 
virtual libraries of molecules that are grammatically and 
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syntactically correct, producing molecules that are acces-
sible for chemical synthesis and possess specific chemical 
properties or bioactivities remains a significant challenge 
for deep learning, particularly when working with biolog-
ical targets or rare molecules that lack sufficient data for 
model training. To address these challenges, biased strat-
egies have been incorporated into deep learning models. 
This allows for the exploration of chemical space in spe-
cific directions and the generation of molecules that are 
synthesis feasible or possess desired properties.

Reinforcement learning (RL)
Reinforcement Learning refers to a collection of tech-
niques applied to solve decision problems in artificial 
intelligence (AI) models, such as deep learning. The RL 
methodology includes evaluating possible actions and 
their respective outcomes and subsequently devising a 
treatment plan that strives to achieve the optimal out-
come [58]. RL techniques are implemented in generative 
deep learning models and can predict whether a gener-
ated molecule meets specific conditions. If a generated 
molecule is desired, the model is rewarded and updates 
to the model parameters allow for specific direction 
exploration of the chemical space, resulting in the gen-
eration of molecules with specific properties. Several 
reward functions have been developed to obtain mol-
ecules that are synthesizable, accessible, non-toxic, bio-
active, permeable to biological membranes, and possess 
specific physicochemical properties [17, 58–62]. In addi-
tion, multi-objective optimization properties of mole-
cules can be performed [14, 63, 64].

Transfer learning (TL)
On the other hand, the concept of Transfer Learning 
involves transferring knowledge learned by a model from 
a particular task to another model that can utilize this 
information to improve its performance in a comparable 
task. This approach can be utilized with molecular gen-
erative models for transferring expertise on synthesizing 
a particular group of molecules, thereby facilitating the 
production of novel molecules that exhibit desired prop-
erties [65].  TL enables generative models to apply their 
acquired knowledge in producing molecules with par-
ticular bioactivities or affinities to biological targets and 
transfer this knowledge to a model capable of generating 
grammatically and syntactically correct molecules [66]. 
This fine-tuning technique can overcome limitations in 
specialized datasets for biological targets or molecules 
with unique properties that lack the necessary informa-
tion to enable models to learn syntax and grammar rules 
of chemical language [15, 67–70].

Conditional learning (CL)
Similarly, conditional learning (CL) can be utilized to 
direct deep learning architectures in the synthesis of 
molecules with specified, desired characteristics, obvi-
ating the necessity for incorporating a reinforcement 
learning agent to assess the outputs of the model or 
depending on fine-tuning data for retraining [71]. In 
contrast, CL enables models to integrate domain-spe-
cific data about chemical structures, such as chemical 
properties, biological activities, or functional groups, 
directly into the training process. This is typically 
achieved by embedding the relevant information in a 
vector format or through other encoding techniques, 
which are then used as input conditions for the model 
during training [72]. By conditioning the model on 
these learned representations, it is possible to sam-
ple novel chemical structures that possess similar or 
improved properties to those in the training dataset. 
This process enables the model to internalize both 
chemical sequences and their corresponding proper-
ties, thereby facilitating the generation of compounds 
that fulfill specific chemical or biological criteria. For 
instance, CL can facilitate the generation of drug-like 
molecules with optimized solubility, binding affinity, or 
metabolic stability, thereby significantly reducing the 
computational resources and time typically required for 
such tasks [73, 74].

Evaluation metrics for deep generative models
So far, we have presented a brief overview of deep 
learning architectures and bias techniques. However, it 
is crucial to evaluate the performance of these models 
fairly and objectively. To tackle this issue, Polykovskiy, 
et  al. have introduced a set of evaluation metrics to 
identify common problems in generative models, such 
as overfitting, imbalanced frequent structures, and 
model collapse [24].

One of the key requirements for generative models is 
their ability to learn the syntax and grammar of chemi-
cal language models. To determine whether a model 
can generate valid chemical entities, a validity metric 
(Eq. 1) is introduced using RDkit software to calculate 
the percentage of chemical entities that do not violate 
basic chemical rules  [75],  It is recommended that this 
metric be calculated for at least 30,000 molecules.

Equation 1. Validity model equation.
In addition, to evaluate the ability of the model to 

generate molecules while preserving uniqueness, we 
employ a uniqueness metric. This metric represents the 

(1)Validity(Vm) =
Valid molecules

Molecules produced
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first 1,000 or 10,000 unique valid molecules produced 
by the model. The higher the uniqueness value, the bet-
ter the model’s performance, calculated using  Eq. 2.

Equation 2. Uniqueness model’s equation.
Additionally, to determine if the model is experienc-

ing overfitting, novelty metrics measure the ratio of valid 
molecules ( Vm ) that do not appear in the training data-
set ( Td ). This indicates the model’s proficiency in learning 
the data distribution and generating unique molecules. 
Larger values of novelty indicate a lower level of overfit-
ting. The calculation of novelty is illustrated in  Eq. 3.

Equation 3. Novelty model’s equation.

Methodology.
Literature search and screening
Following the Preferred Reporting Items for Systematic 
Review and Meta-Analysis (PRISMA) methodology for 
a systematic review and meta-analysis, we conducted 
a thorough review to complete this manuscript. The 
PRISMA guidelines stress transparent and complete 
research practices, which we uphold in this review. The 
subsequent section discusses all relevant items in detail.

(2)Uniqueness =
set(Vm)

Vm

(3)Novelty = 1−
Vm

Td

The sources for this study are derived from a peer-
reviewed online database, as illustrated in Fig.  2. This 
research only considered articles indexed in Scopus, 
Web of Science, and Google Scholar. Advanced search 
filters were implemented in each scientific search engine 
to restrict findings to articles issued from January 2020 
to June 2024. Boolean statements were implemented 
to retrieve articles, and the queries used are presented 
below:

1. “Molecule Generation” AND (“Deep Learning” OR 
“Artificial Intelligence”).

2. (“Chemical Language Models” OR “Molecular Gen-
erative Models”) AND (“Deep Learning” OR “Artifi-
cial Intelligence”).

3. (“Chemical Language Models” OR “Molecular Gen-
erative Models” OR “Molecule Generation”) AND 
("Deep Learning” OR “Artificial Intelligence”).

4. “Molecule Generation” AND (“RNNs” OR “Trans-
former” OR “VAEs" OR “Variational Autoencoders” 
OR “VAE" OR “GAN” OR “Generative Adversarial 
Networks” OR “GANs”).

5. (“Molecular generation”) AND (“recurrent neural 
networks” OR “transformers” OR “GPT").

6. (“Recurrent neural network” OR “transformer” OR 
“GPT”OR “VAE” OR “GAN”) AND (“drug design” 
OR “de novo drug”).

Fig. 2 PRISMA flow diagram showing the study selection process. PRISMA flow diagram was generated using [76].
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Eligibility and criteria
As mentioned in the previous section, deep learning 
methods have transformed the molecular virtual library 
generation and molecular leads identification processes, 
leading to a considerable improvement in drug discov-
ery’s efficiency and accuracy. Numerous deep learn-
ing architectures have been introduced, and various 
approaches have been developed for designing mole-
cules. This has made it necessary to use impartial met-
rics to compare and evaluate the pros and cons of various 
deep learning methods. To address this need for impar-
tial metrics to compare deep learning models, MOSES 
and Guacamol benchmarking platforms were introduced 
in 2019 and 2020, respectively  [23, 24]. This study was 
restricted to articles that fulfilled the specified criteria, 
as there was insufficient content reporting these metrics 
before their introduction in 2020. The metrics are the 
following:

1. The manuscript must be written in English.
2. The manuscript explicitly presents at least two met-

rics of uniqueness, validity, or novelty for the gener-
ated compounds (either in the article or in supple-
mentary material).

3. The manuscript presents in detail the concept of 
uniqueness, validity, or novelty metrics, and these 
concepts fit the MOSES or GUACAMOL metric 
concepts.

4. The manuscript focuses on using deep learning gen-
erative models to generate de novo molecules.

5. The implemented model uses conventional deep 
learning generative methods without the use of quan-
tum computer methods.

6. The manuscript was published between January 2020 
and June 2024 in a peer-reviewed journal or pre-print 
services.

Data collection
For the analysis, we extracted article and journal 
details such as title, publication year, journal name, 
and the Scimagojr quartile category for each selected 
item. Additionally, we identified the database name, 
training dataset size, and physicochemical criteria 
used for selecting molecules, including  Ki,  IC50,  EC50, 
LogP, and molecular weight. The data on the molecular 
representation used for training and the characteristics 
of molecules in the training dataset were also obtained. 
The extracted information of molecular representations 
encompasses the type of molecular representation, the 
upper and lower limits for the length of representation 
character and vocabulary for chemical language models, 
and a binary variable indicating canonization usage for 

molecular representation. Other aspects considered 
include the incorporation of stereochemistry in 
molecular representation, as well as the implementation 
of a salt-removing procedure. Furthermore, our study 
collected data on the architecture type, embedding 
length, number of layers and units in hidden layers, 
number of trainable parameters, use of dropout, 
activation temperature for the softmax function, batch 
size, epochs, learning rate, and optimizer type applied in 
deep generative architecture. Moreover, various columns 
that describe the model features were added depending 
on the features of each kind of deep learning architecture 
and can be consulted in supplementary material. 
Additionally, a binary variable was used to determine 
if the analyzed work employed biased techniques for 
generating molecules, such as RL, TL, or conditional 
learning. In cases where biased methods were used, 
details about the optimization objective of the biased 
model are provided. Finally, we collected information 
on the output format of the molecule representation, 
the number of molecules generated, their uniqueness, 
validity, novelty, scaffold diversity, scaffold novelty, 
fragment similarity, similarity to nearest neighbor (SNN), 
internal diversity, and Frénchet Chemical Distance (FCD) 
for both biased and unbiased models.

Finally, the selected set of research articles comprised 
24 RNNs, 23 Transformers, 16 VAEs, 8 GANs and only 
1 article for Structurated State Space Sequences (S4) for 
molecule generation. Since this work focuses on CLMs, 
only 10 out of 72 articles relate to graph approaches, 
which were solely incorporated for comparing CLMs and 
Graph Neural Network approaches in a general sense. A 
meta-analysis was performed for RNNs study case using 
the following outcomes: uniqueness, novelty and validity 
of the generated subset of molecules.

Results and discussion
Deep generative models
Since their successful introduction as generative models 
by Gómez-Bombarelli et  al. and Segler et  al. in 2018, 
deep learning has emerged as a fundamental tool for de 
novo molecule design, these have gained the attention 
of researchers to implement novel deep generative 
architectures and approaches that have shown to be 
useful for performing different tasks in other fields such 
as text generation, image and audio generation and 
among others [16, 53, 77].

CLMs have emerged as valuable tools for exploring 
chemical space through one-dimensional molecule string 
representation. CLMs have demonstrated advantages 
in molecule generation compared to other approaches. 
This is illustrated in Fig.  3, which depicts the growing 
disparity between research employing CLMs and other 
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methodologies. The rise in publications on molecular 
generative models employing CLMs can be attributed, 
in part, to advancements in natural language process-
ing (NLP), which has continued to flourish since the first 
semester of 2024. This is corroborated by the increas-
ing number of publications pertaining to CLMs for 
molecule generation, which substantiates the efficacy 
of CLMs in identifying novel and efficacious molecules 
for the advancement of novel therapies or the treatment 
of new diseases [78]. Consequently, these methodolo-
gies have been effectively implemented in the domain 
of cheminformatics, employing diverse instruments to 
facilitate the identification of novel compounds [79, 80]. 
In contrast, alternative approaches essentially entail the 
use of graph neural networks for the generation of mol-
ecules. The graph models demonstrated the potential to 
serve as a robust tool for capturing spatial information 
about molecules, including atomic geometries and mol-
ecule topology [81–83]. This approach has been shown 
to enhance the validity rates and facilitate the incorpora-
tion of diverse spatial relations, such as pharmacophore 
groups and conformation energies  [84–86].  However, 
graph-based models require a significant amount of com-
putational time for training and generation of molecules, 
which can be up to one order of magnitude higher than 
that required by traditional CLMs. Additionally, the cost 
of training in terms of resources can be more expensive 
for graph-based models, and the ability to explore the 
chemical space may vary depending on the task due to 
the nature of the models, which process data and learn 
patterns in chemical distributions, such as the presence 
of large rings or branches [87,  87]. In terms of chemi-
cal space exploration, CLMs provides a range of architec-
tural options that can efficiently handle one-dimensional 
molecular representation. These models are relatively 
straightforward to train and yield high-quality results 

during the inference stage [36]. Furthermore, they can be 
readily deconstructed to reveal the underlying generative 
models, which may eventually become explainable  [88].

RNNs and their variations have gained widespread 
popularity for molecule generation since the incep-
tion of CLMs. In the early days of CLMs, RNNs, and 
their variants were utilized to understand the distribu-
tion of sequential data, particularly for SMILES. Objec-
tive evaluation was prioritized throughout this research. 
RNNs have demonstrated their ability to efficiently learn 
the grammar and syntax of generating or completing 
SMILES sequences, resulting in molecules with similar 
property distributions as those in the training dataset 
[89].  These results are shown in Fig. 4, where RNNs were 
previously a significant deep learning architecture exten-
sively applied for generative tasks. However, RNNs have 
seen a reduced usage as molecular generative models 
due to the long training time and risk of degraded per-
formance associated with long-term dependencies. The 
surge in this area is largely attributed to the implemen-
tation of advanced deep learning designs, such as trans-
formers. These models enable parallel computing and 
surpass the restrictions of earlier methods by capturing 
more information about molecular representations more 
effectively [90].

Figure  4 shows a major increase in the implementa-
tion of transformers as generative models in recent years. 
This can be attributed to their ability to learn data dis-
tributions and produce precise predictions by the imple-
mentation of self-attention mechanisms and parallel 
computing [91]. On the other hand, Fig. 4 indicates that  
autoencoder approaches based on GANs and VAEs, 
which could be implemented as CLMs or graph mod-
els, remain as alternatives for molecule generation but 
with a low rate of use as generative models compared to 
sequential models. The observed low usage rate of GANs 

Fig. 3 Comparison of the number of deep generative models article 
publications from 2020 to June 2024

Fig. 4 Comparison of deep learning architecture models published 
from 2020 to June 2024
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and VAEs could be attributed to the high complexity 
regarding the time and memory space of these methods, 
as well as their reduced ability to generate large mol-
ecules [37, 92].  Despite, the low rate of implementation 
of autoencoder approaches, VAEs presented a constant 
rate of implementation as generative models since 2020. 
In 2023, S4 were introduced as chemical CLMs for drug 
discovery, demonstrating promising results at generation 
sequences based on SMILES strings. However, further 
details regarding the implementation of S4 can be found 
in the metrics evaluation of CLMs.

Finally, left panel of  Fig.  5 presents the percentage 
of deep learning architectures utilized in the analyzed 
papers. The data indicates that RNNs and transformer 
models are the most frequently utilized, while GANs, 
VAEs, and the recently introduced S4 models are 
employed to a lesser extent in molecule generation. 
Notably, the slight difference in utilization percentages 

between RNNs and transformer models indicates a sig-
nificant surge in the implementation of transformers 
since their introduction to the deep learning field in 2017. 
Contrastingly, RNNs were introduced more than 40 years 
ago. It is of note that despite the LSTM-RNNs having a 
greater number of trainable parameters compared to the 
GRU-RNNs, it remains the most frequently used model 
within RNN models. This finding could be attributed to 
the LSTM-RNNs longer exposure time, unlike the more 
recent introduction of the GRU-RNNs.

Databases and molecular representations
As previously stated in this article, the presence of data 
is crucial for learning. The efficacy of deep learning 
models is significantly influenced by the quality of 
data input. In generating molecular models, structural 
information about molecules is gathered in different 

Fig. 5 Relative comparison of architectures used as generative CLMs in systematic review. Left panel represents the overall fraction of the deep 
learning architectures used in 49 retrieved CLMs. Right panel shows the fraction of RNN variations used in articles that used RNNs as generative 
CLMs

Table 1 Description of databases used in retrieved articles for analysis. 

a Indicates databases created by authors and not publicly available, for this case reference indicates the article reference. Number of reported molecules up to 
September 2024

Database Description Number of 
molecules 
(millions)

Molecule representation Articles Ref

PubChem Structural information of mostly small molecules 115.3 SMILES and InChI 4 [93]

ChEMBL Bioactive molecules with drug‑like properties and Bioactivity 
records of data

2.4 SMILES and InChI 27 [94]

Zinc Structural information of drug‑like molecules 750 SMILES 27 [95]

US patent database Reactions extracted by text‑mining from United States patents 
published between 1976 and September 2016

 < 1.8 SMILES 1 [96]

DNA‑Encoded  Librarya Structural molecular, combinatorial screening, and DNA‑
encoded information

1040 SMILES 1 [97]

COCONUT Natural products structural and biological information 0.695 SMILES and InChI 1 [98]

LINCS1000 A comprehensive resource of gene expression in human cells 
perturbated by small molecules

 > 1 Not applicable 1 [99]
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formats, with SMILES and InChI being the two main 
formats. Additionally, data about their physicochemical 
and structural characteristics is collected. Furthermore, 
molecular databases contain relevant information 
on bioactivities, biological targets, and other crucial 
biological data.  Table 1 presents the databases used for 
training models in this study.

Drug-like molecular databases, such as Zinc and 
ChEMBL, provide information on molecular structures, 
bioactivity data, validated bioassays, and physicochemi-
cal properties. The extensive use of these drug-like data-
bases is linked to current trends in drug design, which 
focus on deep learning-based methods for drug discovery 
and design [100, 101].  Approximately 71% of the arti-
cles discovered through this systematic review focus on 
designing and discovering targeted drugs. Of those 71% 
retrieved articles focused on drug discovery, roughly 
9 out of 10 utilized the ChEMBL or Zinc database to 
train their deep generative models, which are primar-
ily fueled by the curated structural data of synthesizable 
and validated drug-like molecules. This data serves as an 
extremely valuable source of information for the deep 
generative models.

Linked to the significant role that databases play in 
deep learning, molecular representations also play a cru-
cial part in training deep generative models. Although 
SMILES has limitations, it is still a widely used molecu-
lar format for CLMs. In this study, 77.27% of the models 
used SMILES exclusively for training. This format allows 
for data augmentation through randomized SMILES and 
offers a format that is available in almost all databases 
in a compact memory format that can be learned easily 
for deep learning models [36, 37, 102, 103]. On the other 
hand, the other CLMs articles utilize NLP translation 
methods to generate targeted compounds using input 
formats such as target receptor sequences, gene expres-
sion signatures, IUPAC names, or physicochemical prop-
erties  [104–110].

Training dataset size
In practice, data quality alone does not suffice for model 
training, the quantity of data also plays a crucial role. 
Therefore, high-quality data are essential for effective train-
ing. To learn chemical distributions and patterns, deep gen-
erative model training implements probabilistic estimators 
of data distributions to fit the original data distributions; 
this process involves the use of large amounts of chemi-
cal entities to estimate the unknown parameters and learn 
the data distribution. In CLMs, the Negative Log Likeli-
hood (NLL) function is implemented for model training 
to minimize it. This minimization iterative process results 
in learning unknown parameters to model the chemical 
data distribution of sequences [18]. Since different models 

have varying levels of complexity, they require different 
amounts of data to learn unknown parameters. Figure  6 
illustrates the differences in the training dataset used for 
each CLM in this analysis. Despite the different complexity 
of the architectures, no statistical difference was observed 
between the size of the training datasets in different deep 
generative models. However, a large dispersion for train-
ing dataset size in VAEs is observed. This is mainly driven 
by a value that corresponds to 30 million chemical entities 
extracted from PubChem to train TransAntivirus, a VAE 
architecture that uses IUPAC names for SMILES sequence 
prediction through transformers-based encoder-decoder. 
The encoders use a transformer that feeds the output pre-
diction of the IUPAC name to the decoder, which is also a 
transformer that uses the latent representation of IUPAC 
names to predict the tokens in the SMILES sequences. 
This process involves learning two different chemical lan-
guages with different constraints and syntax, requiring 
many parameters to map each language system and large 
amounts of data to train all these parameters [110]. Simi-
larly, an outlier is observed in the size of the Transformers 
training dataset, encompassing 50 million unique chemical 
structures retrieved from PubChem. These structures are 
employed to train a transformer-based structure–property 
multi-modal foundation model (SPMM), a proposal put 
forth by Chang and Ch. The aforementioned approach is 
analogous to that of a sequence-to-sequence model, which 
is capable of generating molecules from a property vector 
to a SMILES sequence. This enables the learning of a more 
nuanced representation of molecules, which is addition-
ally adept at performing a multitude of tasks beyond mere 
molecule generation. These include property prediction 
and forward/ retro-reaction prediction without any loss of 
generation metric values. However, the learning process is 
exhaustive in terms of the data required, necessitating the 
learning of millions of molecules [111].

Fig. 6 Boxplot of training dataset size used in different deep learning 
models for molecular generation
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Unbiased models
Validity
Molecule generation can lead to the production of invalid 
sequences beyond the chemical space. The assessment of 
molecular generative models’ capacity to generate valid 
chemical entities is supported by a metric that measures 
the ability of CLMs to understand chemical language. 
To accurately compare the proportion of valid mol-
ecules generated by various architectures using CLMs,  
Fig.  7 presents the valid fraction of unbiased models as 
reported in the retrieved articles. No statistically signifi-
cant differences were observed in the validity medians 
among the deep generative models, for either group or 
pairwise comparisons. Overall, Transformer architec-
tures display high validity rates for molecule generation. 
This is accomplished using self-attention mechanisms, 
which adjust the size of the latent vector depending 
on the length of the sequence to retain uncompressed 
sequence information instead of compressing it into a 
fixed-length vector that may not effectively represent the 
interaction between chemical tokens. However, the anal-
ysis of Transformer architectures uncovered a molecular 
generative transformer model that achieves a validity rate 
as low as 6.9%. This study, conducted by Zhumagambe-
tov et al., focuses on generating virtual libraries of com-
pounds. The researchers discovered that increasing the 
variability of token sampling and adding Gaussian noise 
to the transformer decoder is a powerful technique for 
stochastically sampling molecules in chemical space. This 
technique can generate molecules with unique chemi-
cal structures that generalize well in unseen regions of 
chemical space. However, it is also prone to generat-
ing chemical entities that do not belong to the chemical 
space, thus reducing the validity ratio [112].

Although there are no outliers for GANs in Fig.  7, 
a  significant data dispersion can be attributed to the 
constraints of learning chemical language from other 

biochemical sequences associated with the molecule 
target reaching values of validity as low as 8.5%. This 
strategy presented by Méndez-Lucio et al. is an important 
demonstration of the potential of GANs to generate 
targeted molecules resembling active compounds using 
only gene expression and SMILES as training data. This 
approach reduces the need for extensive information on 
bioactive molecules [104].  The model learns to generate 
both bioactive and realistic chemical entities in SMILES 
format from gene expression profiles. This approach 
improves the probability of generating molecules that 
induce a desired transcriptomic profile but comes at the 
cost of generating a high proportion of molecules that 
violate valence chemistry rules due to the challenging 
tasks of learning how to map valid and real chemical 
structures in chemical space and simultaneously learning 
SMILES syntax and grammar rules from gene expression 
signatures. Subsequently, other approaches have been 
developed to generate phenotype-tailored compounds 
using stained cell images as inputs, driven by the high cost 
of obtaining gene expression signatures and poor validity 
achieved in previous works. This proof-of-concept 
utilizes generative models and cellular morphology 
information to design compounds that have the potential 
to induce a desired biological response with a high 
validity rate (56.6%) by implementing SELFIES as the 
molecular representation [113]. Moreover, subsequent 
to the introduction of Mendez-Lucio, which generated 
targeted molecules from gene expression data, Liu and 
colleagues proposed a TransGEM. This methodology 
employs cell line and gene expression embeddings 
to create molecules using SELFIES sequences. The 
method is based on an encoder-decoder Transformer 
architecture, which has significantly enhanced the 
distribution generation metrics. These values now reach 
85% for uniqueness and 100% for validity and novelty. 
However, the internal diversity is relatively low (79%), 
indicating that the model is unable to generate a diverse 
range of groups within the generated set. Nevertheless, 
this approach has demonstrated that the use of SELFIES 
and a tenfold binary encoding representation for the gene 
expression values, which are subsequently embedded 
into a dense vector, contains more information than 
other representations presented in the article (gene 
expression (GE) values and GE one-hot vectors). This 
representation serves as an input for the transformer 
decoder, which learns the interaction information 
between gene expression data and molecule embeddings, 
resulting in high distribution metric values  [114].

In addition, other GAN-based CLMs utilizing discrete 
molecule representations have emerged as an active 
research area aimed at mitigating challenges, like model 
collapse, associated with generative models. For this 

Fig. 7 Validity boxplot of unbiased models evaluated using at least 
1000 chemical compounds generated by deep learning models
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purpose, NLP methods have been adapted for molecular 
generative tasks, including MaskGAN, which generates 
molecules using SMILES as a molecular representation 
and a text fill-in-the-blank strategy [115].  Nonetheless, 
human expertise or other computational approaches 
are required to determine which scaffolds must be filled 
to generate novel compounds with potential therapeu-
tic applications, limiting this approach to a proof-of-
concept for CLMs that could achieve high molecular 
validity when the masking ratio is around ten percent 
of the sequence [116]. On the other hand, three differ-
ent strategies implementing the idea proposed by Zhao 
and colleagues have used their Adversarially Regularized 
Autoencoders (ARAE) to train molecular GANs [117]. 
This approach is based on combining discrete autoencod-
ers with GANs. Specifically, VAEs map discrete molecule 
representations onto a latent space. Generated latent vec-
tors are then utilized to estimate the discrete distribution 
of molecules with the assistance of a GAN through adver-
sarial training. ARAE sidesteps typical issues that arise 
when GANs attempt to learn discrete representations of 
molecules, which can result in a model collapse problem. 
The Conditional Adversarially Regularized Autoencoder 
(CARAE) approach was the first to introduce ARAEs 
to molecular representation using SMILES as discrete 
molecular representations. This approach includes a con-
ditional module that can sample molecules with similar 
properties by tuning the latent vector using a property 
vector. Ultimately, the tuned latent vector is manipulated 
by the VAE decoder to reconstruct the original molecule 
[118].  Similarly, the cross-adversarial learning method 
for molecular generation (CRAG) approach utilizes 
ARAE with Projected Gradient Descent (PGD) to gen-
erate adversarial samples. The use of PGD leads to data 
augmentation without changing the actual molecule dis-
tribution, effectively addressing the challenge of precisely 
estimating representation distribution [119].  Without 
a doubt, both models can produce a high percentage of 
valid molecules, reaching values of 90.3% and 97.6%. In 
contrast, previous ARAE methodologies exhibited inad-
equate decoding proficiency for valid SMILES sequences, 
achieving values as low as 30.7%  [120]. This shortcoming 
was primarily due to the lack of a smoothed latent land-
scape, resulting in empty areas that were later sampled 
by GANs, leading to the creation of invalid molecules 
by the decoder. This limitation is readily addressed by 
CARAE and CRAG through the incorporation of a prop-
erty prediction neural network which is jointly trained 
with VAEs. This leads to an organized latent space that 
has a soft transition between encoded molecules with 
different properties, which significantly reduces the 
risk of GANs sampling empty spaces [53]. Furthermore, 
alternative methodologies for the generation of realistic 

chemical structures have been proposed, employing 
Generative Adversarial Imitation Learning (GAIL) [121]. 
This approach utilises a discriminator to direct the actor 
in emulating expert behaviour, through the training of a 
transformer to generate SMILES. In contrast, the con-
trastive discriminator is trained with a set of chemi-
cal structures exhibiting specific properties, with the 
objective of retraining the transformer and generating 
molecules that are analogous to the target structures. 
Although this model is susceptible to generating invalid 
molecules when working with SMILES, which can be 
attributed to the limited data used for training (~ 350  k 
chemical sequences), when SELFIES are employed as a 
molecular representation, the model is capable of gener-
ating a perfect validity score while maintaining internal 
diversity metrics, indicating that the model is capable of 
generating diverse chemical sequences that conserve the 
chemical properties of the training dataset in contrast 
to the expected behavior of generative CLMs presented 
by Skinnider [122].  However, VAEs have not shown any 
significant differences compared to other deep learning 
architectures, and their median validity results are simi-
lar to the median found for GANs.

In the final consideration, the multitude of versions of 
RNNs, these architectures were compared generally as 
a family with other architectures. The results revealed 
that their ability to generate valid molecules is close to 
transformer-based methods. To further investigate the 
behavior of individual RNN variants, the validity frac-
tion of unbiased molecules generated by each variant 
was evaluated and presented in  Fig. 8. Statistical analy-
sis indicates no significant difference between the various 
recurrent deep architectures using group and pairwise 
median comparisons. It is important to note that only 
one work that implemented a Nested LSTM (NLSTM) 

Fig. 8 Validity boxplot of unbiased models evaluated using at least 
1000 chemical compounds generated by RNNs variants
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for molecule generation was included in the analysis. This 
differs from LSTM or GRU in that it has a multi-level 
memory, which allows for a higher degree of freedom 
than other recurrent neural network (RNN) methods. 
This enables the model to handle internal memory over 
a longer range, but this feature comes at the cost of 
increasing the number of trainable parameters in mem-
ory cells and therefore the time needed to train in com-
parison to conventional RNN architectures. The NLSTM 
employs a pre-trained model to represent the tokens of 
molecules in a dense vector derived from the pre-trained 
Mol2Vec model. This provides more detailed information 
about chemical properties to each token. Subsequently, 
the NLSTM is capable of effectively handling the relation 
between tokens, thereby enabling the generation of mole-
cules that are 97.6% valid even when the sample tempera-
ture of softmax is reduced to 0.75 [123].

To complete the analysis of validity in CLMs, validity 
was compared to the ability of models to generalize the 
learning of sequences in CLMs by producing novel mol-
ecules. In this context, while maintaining the ability to 
generate valid molecules, ideal generative models would 
allow the exploration of a larger chemical space by gen-
erating novel entities not present in the training dataset. 
To this end, we propose the metric Valid/Sample (Valid-
ity x Novelty) to compute the ratio of valid to novel mol-
ecules generated by deep learning structures, similar to 
Hong, et al. Novel/Sample metric. [118] After reviewing 
literature that reported the validity and novelty of unbi-
ased models, we calculated the Valid/Sample ratio and 
used a box plot to identify low-value outliers. These outli-
ers were mainly attributed to discontinuous sampling in 
latent molecular space, low rates of generalization learn-
ing, or inadequate methods for pre-processing chemical 
sequences  [112, 124, 125].

To analyze the relationship between valid and novelty 
values, we eliminated outliers from the analysis. Figure 9 
demonstrates that there is not a significant relation-
ship between the validity and novelty values of genera-
tive models (p-value = 0.0618). However, a trend of the 
inverse relationship between the values of validity and 
novelty is noticeable (spearman coefficient, ρ = −0.3575), 
wherein 82.1% of models fail to attain values equal to 
or exceeding the median of both novelty and validity 
(95.6% and 96.5% respectively). This is attributed to the 
inherent balance of exploring the chemical space and 
generating valid chemical sequences. [126] Only a small 
fraction (17.9%) of the analyzed deep generative models 
can achieve high novelty values while retaining a high 
validity ratio of chemical entities. Thus, articles use dif-
ferent approaches to maximize validity and novelty such 
as reducing the gap between molecular representation in 
latent space by using ARAEs or VAEs approaches [110, 

119]. In addition, fill-in-the-blank based strategies to gen-
erate novel molecules reduce the degrees of freedom of 
molecular complexity for molecule generation, resulting 
in a high validity rate that can be implemented either for 
SMILES or SELFIES, wherein due to the intrinsic proper-
ties of SELFIES models can generate 100% valid and novel 
chemical sequences [36, 127].  In a similar fashion to fill-
in-the-blank methods, decorative approaches can reduce 
the complexity of molecule generation by decorating a 
carbon backbone with other functional groups [128]. It 
is noteworthy that a recent development of transformer-
based variational autoencoders (VAEs) has been imple-
mented by Zhu and colleagues. This approach focuses on 
the target generation of molecules using pharmacophore 
information. In this method, the information of pharma-
cophore groups is embedded using a gated graph neural 
network. Then, SMILES are embedded using a masking 
language model. Subsequently, all of the aforementioned 
information is utilized to generate a latent vector through 
an encoder transformer, which is then employed to train 
the encoder-decoder transformer in addition to the phar-
macophore information embedding. In conclusion, novel 
molecules with a given pharmacophore group are gener-
ated by using a latent vector N(0,I) during the inference 
stage. This strategy is capable of designing drug mol-
ecules based on the superposition of known active mol-
ecules when the target is unknown, or the binding site is 
unclear. It achieves high novelty (97.6%), validity (98.2%), 
and uniqueness (97.9%) rates even when SMILES strings, 
which are prone to syntax errors, are used for molecule 
generation. This is due to the implementation of a large 
number of attention mechanisms during the train-
ing stage, which capture all the necessary relationships 
between sequences to ensure [129]. 

Fig. 9 Novelty trend respect to validity of unbiased models. Color 
scale indicates Validity x Novelty metric
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One of the most promising deep learning architectures 
recently introduced is DRAGONFLY, which employs a 
LSTM as CLMs to generate molecules and graph neu-
ral network to encode the information of interaction 
between ligands and targets. This approach integrates 
information about receptors from graph neural networks, 
which are used to train the LSTM to learn the distribu-
tion of SELFIES that corresponds to each ligand based 
on its spatial 2D and 3D information about the receptor. 
This approach optimizes the acquisition of information 
regarding interaction networks between drug targets and 
their ligands while maintaining high-quality distribution 
metrics [130].

Uniqueness
Since the uniqueness of models represents a fundamen-
tal metric to compare the ability of models to generate 
diverse sets of chemical sequences, we evaluated and 
compared the uniqueness of unbiased models reported 
in CLMs with different architectures. Figure  10 shows 
boxplots of each general architecture used for CLMs and 
molecule generation, indicating no significant differences 
in medians between generative models. In general, deep 
generative models can reach high uniqueness values for 
molecular generated sets.

In addition, Fig.  10 shows the evaluation of a com-
mon obstacle faced by generative CLMs: the ability to 
generate unique compounds during the inference stage. 
Despite the advantages in terms of enhancing validity 
and novelty through scaffold decoration and fragment-
linking approaches, the generation of unique molecules 
comes at a cost. These approaches reduce the chances 
of producing invalid molecules while maintaining an 
acceptable level of novelty. Nevertheless, the ability to 
produce unique chemical sequences is compromised 
due to redundancy problems associated with the train-
ing process. These records provide clear evidence that 

these models are susceptible to experiencing overfitting  
[74, 106, 124, 131, 132].  In contrast, incorporating the 
dynamic addition of blank positions to be filled or gen-
erating a token matrix instead of sequentially generating 
tokens to decorate scaffolds could improve the unique-
ness ratio of generated molecules for CLMs [127, 128]. 
Additionally, transformer-based models utilizing sequen-
tial text generation for de novo molecule generation have 
demonstrated near-perfect or perfect uniqueness scores. 
This is achieved through the implementation of a masked 
self-attention mechanism, which prevents the model 
from attending further tokens in sequences and therefore 
prevents overfitting  [61, 133–136]. While other architec-
tures have concentrated on implementing RNNs or pool-
ing algorithms to compute the attention mechanism and 
enhance the generation metrics of transformers, result-
ing in marginal improvements in generation metrics such 
as uniqueness, they have also led to a significant increase 
[138] In the number of trainable parameters and train-
ing time [137].  This suggests that GPT approaches are 
sufficient for chemical space exploration when the train-
ing data is sufficient to train a robust model. Neverthe-
less, this type of model may prove beneficial in instances 
where conditional generation is required or when par-
ticular properties must be present in chemical structures.

For this purpose, 4 out 9 CLMs VAE-based 
architecture met the analysis requirements and 
proved to be a potent tool that employs transformers 
and mask self-attention in their encoder-decoder 
structures, enabling accurate learning of information 
from IUPAC and SMILES sequences. This method, 
previously discussed for evaluating novelty and validity, 
has significant potential for designing and optimizing 
molecules. However, it requires extensive data and 
time for training, which may be a disadvantage in terms 
of requirements[110]. In addition, a novel approach 
called Generative Chemical Transformer (GCT) was 
introduced, which embeds transformer architecture 
in VAEs; this strategy takes advantage of the attention 
mechanism and its ability to pay sparse attention in 
chemical sequences to deeply understand the geometric 
structure of SMILES beyond the limitations of semantic 
discontinuity of chemical language, resulting in good 
performance in generalizing learning from SMILES 
sequences and thus drastically reducing the number of 
repetitive chemical entities produced by the model  [138]. 
Nevertheless, alternative approaches that are based on 
the utilization of transformers as the foundation of VAE 
have been proposed by Yoshaki and colleagues. The 
authors put forth a proposal wherein the normalized 
latent vector, which has been learned from transformer 
encoding, is employed to feed a transformer decoder 
in conjunction with the SMILES embedding, thereby 

Fig. 10 Uniqueness box plot of unbiased models evaluated using 
at least 1000 chemical compounds generated by deep learning 
models
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enabling the generation of novel structures. This implies 
that the transformer decoder is capable of learning 
the distribution of SMILES from an embedding vector 
that contains both the latent vector and the SMILES 
embedding. This approach has the potential to yield 
results that are both unique and novel, with a value 
approaching that of a perfect score. However, this 
approach also has limitations, as it results in a loss of 
validity, with a score of 87%, due to the inability to smooth 
the decoding process in structures that do not adhere to 
the established chemical rules [139].  In contrast, Inukai 
and colleagues The authors proposed a transformer-
based VAE that employs fragment tokenization to extract 
conformational molecules, as opposed to character-
level tokenization and tree positional encoding. The 
former is used to generate embeddings that enrich the 
information about the position of fragments and simplify 
the handling of large and complex molecules. These are 
then fed into a decoder, while the latent vector generated 
from the encoder transformer is used to feed the cross-
attention in the decoder transformer. This approach 
yields high distribution metrics (exceeding 97% for each 
metric) while reducing the time needed to train and 
generate large libraries in comparison to existing VAE 
architectures [140].  While other non-transformer-based 
VAE models have demonstrated the potential for high 
uniqueness and validity values, the implementation of 
NRC-VABS is a noteworthy example. NRC-VABS is a 
normalized reparametrized conditional LSTM-based 
VAE that employs a beam search to decode the latent 
vector. The model introduces Hx SMILES as a novel 
molecular representation, enabling the probabilistic 
model to learn long-term dependencies in SMILES 
strings and reducing complexity through the addition 
of two characters (^_), which indicate rings, and only 
closing brackets, which indicate branches. All of these 
are followed by a number that indicates the length of 
the ring or branch. The NRC-VABS approach allows for 
the exploration of chemical space in the surrounding 
area of targeted molecules. This is accomplished by 
creating a smoothed latent space that can be interpolated 
to generate novel molecules through a beam search. 
This approach permits the introduction of a variety of 
functional groups while preserving structural similarities 
with the targeted molecule, thereby maintaining the 
desired properties [141].  In conclusion, VAEs approaches 
achieve high uniqueness values with low dispersion; 
however, they are associated with model collapse or 
the generation of invalid molecules due to sparse latent 
space generation. This last limitation can be addressed by 
incorporating a prediction model that can accommodate 
the intricate latent space, as demonstrated by Liu et al. in 
their GRU-based VAEs for the generation of Alzheimer’s 

drug molecules  [142].  Thus far, the discussion has 
focused exclusively on traditional deep learning 
architectures. However, the introduction of S4 models 
as CLMs has been observed to exhibit high uniqueness 
values. These architectures are neural networks designed 
to handle long-range dependencies in sequential data, 
such as time series or natural language. The objective 
is to effectively capture both short-term and long-term 
patterns, which are often challenging for traditional 
models, such as recurrent neural networks (RNNs) or 
even transformers, to handle efficiently, particularly for 
very long sequences. The distinctive dual nature of S4s, 
encompassing convolution during training and recurrent 
generation, renders them especially fascinating for de 
novo design, commencing from SMILES and attaining 
high-quality metrics. Furthermore, they can be utilized in 
conditional generation to generate products that closely 
resemble natural ones [143].

Finally, the RNNs attained comparable levels of unique-
ness to other architectures. However, each class of RNNs 
was evaluated in terms of uniqueness to fully analyze the 
data. Stack RNNs were excluded from statistical analysis 
because only one article met the requirements. However, 
this class of recurrent networks has demonstrated an 
ability to reach values close to 100% through parallel pro-
cessing of information in each cell when sampling tokens 
in the sequence. However, this approach compromises 
space and time complexity. [144]. The analysis showed no 
significant difference between the performance of LSTM 
and GRU. However, LSTM exhibited an anomaly that has 
been previously studied for RNNs as groups and belongs 
to scaffold decorations approaches [124].

Biased models
Until now, we have reviewed the characteristics of unbi-
ased models for molecule generation, but still left room 
to review deep learning strategies for exploring specific 
regions of chemical space. CLMs have utilized a range 
of techniques based on biased model weights to acquire 
knowledge on the general grammar and syntax of molec-
ular representation, as well as the specific configuration 
and patterns of molecules that exhibit specific physico-
chemical properties or bioactivities.

Figure  11 illustrates the implementation of biased 
methods among deep learning architectures. The analy-
sis examined three distinct biased methods, which were 
utilized with similar frequencies in various deep learning 
architectures. These methods are mainly used to generate 
targeted molecules when the available data alone is not 
sufficient to train deep generative models. This is espe-
cially important for rare or newly discovered targets that 
do not have enough data to train deep learning models.
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Transfer learning
Among biased strategies, TL is the most prevalent 
method due to its user-friendly implementation strate-
gies that are suitable for almost all architectures included 
in this analysis. For this specific case, fine-tuning is the 
commonly used transfer learning method for generating 
targeted molecules. This technique transfers previously 
learned parameters to the target model, which is respon-
sible for recognizing specific patterns like common 
scaffolds, functional groups, and atomic configurations 
without having to re-learn the syntax and grammar of the 
chemical language. Fine-tuning strategies have proven to 
be effective tools for exploring chemical space in sequen-
tial-based models, as detailed in Table 2.

Such approaches do not compromise the validity 
and novelty of generated molecules compared to unbi-
ased models and require significantly fewer chemical 
sequences to train the model. However, the cost of this 

reduction in training data is a decrease in the variety of 
generated molecules probably due to overfitting.

Fine-tuning has enabled the exploration of chemical 
space for areas containing molecules with bioactivities 
linked to proteins that are commonly expressed at high 
levels in various solid tumors, such as the Epidermal 
Growth Factor Receptor (EGFR). The resulting chemi-
cal sequences are accessible for chemical synthesis, and 
they have produced promising molecular docking results. 
Additionally, QSAR models suggest activities for EGFR 
[82, 107, 134]. Additionally, recent reports have high-
lighted the emergence of virtual libraries consisting of 
targeted chemical entities generated using deep gen-
erative models and transfer learning techniques. These 
models focus on generating molecules with the poten-
tial to target specific Alzheimer’s-related proteins such 
as BACE-1 and ADAM10, schizophrenia-related targets 
including D2R, 5-HT1AR, and HT2AR, the Cannabi-
noid CB2 target, SARS-CoV-2 proteases or compounds 
exhibiting specific chemical properties [97, 103, 109, 
124, 125, 145–149].  Finally, transfer learning has dem-
onstrated the potential to generate target molecules for 
designing functional compounds that can be synthesized 
and experimentally tested against the Phosphatidylin-
ositide 3-kinase receptor. This leads to the discovery of 
therapeutical leads with sub-micromolar activity, inhibit-
ing the growth of cancerous tumor cells significantly in 
in vitro models [36].

Reinforcement learning
Unlike biased models used in transfer learning, RL is 
used for planning or decision making in sequential pro-
cesses such as generation of de novo molecules. The 

Fig. 11 Distribution of biased methods among different deep generative models

Table 2 Descriptive statistics and P‑values are presented for the 
performance and training datasets of generative models that 
implemented TL

Median values are reported for both the Unbiased and target models, and 
P‑values were calculated through the Mann–Whitney U test for paired samples. 
The number of articles meeting the required metric reporting criteria for analysis 
is indicated by the sample’s column

Unbiased 
model

Target model Samples P‑value

Training dataset 
size

1,128,920 2507 17  < 0.0001

Validity 98.05 95.5 10 0.1602

Uniqueness 97.9 90.2 11 0.0144

Novelty 91.6 96.0 8 0.8438
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implementation of discriminative or predictive neural 
networks enables generative models to explore specific 
regions of the chemical space where bioactive or spe-
cific structures may exist. RL has been implemented in 
various deep learning models. However, this analysis has 
only been found to be applied to RNNs and Transform-
ers (see Fig. 11).  Table 3 presents the statistical summary 
of biased models that utilize RL for targeted molecule 
generation, revealing that the process of reinforcement 
learning does not affect molecular metrics.

RL utilizes models to guide generation models in learn-
ing parameters that enable molecular decoding in specific 
regions of chemical space, often utilizing scoring func-
tions and predictive/classification deep learning meth-
ods. A wide variety of models and scoring functions have 
been introduced as agents for RL. First, 90.1% of the arti-
cles retrieved that employed reinforcement learning have 
opted to use Policy gradient methods. Policy gradient 
uses a score function that returns a value given the chem-
ical properties of the generated molecules, this approach 
aims to find parameters that maximize the score function 
that induces the molecular generator to explore in a cer-
tain direction of the chemical space, since molecules that 
can achieve, higher rewards have tended to group in the 
chemical space. These methods have implemented many 
predictive modules to calculate the properties of gener-
ated molecules using machine learning or deep learning 
approaches. For example, linear regression-based mod-
els enable the computation of a range of physiochemical 
characteristics, molecular similarity, synthetic viability, 
and binding affinity metrics for generated chemical enti-
ties. These modules have proven to be a powerful tool in 
generating targeted chemical libraries for potential inhib-
itors of SARS-CoV-2, acetylcholinesterase, neuramini-
dase, and κ-opioid receptor [64, 144].  Additionally, other 
predictive models that employ deep learning methods, 
including multilayer perceptron, convolutional neural 
networks (CNNs), and LSTMs, among other deep learn-
ing architectures, enable the use of generated sequences. 
These models are not limited to using only chemical 

descriptors, outperforming chemical descriptors-based 
methods, and thus avoiding the addition of bias to spe-
cific regions of chemical space [17]. These methods 
enabled optimizing the properties of molecules and gen-
erating novel chemical entities with potential activity to 
permeate the blood–brain barrier [61, 62, 150]. Addi-
tionally, other strategies that implements policy gradi-
ent, such as Hill-Climbing, augmented Hill-Climb, and 
REINVENT algorithms, have demonstrated the ability to 
achieve state-of-the-art results for molecular generation 
metrics in terms of validity, novelty and uniqueness [131, 
151, 152]. 

Finally, Monteiro et  al. have introduced a novel 
approach based on evolutionary algorithms, demonstrat-
ing the potential of combining reinforcement learning, 
transfer learning, and nondominated sorting algorithms 
to generate unique and valid chemical sequences with 
desirable physicochemical and pharmacological proper-
ties for targeting biologically relevant molecules, such as 
the Adenosine A2A receptor (AA2AR), for therapeutic 
applications. This approach effectively handles the com-
plex trade-off between validity and novelty, leading to 
unprecedented levels of uniqueness, novelty, and validity 
for the targeted molecules [136].

Conditional generation‑based methods
Conditional Generation-Based Methods have emerged as 
a tool for generating chemical entities that satisfy desired 
properties. Conditional Generation is a technique that 
involves adding constraint tokens to chemical sequences 
that are not part of the molecule representation vocabu-
lary. This enables the labeling of chemical entities, which 
in turn trains the model to recognize conditional chemi-
cal sequences. Consequently, the model learns to map 
similar constrained molecules on a latent space, thereby 
introducing a natural bias that facilitates the generation 
of molecules with similar properties. This method of 
conditioning structure generation eliminates the require-
ment for optimization loops and retraining epochs for 
fine-tuning. Since its ability to map molecules and gen-
erate latent spaces, encoder-decoder architectures like 
ARAEs, VAEs, and Transformers have been widely used 
to implement conditional generation strategies, as illus-
trated in Fig.  11. Furthermore, to assess the impact of 
conditional generation based methods on the generation 
metrics proposed in MOSES, despite the low number of 
samples for comparing metrics of generated chemical 
sequences, Table 4 demonstrates that conditional learn-
ing strategies can produce molecules as effectively as 
unbiased models that solely focus on learning chemical 
languages. The effectiveness of conditional learning in 
generating natural-like products has been demonstrated 

Table 3 Descriptive statistics and P‑values are presented for the 
performance of generative models that implemented RL

Median values are reported for both the Unbiased and target models, and 
P‑values were calculated through the Mann–Whitney U test for paired samples. 
The number of articles meeting the required metric reporting criteria for analysis 
is indicated by the sample’s column

Unbiased 
model

Target Model Samples P‑values

Validity 91.1 96.5 9 0.1289

Uniqueness 99.9 89.7 7 0.0935

Novelty 91.5 93.5 4 0.2500
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using Transformer architectures such as NIMO, which 
learns to reproduce molecules similar to terpenoids 
with high validity, novelty, and uniqueness values. This 
approach does not require exhaustive data sets or exten-
sive computational resources, offering the potential to 
generate drug-like molecules with natural product scaf-
folds. These scaffolds may possess favorable ADME prop-
erties and minimal environmental impact [153].

Multi-objective compound optimization has been 
motivated by conditional generation methods as it 
possesses the ability to utilize a specific set of chemi-
cal properties to constrain the model producing virtual 
chemical libraries that not only can potentially be used 
as therapeutic agents by its structural similarity, but 
they may also share physicochemical properties. This 
achievement is demonstrated by the creation of vir-
tual chemical libraries that can bind to EGFR, HTR1A, 
and S1PR1 receptors. The libraries were generated 
using conditional generation to produce compounds 
with physicochemical properties that follow empirical 
drug-like rules [135]. Multi-objective optimization is 
an effective strategy for exploring chemical space and 
obtaining molecules that follow various physicochemi-
cal constraints [133]. Furthermore, it is imperative to 
convert discrete molecular representations conditioned 
by the environment into a latent space. The use of VAE, 
ARAE, and Transformers lead to a viable approach 
for both multi-objective and single-objective molecu-
lar optimization, resulting in validity and uniqueness 
values reaching up to 85% and being as versatile as 
working for text-filling approaches and sequential gen-
eration, as well as, working with different molecular 
representations [74, 104, 109, 110, 113, 117, 119, 138].

Finally, other approaches have been introduced 
that combine more than one biasing strategy to 
generative models, such as combining conditional 
generation-based methods with transfer learning or 
reinforcement learning. These strategies demonstrate 
significant progress in developing deep generative 
models, providing a highly effective method for 

exploring unknown regions of chemical space in 
search of molecules with specific activities suitable 
for material or drug discovery [90]. In particular, the 
implementation of transfer learning and conditional 
generation-based methods has enabled the generation 
of molecules using multi-objective optimization, which 
shows structural features that promote their bioactivity 
against specific targets while using small datasets for 
training [134].

Conclusion
Molecule design is fundamental to the discovery of 
drugs and development of materials, which currently 
relies mostly on the exploration of chemical space using 
computational approaches. Within computational 
approaches, CLMs have been shown to be a versatile 
tool for exploring chemical space. They enable mapping 
of chemical space and exploration in specific directions, 
providing access to regions where bioactive molecules 
exist by using biased CLMs models. During the period of 
2020 to June 2024, this systematic review evaluated deep 
learning molecular generative models utilizing MOSES 
metrics. The aim was to assess the model’s metrics asso-
ciated with the overfitting and learning process of chemi-
cal language.

Since the dawn of the data age, SMILES has remained 
the most widely used molecular representation format, 
owing to its readily accessible format. In contrast, SELF-
IES presents a promising representation format that can 
enhance model performance while reducing the trade-
off between validity and novelty values. This work has 
shown that CLMs often use transformers and gated RNN 
variants as generative models, which is consistent with 
the trend observed in NLP for text generation that has 
evolved along with generative CLMs [154].  Nonetheless, 
in recent years, there has been an increasing tendency 
to apply the Transformers architecture more often, due 
to their self-attention mechanism. This allows models to 
efficiently learn long-term dependencies and thereby effi-
ciently learn chemical language.

Finally, the performance of generative CLMs in terms 
of validity, uniqueness, and novelty is not statistically 
affected by targeted generative CLMs. Among biased 
models, TL has been the most used technique among TL, 
RL, and conditional learning for deep learning architec-
tures when about one thousand molecular entities are 
available for optimization. However, incorporating mul-
tiple biased methods into deep generative models has 
proven to be a promising technique for targeted molec-
ular generation. These models could produce molecules 
with improved chemical properties or bioactivities and 
can travel longer distances within chemical space to 
reach areas where specific molecules exist.

Table 4 Descriptive statistics and P‑values are presented for 
the performance of generative models that implemented 
conditional generation‑based methods

Median values are reported for both the Unbiased and target models, and 
P‑values were calculated through the Mann–Whitney U test for paired

Unbiased 
model

Target model Samples P‑value

Validity 98.5 96.8 11 0.4648

Uniqueness 99.9 97.5 10 0.0753

Novelty 89.3 99.6 8 0.2945
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We hope this review provides a comprehensive under-
standing of deep generative models, ranging from their 
theoretical background to the practical implementation 
of generative CLMs, and offers a clear perspective on the 
evolution, progress, and opportunity areas of generative 
CLMs in recent years.
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