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Abstract 

Predicting protein-small molecule binding sites, the initial step in structure-guided drug design, remains challenging 
for proteins lacking experimentally derived ligand-bound structures. Here, we propose CLAPE-SMB, which inte-
grates a pre-trained protein language model with contrastive learning to provide high accuracy predictions of small 
molecule binding sites that can accommodate proteins without a published crystal structure. We trained and tested 
CLAPE-SMB on the SJC dataset, a non-redundant dataset based on sc-PDB, JOINED, and COACH420, and achieved 
an MCC of 0.529. We also compiled the UniProtSMB dataset, which merges sites from similar proteins based on raw 
data from UniProtKB database, and achieved an MCC of 0.699 on the test set. In addition, CLAPE-SMB achieved 
an MCC of 0.815 on our intrinsically disordered protein (IDP) dataset that contains 336 non-redundant sequences. 
Case studies of DAPK1, RebH, and Nep1 support the potential of this binding site prediction tool to aid in drug design. 
The code and datasets are freely available at https://​github.​com/​JueWa​ngTHU/​CLAPE-​SMB.

Scientific contribution  CLAPE-SMB combines a pre-trained protein language model with contrastive learning 
to accurately predict protein-small molecule binding sites, especially for proteins without experimental struc-
tures, such as IDPs. Trained across various datasets, this model shows strong adaptability, making it a valuable tool 
for advancing drug design and understanding protein-small molecule interactions.

Keywords  Protein-small molecule binding site prediction, Protein language model, Contrastive learning, Intrinsically 
disordered proteins, Drug discovery

Introduction
Protein-small molecule interactions regulate almost all 
biological processes. Detailed characterization of small 
molecule binding interactions with proteins is essen-
tial for engineering or manipulating biological processes 
and designing targeted small molecule protein inhibi-
tors or activators [1–5]. However, it is first necessary to 
determine the small molecule binding sites on a protein 
of interest. Several experimental methods have been 
established for binding site identification, including 
surface plasmon resonance (SPR), isothermal titration 
calorimetry (ITC), and hydrogen deuterium exchange 
mass spectrometry (HDX-MS) [6–8]. In addition, struc-
tural biology methods like X-ray crystallography, NMR 
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spectroscopy, and cryo-electron microscopy (Cryo-EM) 
that generate high-resolution three-dimensional struc-
tures of proteins in complex with their small molecule 
ligands have also helped advanced our understanding 
of protein-small molecule interactions [9]. While these 
experimental methods offer unparalleled precision and 
irreplaceable validation capabilities, they require sub-
stantial commitments of time, labor, and resources 
[10]. To focus investigation and reduce efforts required 
for screening, computational methods for predicting 
protein-small molecule binding sites have emerged as 
a complementary approach to the above experimental 
methods.

Protein-small molecule binding site prediction models 
can be generally classified as either structure-based or 
sequence-based. Structure-based models rely on the 3D 
structure of a protein as input. For example, ScanNet [11] 
utilized an interpretable geometric deep learning model 
and built representations of atoms and amino acids based 
on the spatio-chemical arrangement of their neighbours. 
P2Rank [12] uses Random Forest (RF) modeling to clas-
sify the points evenly spread on the Solvent Accessible 
Surface (SAS) of proteins. DeepSite [13] treats the pro-
tein structure as a 3D voxel and uses a deep convolutional 
neural network (DCNN) as the classifier. However, the 
preparation of protein structures can be time-consuming 
[14]. Alternatively, for proteins without an experimen-
tally determined structure, AlphaFold [15] can be used 
to rapidly generate a protein structure for downstream 
binding site prediction, albeit with some potential loss of 
accuracy [16, 17].

Compared to structure-based binding site prediction, 
sequence-based models offer a simpler and more user-
friendly approach that only require the protein sequence 
as input, typically in FASTA or plain text format [18–20]. 
However, these models often have relatively low predic-
tive accuracy [21]. Notably, GraphBind [17] combines 
both sequence- and structure-based features, employ-
ing a graph neural network (GNN) for classification. 
DeepProSite [22] leverages ESMFold [23] and the Prot-
Trans T5 language model [24] to extract features from 
protein sequence, followed by prediction using a multi-
layer perceptron (MLP). However, a combination of both 
sequence- and structure-based features inevitably leads 
to redundancies in the input data and computational 
inefficiency [25–27].

To address the limitations in existing methods, in this 
study we propose Contrastive Learning And Pre-trained 
Encoder for Small Molecule Binding (CLAPE-SMB) 
based on our previous method, CLAPE, which is pri-
marily used for predicting protein-DNA binding sites 
[21]. We used a pre-trained protein language model, 
Evolutional Scale Modeling-2 (ESM-2) [23], to extract 

sequence features, followed by an MLP for binding site 
classification. We also applied triplet center loss (TCL) 
as a contrastive learning technique [28] to improve pre-
diction accuracy. CLAPE-SMB was first trained on the 
CHEN11 datasets [12, 29], and later showed high accu-
racy in binding site prediction using the COACH420 
test sets [12, 30], on par with the best current models. 
Then, we integrated three benchmark datasets, sc-PDB, 
JOINED, and COACH420 [12, 30, 31] into a new data-
set, i.e. SJC, on which CLAPE-SMB showed high accu-
racy. We also constructed the UniProtSMB dataset, in 
which we merged multiple sites from similar proteins. 
CLAPE-SMB showed high accuracy on this new data-
set, thus illustrating the effects of data quality, as well 
as the combination of a pre-trained protein language 
model and contrastive learning on the accuracy of pro-
tein-small molecule binding site prediction. The model 
constructed here can facilitate basic research of small 
molecule function in biological systems, and also guide 
drug development.

Methods
Sequence embedding
ESM-2 [23], a protein language model pre-trained on 
a large number of protein sequences, has been used 
to obtain the initial representation of proteins. As a 
1D-based protein sequence model, ESM-2 has been 
extensively used for predicting various properties of 
proteins. Deeper layers in ESM-2 tend to focus more on 
binding sites and contacts, which are high-level concepts 
related to protein folding. In contrast, secondary struc-
tures, which are lower- to mid-level concepts, are tar-
geted more evenly across layers [32]. This suggests that 
ESM-2 can capture important aspects of protein folding, 
therefore generating high-accuracy predictions of various 
properties.

In this study, we used the esm2_t33_650M_UR50D 
version of ESM-2, which consists of 33 layers and a total 
of 650 million parameters without fine-tuning the ESM-2 
layers. Protein sequences containing 21 tokens, including 
20 standard amino acids and one special token ’X’ to rep-
resent unknown residues, were fed into ESM-2 to obtain 
1,280-dimensional embeddings for subsequent training 
steps.

Backbone model
The backbone model of CLAPE-SMB was an MLP con-
sisting of 5 fully connected layers, an activation function, 
layer normalization, and Softmax function. The initial 
dimension was 1,280, and the output dimensions of the 
5 layers were 1,024, 256, 128, 64, and 2, respectively. 
Rectified Linear Unit (ReLU), an activation function 
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applied after each layer, introduced nonlinearity into the 
model. We used dropout of 0.3 to prevent overfitting and 
enhance generalizability. Layer normalizations ensured 
stable training by maintaining consistent mean and vari-
ance. A Softmax function was used to process output of 
the last layer to get a mutually exclusive prediction score 
between 0 to 1, representing the predicted probability for 
small molecule binding site classification.

Loss function
In this study, the loss function is expressed as:

where Lfocal and Ltc represent class-balanced focal loss 
[33, 34] and TCL [28] respectively. Both were used to 
address the issue of data imbalance, since the binding 
sites ratio was lower than 5%. We used a weight, � , to bal-
ance the different parts of the loss function.

The class-balanced focal loss was originally introduced 
by Cui et al. [34] based on focal loss, which was first pro-
posed by Lin et al. [33]. It can be expressed as follows:

In the formula, pti is the probability of a particular clas-
sification. 

(

1− pti
)γ is a modulating factor, representing 

different emphasis we placed on different classes. γ is a 
hyperparameter called focusing parameter, which was set 
to 3 in our study after searching. 1−β

1−βny
 , noted as En , is the 

effective number of the class proposed by Cui et al.β was 
set to 0.999 in our study to obtain best model perfor-
mance according to their work.

TCL is a supervised contrastive learning loss intro-
duced by He et al. [28], which aims to distinguish small 
molecule binding sites (positive samples) and non-bind-
ing sites (negative samples) better. Imagine a protein 
sequence with M amino acids. In this context, we treat 
the entire sequence as a batch, where each amino acid is a 
sample within the batch. Each amino acid in the sequence 
has an associated feature vector that captures the charac-
teristics of that amino acid. TCL maintains center points 
for both the positive and negative classes, which are ini-
tially chosen at random and optimized during training. 
TCL can be calculated as follows:

For each amino acid ( i ) in the batch, yi represents this 
amino acid is positive or negative.   D

(

fi, cyi
)

 represents 
the Euclidean distance between predicted probability ( fi ) 
and its cluster center ( cyi ) of class yi in the embedding 

(1)L = Lfocal + �Ltc

(2)Lfocal = − 1−β

1−βny

∑C
i=1

(

1− pti
)γ
log

(

pti
)

(3)
Ltc =

∑M
i=1max

(

D
(

fi, cyi
)

+m− D
(

fi, c1−yi

)

, 0

)

space. D(fi, c1−yi) , represents the Euclidean distance 
between predicted probability ( fi ) and the opposite clus-
ter center ( c1−yi ) of the opposite class of yi . To be specific, 
if an amino acid is binding site, yi is positive and 1− yi is 
negative. And m represents margin, a hyperparameters in 
TCL. And then each TCL of each amino acid was added 
to get final TCL of this batch. It is minimized when 
D
(

fi, cyi
)

 is very small and D
(

fi, c1−yi

)

 is very large. To be 

specific, D
(

fi, c1−yi

)

 should be larger than D
(

fi, cyi
)

 by at 
least a hyperparameter margin ( m ). This means that the 
binding residues are far from non-binding residues in the 
feature space. This separation in the feature space makes 
it easier for the model to distinguish between binding 
and non-binding residues, leading to more accurate 
predictions.

Evaluation metrics
Precision (Pre), recall (Rec), Matthews correlation coeffi-
cient (MCC), area under receiver operating characteristic 
(ROC) curve (AUROC) and area under precision-recall 
(PR) curve (AUPRC) are commonly-used evaluation 
metrics used in this classification task to measure the 
generalizability of our model and facilitate comparative 
analyses with previous models.

The three threshold-dependent evaluation metrics are 
expressed as:

In these formulas, TP represents true positive, indi-
cating the number of residues that are correctly classi-
fied as small molecule binding sites. TN represents true 
negative, indicating the number of residues that are cor-
rectly classified as non-binding sites. FP represents false 
positive, indicating the number of residues that are incor-
rectly classified as small molecule binding sites. FN rep-
resents false negative, indicating the number of residues 
that are incorrectly classified as non-binding sites. There-
fore, Pre represents the precision of our positive predic-
tions. Rec is the ratio of small molecule binding sites 
successfully identified by our model. MCC and F1-score 
are both overall measures of prediction ability from both 
positive and negative aspects. Notably, we used MCC 
rather than F1-score due to the issue of data imbalance 
[35].

To better evaluate our model, we plotted ROC curve 
and PR curve to obtain an overall intuitive measurement. 

(4)Pre = TP
TP+FP

(5)Rec = TP
TP+FN

(6)MCC = TP×TN−FN×FP√
(TP+FP)×(TP+FN )×(TN+FP)×(TN+FN )
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Fig. 1  Structure of the CLAPE-SMB model, comprising three primary components: a sequence embedding module based on the large, pre-trained 
protein language model, ESM-2, with its weights kept fixed during training; a backbone neural network employing either MLP or 1DCNN, 
both integrated with a Softmax function serving as the classification head; and a loss function module employing a combination of triplet center 
loss and class-balanced focal loss. The output is the probability of small molecule binding at each residue of in input protein sequence, with > 50% 
probability classified as a likely binding site
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We calculated the area under these curves, i.e. AUROC 
and AUPRC, to obtain a quantitative result. Notably, in 
the presence of data imbalance, AUROC is less critical, 
while MCC plays a more decisive role [36, 37].

Results
The model architecture of CLAPE‑SMB
The model architecture of CLAPE-SMB comprises 
three main modules (Fig. 1). In the first of these, protein 
sequence is fed into a pre-trained large language model, 
ESM-2, to extract informative features relevant to bind-
ing sites. Next, the extracted features are channeled into 
a 5-layer MLP, followed by a Softmax function to pre-
dict the probabilities of binding at each individual resi-
due in the protein sequence. Finally, we included a loss 
function that to accommodate both contrastive loss [28] 
and class-balanced focal loss [33, 34] to address poten-
tial class imbalance issues in the training data. The back-
propagation process solely updates the weights of the 
MLP, keeping the pre-trained ESM-2 model fixed, as 
previous studies have established that protein language 
models can automatically learn binding site information 
[38]. Fine-tuning a pre-trained model such as ESM-2 is 
computationally expensive and can sometimes lead to 
a phenomenon known as “catastrophic forgetting” [39, 
40]. Keeping ESM-2 fixed can reduce the computational 
burden and overfitting in the model, thus highlight-
ing the advantage of this design strategy. Additionally, 
CLAPE-SMB offers flexibility in the contrastive loss func-
tion. Alternative options such as InfoNCE [41], IOCRec 
[42] or LightGCL [43] are also viable choices for the loss 
function.

SJC dataset preparation
In this study, we employed four publicly available data-
sets, including sc-PDB, JOINED, COACH420, and 
CHEN11 [12, 29–31], to train and evaluate the perfor-
mance of CLAPE-SMB (see Supplementary Table  1 for 
detailed statistics). Sc-PDB is an annotated repository 

of druggable binding sites within the Protein Data Bank 
(PDB), comprising 4,305 proteins with 72,579 small-
molecule binding sites and 1,665,261 non-binding sites. 
The JOINED dataset, introduced for ligand-binding site 
prediction based on SAS points in the P2Rank study [12], 
is a relatively large compilation of several smaller data-
sets containing 560 proteins with 21,798 small-molecule 
binding sites and 156,286 non-binding sites. COACH420, 
a subset of the COACH test set processed in the P2Rank 
study, consists of 420 proteins with 5,376 small-molecule 
binding sites and 113,767 non-binding sites. CHEN11, 
containing 251 proteins, 3,592 small-molecule binding 
sites, and 56,930 non-binding sites, was first introduced 
in the LBS prediction benchmarking study [29].

The CHEN11 dataset was used in this study for direct 
comparison because it is the training set of Graph-
Bind. The other three datasets sc-PDB, JOINED, and 
COACH420 were integrated into a new dataset named 
SJC (summarized in Table  1), which was taken from 
the first letter of each dataset name. To enhance model 
robustness, all protein sequences from the three data-
sets were processed using UCLUST [44], which can 
be used directly via the command line by following the 
provided instructions (https://​www.​drive5.​com/​usear​
ch/​manual/​uclust_​algo.​html), with a sequence similar-
ity cutoff of 50%. UCLUST was chosen because it offers 
several advantages over the commonly used CD-HIT 
program [45], including faster processing, lower memory 
consumption, better sensitivity, and the ability to cluster 
at lower identity thresholds while handling larger data-
sets [44]. This processing step ensured that our dataset 
did not contain sequences with more than 50% similarity, 
allowing for an accurate evaluation of the model’s per-
formance and preventing overly optimistic results. Then 
these non-redundant sequences were further divided into 
training (80%), validation (10%), and test (10%) sets.

UniProtSMB dataset preparation
To further evaluate our CLAPE-SMB model, we created 
the large UniProtSMB dataset (summarized in Table  1) 

Table 1  Summary of protein-small molecule binding sites in SJC and UniProtSMB

Dataset Small molecule binding 
residues

Non-binding residues % of binding residues Average length

SJC Train 50,031 1,081,128 4.42 393

Valid 5,974 136,029 4.21 403

Test 6,153 138,259 4.26 410

UniProtSMB Raw 91,187 3,158,304 2.81 415

Train 46,294 1,636,512 2.75 424

Valid 5,898 199,320 2.87 414

Test 5,568 200,280 2.70 415

https://www.drive5.com/usearch/manual/uclust_algo.html
https://www.drive5.com/usearch/manual/uclust_algo.html
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by collecting all experimentally supported proteins with 
3D structures from the UniProtKB database [46] and 
identifying their small-molecule binding sites. In the Uni-
ProtKB dataset, for each protein with binding sites, the 
“Feature” section provides a table showing which amino 
acid on the protein sequence binds to which ligand. 
DNA, RNA, peptides, polymers, metal ions and Fe-S 
clusters were excluded because they are not small mol-
ecules. Through this process, we obtained a dataset of 
7,828 sequences, i.e. the raw UniProtSMB dataset.

To identify potentially overlooked binding residues, 
the raw UniProtSMB dataset was further processed as 
following. We first clustered proteins with a sequence 
similarity cutoff of 50% using UCLUST. This threshold, 
commonly used alongside others like 30%, 90%, and 100% 
in datasets such as UniRef [47], was chosen to balance 
two key factors: (1) preventing overly similar sequences 
in test and training sets, which could lead to overoptimis-
tic results, and (2) avoiding the risks of merging binding 
sites from lower thresholds with dissimilar sequences and 
compromised reliability. We also evaluated model perfor-
mance using different similarity thresholds, with results 
aligning with our theoretical analysis that supports 50% 
as a suitable choice, as shown in Supplementary Table 2. 
We examine generalizability of our model by fixing the 
clustering threshold (e.g., 50%) and varying the similarity 
threshold for dataset splitting (e.g., lowering it to 30%). 
This approach ensured that sequences within the same 
cluster did not appear in both the training and test sets. 
Despite the low similarity between train and test data, 
the model’s performance, as measured by MCC, showed 
only a slight decrease (seen in Supplementary Fig.  1), 
demonstrating the model’s high generalizability.

Next, we conducted a multiple sequence alignment of 
all proteins within each cluster using MAFFT [48]. We 
then identified the longest sequence to serve as the center 
sequence, onto which we integrated the small molecule 
binding sites from all other sequences in the same cluster. 
This process resulted in a single representative protein 
sequence that contained all binding sites for each cluster. 
The final UniProtSMB dataset has 4,964 proteins, which 
was further divided into training (80%), validation (10%), 
and test (10%) sets. The training set comprised 3,972 
proteins with 46,294 small-molecule binding sites and 
1,636,512 non-binding sites. The validation set included 
496 proteins with 5,898 small-molecule binding sites and 
199,320 non-binding sites. The test set contained 496 
proteins with 5,568 small-molecule binding sites and 
200,280 non-binding sites. The overall process is summa-
rized in Fig. 2.

Necessity of merging multiple binding sites of similar 
proteins
High sequence similarity often indicates structural simi-
larity [49], and proteins with similar structures frequently 
contain the same (i.e., conserved) binding sites. However, 
datasets may contain homologous protein sequences with 
identical or highly similar amino acid sequences, but only 
annotate a portion of the sequence as the binding site 
based on interaction with a specific ligand, while labeling 
the remaining sequence as non-binding sites, regardless 
of possible binding with other small molecule ligands. To 
address this inconsistency, we clustered proteins with a 
sequence similarity cutoff of 50%, following methods in a 
previous study [50], then aligned and merged sequences 
into a single central sequence within each cluster. Fig-
ure 3 illustrates the rationale for this procedure using two 
specific examples. We labeled specific protein sequence 
fragments as binding sites according to their homologous 
binding sites though they were marked as non-binding 
sites in the original dataset. It is possible that these later-
labeled binding sites could enhance the performance of 
our model and provide some assistance in inference.

To further verify that merging was necessary to ensure 
the predictive accuracy of our model, we analyzed 
the raw UniProtSMB dataset. Among 7,828 proteins, 
4,241 exhibited over 50% similarity with others. Merg-
ing these proteins resulted in 1,377 unique sequences, 
with 383 sequences gained new binding sites. Therefore, 
we recommend the continuous updating of all existing 
protein-small molecule binding site datasets through 
experimental validation to guarantee accuracy.

Ligand analysis of binding sites and its impact 
on prediction accuracy
We analyzed the binding ligands of all proteins in Uni-
ProtSMB. We calculated the frequency of each small 
molecule and displayed the top 8 in Fig. 4a. The results 
showed that ATP ranked first, possibly because a large 
number of kinases require ATP as a substrate [51]. GTP 
and cAMP are related to GPCRs, the largest family of 
membrane proteins and one of the most promising drug 
targets due to their crucial role in numerous physiologi-
cal processes [52]. Moreover, coenzyme such as NAD+, 
NADP+, FAD, and FMN also frequently appeared, play-
ing a role in transmitting electrons, atoms, or functional 
groups in proteins [53]. Next, we categorized all small 
molecules into several main categories (Fig.  4c), from 
majority to least, including nucleotide and its derivatives, 
coenzyme and cofactors, amino acids, and carbohydrate, 
which account for 84.5% of all ligands. The remaining 
15.5% mainly included marketed and clinically tested 
drug molecules, lipids, or low molecular weight acids and 
esters.
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To evaluate the ability of CLAPE-SMB in predicting 
specific type of small molecule binding sites, we organ-
ized four major types of specific small molecules binding 
site subsets: nucleotide and its derivatives, coenzyme and 
cofactors, amino acids, and carbohydrate. In this process, 

it was common to find proteins that lacked specific bind-
ing sites for certain small molecules, such as nucleotides. 
We removed these protein sequences from the corre-
sponding dataset. Therefore, these subsets were much 
smaller than UniProtSMB. However, evaluation results 

Fig. 2  Pipeline for assembly and curation of the UniProtSMB dataset. First, we collected 14,064 experimentally supported proteins with 3D 
structures and small molecule binding sites from among 248,805,733 total proteins in the UniProtKB database as of April 17, 2024. After removing 
proteins longer than 1,024 amino acids, we examined UniProtKB annotations to collect binding site information, including the relevant residues, 
drugs, cofactors, ATP, and other small molecule ligands. A total of 7,828 small molecules binding protein sequences were collected in this step. 
Residues involved in binding (pink) or not involved in small molecule binding (blue) were labeled in the sequence of each protein. We then 
clustered proteins with a sequence similarity cutoff of 50% using UCLUST, which resulted in 4,964 sequence clusters. All proteins within each cluster 
were subsequently aligned by MAFFT and all binding sites in each cluster were merged onto the longest sequence in that cluster, resulting in a final 
total set of 4,964 proteins. Finally, the resulting UniProtSMB dataset was divided into a training set (3,972 proteins), a validation set (496 proteins) 
and a test set (496 proteins)
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showed that CLAPE-SMB performed as well as, or even 
better on these smaller subsets (Fig. 4b).

We conducted a simple amino acid analysis (Fig. 4d–
g) on these datasets to explore the reasons behind this 
phenomenon. On one hand, nucleotide and its deriva-
tives subset (Fig. 4d), amino acids subset (Fig. 4f ), and 
carbohydrate subset (Fig.  4g) showed concentrated 
distribution of amino acids at binding sites, making 
model prediction easier and more accurate. In fact, 

CLAPE-SMB achieved excellent MCC of 0.744 and 
0.680 on nucleotide and its derivatives subset (2,099 
sequences) and amino acids subset (600 sequences), 
respectively, compared to an MCC of 0.699 on the 
large UniProtSMB dataset (4,964 sequences). However, 
MCC on carbohydrate subset was only 0.561 because 
the sample size is simply too small (165 sequences). 
On the other hand, coenzyme and cofactors subset 
did not show clear pattern of binding site distribution, 

Fig. 3  Example illustration of binding site merging results. a P55222 and b P0ACJ8 share a sequence similarity of 66.8%. Magenta residues 
represent homologous binding sites between these sequences that were marked as small molecule binding sites for both proteins in UniProtKB. 
Green residues in a are homologous with red residues in b which were marked as non-binding sites for P55222 but binding sites for P0ACJ8. Thus, 
merged proteins include such binding sites that were annotated on one member of cluster but not others, so that the final merged protein of each 
cluster contains all known binding sites in that cluster. An additional example of merging small molecule binding sites within a cluster is shown 
for c P95748 and d Q9ZGH6 which share a sequence similarity of 60.9%

(See figure on next page.)
Fig. 4  Ligand analysis of binding sites and its impact on model performance. a The top 8 small molecules that bind to proteins: ATP, GTP, NAD⁺, 
NADP⁺, FAD, cAMP, S-Adenosyl methionine (SAM), and FMN. b Performance metrics (Recall, Precision, MCC, and AUROC) of CLAPE-SMB on different 
datasets including different types of small molecule binding sites, including (c) four main categories of small molecules: nucleotides and their 
derivatives, coenzymes and cofactors, amino acids, and carbohydrate. Furthermore, proportions of each amino acid at binding and non-binding 
sites in the ground truth data on different datasets: nucleotide and its derivatives (d), coenzyme and cofactors (e), amino acids (f), and carbohydrate 
(g)
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Fig. 4  (See legend on previous page.)
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and therefore CLAPE-SMB did not perform quite ideal 
(MCC: 0.609) on it, even though this subset was of 
moderate size (1,173 sequences).

Improved accuracy of small molecule binding site 
prediction with CLAPE‑SMB
As GraphBind [17] also employed the CHEN11 dataset 
for training and COACH420 for testing, we adopted the 
same evaluation scheme to facilitate direct comparison 
with our model (Table  2). Interestingly, CLAPE-SMB 
achieved a precision of 0.412, representing an unexpect-
edly large increase of 84.8% over that of GraphBind. 
However, CLAPE-SMB exhibited a marginally lower 
recall, 17.2% lower than GraphBind, but still provided 
a 22.4% higher MCC (0.371). By contrast, P2Rank [12] 
achieved a markedly higher recall (0.888) than CLAPE-
SMB, but considerably lower precision (0.079), resulting 
in a modest MCC (0.224), most likely arising from an 
overabundance of positive predictions that could poten-
tially include an unknown number of misidentifications.

We also compared CLAPE-SMB with P2Rank [12], 
GraphBind [17], and DeepProSite [22] on the SJC and 
UniProtSMB datasets. As shown in Table 3, when trained 
and tested on the SJC dataset, CLAPE-SMB achieved a 
recall of 0.456, a precision of 0.651, an MCC of 0.529, 
and an AUROC of 0.915. Figure 5 provides an evaluation 
of CLAPE-SMB’s performance on the SJC dataset with 
a default random seed of 42. On the UniProtSMB test 
set, CLAPE-SMB exhibited a recall of 0.673, precision of 
0.743, MCC of 0.699, and AUROC of 0.960 (Table 4). We 
performed a statistical test comparing MCC and AUROC 
between CLAPE-SMB and other models (Supplemen-
tary Fig.  2). CLAPE-SMB consistently outperforms 

GraphBind on both metrics, showing significant 
improvements (p < 0.01) in MCC and AUROC. Although 
DeepProSite surpasses CLAPE-SMB in AUROC, 
CLAPE-SMB achieves a slightly higher MCC on the SJC 
dataset, though not statistically significant (p ≥ 0.05). On 
the UniProtSMB dataset, CLAPE-SMB demonstrates 
a marked improvement, significantly exceeding Deep-
ProSite (p < 0.001). This difference may be due to the 
nature of the datasets: SJC sequences have clear PDB 
IDs with defined structures, whereas sequences in Uni-
ProtSMB are derived from the UniProtKB database and 
do not correspond one-to-one with PDB structures, 
potentially leading to inaccuracies in structural informa-
tion. Since DeepProSite can utilize structural informa-
tion for prediction, it may have an advantage in cases 
where accurate structures are available, potentially lead-
ing to slightly better performance than our model, but 
still comparable.

All experiments of CLAPE-SMB on the chen11, SJC, 
and UniProtSMB datasets were rigorously tested multi-
ple times using different random seeds (6, 17, 35, 42) to 
ensure reliability. For further reference, detailed results 
for UniProtSMB are provided in Supplementary Table 3. 
Additionally, we conducted ninefold cross-validation on 
UniProtSMB to assess model robustness, with results 
shown in Supplementary Table  4. The average perfor-
mance across the folds was Rec: 0.662, Pre: 0.760, MCC: 
0.702, and AUROC: 0.961, with small standard deviation, 
underscoring the model’s consistency across different 
experimental setups.

Influence of model architecture on prediction accuracy
To ensure the selection of the most appropriate protein 
language model for CLAPE-SMB, we compared predic-
tive accuracy between two widely used models, ESM-2 
[23] and ProtBert [24], with a default random seed 42. 
We found that ESM-2 outperformed ProtBert on both 
test sets (Table  5), achieving higher MCC (0.535) and 
AUROC (0.917) than ProtBert (MCC: 0.352, AUROC: 
0.856) on the SJC test set; and a striking 44.3% increase 
in MCC (0.704) over that of ProtBert on the UniProtSMB 
test set. These results suggest that the higher-dimensional 
embedding space of ESM-2, with 1,280-dimensional 
embeddings compared to ProtBERT’s 1,024, captures 
more complex protein sequence information, enabling 
the extraction of a greater number of informative features 
necessary to distinguish binding from non-binding resi-
dues. Furthermore, the larger number of parameters in 
ESM-2 also contributes to its enhanced performance.

We then compared accuracy among three candidate 
backbone models (MLP, CNN, and Transformer) on the 
test set of SJC dataset. Among them, MLP achieved the 
highest accuracy (Fig. 5c), showing a slight advantage in 

Table 2  Comparison of CLAPE-SMB with other models trained 
on CHEN11 and tested on COACH420

Model Rec Pre MCC AUROC

P2Rank 0.888 0.079 0.224 N/A

GraphBind 0.477 0.223 0.303 0.889

CLAPE-SMB 0.395 ± 0.066 0.412 ± 0.057 0.371 ± 0.009 0.876 ± 0.002

Table 3  Comparison of CLAPE-SMB with other models on the 
SJC

Model Rec Pre MCC AUROC

P2Rank 0.660 0.180 0.293 N/A

GraphBind 0.568 ± 0.024 0.462 ± 0.011 0.486 ± 0.005 0.906 ± 0.003

DeepProSite 0.458 ± 0.022 0.644 ± 0.011 0.524 ± 0.015 0.926 ± 0.002

CLAPE-SMB 0.456 ± 0.006 0.651 ± 0.016 0.529 ± 0.004 0.915 ± 0.002
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Fig. 5  Evaluation of CLAPE-SMB performance on the SJC dataset with a default random seed, 42. a ROC curves of CLAPE-SMB predictions 
on the SJC test set (AUROC = 0.917). b Precision-recall curves of CLAPE-SMB on the SJC test set (AUPRC = 0.564). Comparison of the Transformer, 
1DCNN, and MLP backbone models showing that c MLP provides higher MCC than CNN; d MLP had a slightly higher AUROC than CNN. Plot 
of t-SNE dimensionality reduction of outputs from e the first layer of a randomly initialized MLP, (f) ESM-2, and g the first layer and h fourth layer 
of CLAPE-SMB. Green, non-binding sites; blue, small molecule binding sites
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MCC over CNN, although both models had comparable 
AUROC values [54–56]. To visually assess the model’s 
ability to differentiate binding sites from non-binding 
sites, we employed t-distributed Stochastic Neighbor 
Embedding (t-SNE) [57] to reduce the dimensionality of 
outputs from ESM-2 and the first layer of MLP (Fig. 5f, g), 
as well as subsequent MLP layers (Supplementary Fig. 3). 
Additionally, we included the results of a randomly ini-
tialized MLP for comparison. The results demonstrated 
that ESM-2 could distinguish binding from non-binding 
residues to some extent, while an untrained MLP could 
not. Conversely, CLAPE-SMB could effectively distin-
guish between binding and non-binding classes, and 
its performance improved with increasing layer depth. 
While the Transformer model [58] has served as the 
foundation for other protein language models, it per-
formed considerably worse than MLP or CNN as our 
backbone module, which might be attributable to the 
general strength of MLP in comprehensively integrating 
diverse features learned by the protein language models 
for this specific application.

Influence of loss function and its hyperparameters 
on prediction accuracy
We next compared model performance using three dif-
ferent loss functions: TCL [28] alone, class-balanced focal 
loss [33, 34] alone, and TCL in combination with focal 
loss (Table 6). Focal loss yielded a modest 0.2% increase 
in MCC, while TCL boosted MCC by 2.5%. These find-
ings aligned well with the t-SNE plots of embeddings 
(Supplementary Fig.  4). While both focal loss and TCL 
individually could separate binding from non-binding 
sites, their combined application resulted in tighter clus-
tering of binding sites, indicating improved model per-
formance. Representative embeddings from the second 
layer are displayed in Supplementary Fig.  4. In addition 
to TCL, the unsupervised InfoNCE loss [41] could also 
be applied. We evaluated the model performance using 
InfoNCE, and the results showed that TCL slightly out-
performs InfoNCE (Supplementary Table 5).

The hyperparameters of the loss function can also 
influence model performance [59, 60]. In this study, we 
considered four main hyperparameters, including γ in 
class-balanced focal loss, margin and learning rate of 
TCL, and weight, � . Optimization of hyperparameters 
was completed on both the SJC (Fig. 6) and UniProtSMB 
(Supplementary Fig.  5) datasets. We initially set γ to 1, 
5, 10, and 20 and witnessed a dramatic drop in AUROC 
between 5 and 10. Further fine-tuning between values of 
1–5 revealed that γ = 3 conferred the highest MCC and 
a relatively high AUROC. After further optimization, the 
margin was set to 4 and � was set to 0.2. The learning rate 
of TCL was set to 0.3, which was consistent with previous 
studies that suggested a higher learning rate to optimize 
cluster centers [61]. Similarly, γ was set to 3, margin was 
set to 5, the learning rate of TCL was set to 0.01, and � 
was set to 0.2 on the UniProtSMB dataset after hyperpa-
rameter optimization.

CLAPE‑SMB can rationally distinguish binding 
and non‑binding sites based on residue features
To determine whether CLAPE-SMB predictions reflected 
rational, interpretable differences in residue proper-
ties, we next analyzed the composition and properties of 
binding and non-binding amino acid residues. First, we 
analyzed the frequency of each amino acid type within 
binding and non-binding sites in SJC (Fig. 7a) and Uni-
ProtSMB (Supplementary Fig.  6a). Both results sug-
gested that glycine (G), serine (S), and threonine (T) 
had a higher propensity to participate in small-molecule 
binding, while leucine (L) exhibited the lowest propen-
sity. The relatively high frequency of glycine binding sites 
aligns well with its small size and flexibility that facili-
tate induced fit by small molecule ligands, as reported in 
other studies [62, 63]. Additionally, serine and threonine 

Table 4  Comparison of CLAPE-SMB with other models on the 
UniProtSMB

Model Rec Pre MCC AUROC

P2Rank 0.632 0.124 0.236 N/A

GraphBind 0.565 ± 0.020 0.430 ± 0.007 0.473 ± 0.007 0.932 ± 0.003

DeepProSite 0.490 ± 0.013 0.756 ± 0.005 0.598 ± 0.006 0.965 ± 0.001

CLAPE-SMB 0.673 ± 0.031 0.743 ± 0.040 0.699 ± 0.004 0.960 ± 0.001

Table 5  Comparison of prediction accuracy between ProtBert 
and ESM-2 as the feature extractor of CLAPE-SMB

Feature extractor Dataset MCC AUROC AUPRC

ProtBert SJC 0.352 0.856 0.354

ESM-2 SJC 0.535 0.917 0.564

ProtBert UniProtSMB 0.488 0.922 0.498

ESM-2 UniProtSMB 0.704 0.961 0.750

Table 6  Model performance on the SJC using different loss 
functions

Loss functions MCC AUROC

TCL 0.528 ± 0.003 0.915 ± 0.003

Focal Loss 0.516 ± 0.003 0.912 ± 0.002

Focal Loss + TCL 0.529 ± 0.004 0.915 ± 0.002
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Fig. 6  Hyperparameter optimization for the loss function on the SJC dataset. a Parameter γ was set to 3 rather than 5 due to the highest MCC 
(which has a stronger effect in analyses of imbalanced data) and a relatively high AUROC. b Learning rate of TCL was set to 0.3 after fine-tuning. c 
Weight ( � ) of TCL and focal loss was set to 0.2. d Margin of TCL is set to 4, which gives a maximum MCC. e Distribution of the maximum Euclidean 
distance between a given embedding generated from ESM-2 and the embeddings from the opposite class
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Fig. 7  Amino acid analysis on the SJC dataset. a Proportions of each amino acid at binding and non-binding sites in ground truth data. b 
Comparison of the proportions of amino acids between predicted and ground truth binding sites. Comparison of amino acid properties, including c 
hydrophobicity, d charge, e secondary structure, and f solvent accessibility between ground truth and predicted small molecule binding residues
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possess hydroxyl groups in their side chains that enable 
hydrogen bonding interactions with small molecules [64]. 
These findings suggest interpretability in CLAPE-SMB of 
predictions.

We then focused strictly on binding sites and com-
pared the distribution of predicted amino acid against 
the ground truth (Fig. 7b, Supplementary Fig. 6b), which 
revealed similar distribution of binding amino acids to 
the ground truth, with forward and reverse Kullback–
Leibler (KL) divergence of 0.0208 and 0.0206, respec-
tively. By contrast, a prediction of uniform distribution 
for each amino acid resulted in much larger forward 
and reverse KL divergence of 0.165 and 0.164, respec-
tively. Next, we analyzed the amino acid properties of 
hydrophobicity, charge, secondary structure, and solvent 
accessibility (Fig. 7c–f). Again, CLAPE-SMB predicted a 
property distribution among binding residues similar to 
the ground truth, suggesting high predictive accuracy. 
In addition, t-SNE dimensionality reduction of the bind-
ing site property distribution in the first layer output of 
MLP showed that CLAPE-SMB could correctly cluster 
binding residues according to their hydrophobicity and 
charge (Supplementary Fig.  7). These results suggested 
that CLAPE-SMB can rationally distinguish binding and 
non-binding sites based on residue features.

Comparison of CLAPE‑SMB with DeepProSite and heuristic 
analyses in three protein case studies
Given the above results showing high accuracy and inter-
pretability of our CLAPE-SMB model, we next evaluated 
its performance in case study. We compared CLAPE-
SMB performance with that of DeepProSite, the best 
sequence-based model currently available for predicting 
small molecule binding sites in three protein case studies 
from the SJC test set. The first protein was death-asso-
ciated protein kinase 1 (DAPK1; PDB ID: 1JKK, chain 
A, or 1JKK_A), which participates in programmed cell 
death and has been proposed as a potential target for 
treating cancer [65, 66]. The second protein, tryptophan 
7-halogenase RebH (RebH; PDB ID: 2OAL, chain B, or 
2OAL_B), functions in chlorinating tryptophan residues, 
often in the synthesis bioactive compounds [67–69]. The 
third protein selected as a case study was ribosomal RNA 
small subunit methyltransferase (Nep1; PDB ID: 3O7B, 
chain A, or 3O7B_A), which is responsible for catalyzing 
methyl group addition to the small subunit of ribosomal 
RNA and which has also been proposed as a candidate 
antimicrobial drug target [70, 71].

The ground truth binding sites, sites predicted by 
CLAPE-SMB, and DeepProSite predictions for DAPK1 
and RebH are shown in Fig.  8a-f. CLAPE-SMB suc-
cessfully predicted over half of the known binding sites 
with relatively few false positives (e.g., some incorrect 

predictions near the actual binding pockets). While 
DeepProSite made some correct predictions, it also gen-
erated a comparatively higher number of false positives, 
suggesting higher recall but lower precision. However, it 
warrants mention that these potentially misleading pre-
dictions might also inspire the discovery of previously 
unrecognized novel allosteric binding sites.

Interestingly, in the third case study of Nep1, in which 
CLAPE-SMB achieved its highest accuracy in predict-
ing bona fide binding sites, we compared CLAPE-SMB 
predictions with potential small-molecule binding sites 
identified through heuristic analysis of the experimen-
tally derived structure (Fig. 8g). CLAPE-SMB accurately 
identified 19 binding residues (out of 22), suggesting its 
potential to reduce time and labor in structural analyses. 
The ground truth, CLAPE-SMB predictions, and Deep-
ProSite predictions of Nep1 small molecule binding sites 
are shown in Fig.  8h-j, emphasizing the high accuracy 
provided by CLAPE-SMB in predicting protein-small 
molecule binding interactions.

CLAPE‑SMB accurately predicts small molecule binding 
sites in intrinsically disordered proteins
Intrinsically disordered proteins (IDPs) lack stable ter-
tiary structures, making their study and functional char-
acterization challenging. Experimental determination of 
small molecule binding sites in IDPs is difficult due to 
their inherent structural flexibility and dynamic nature 
[72, 73]. Structure-based prediction models struggle with 
accuracy because IDPs lack stable conformations, and 
AlphaFold’s predicted structures may not capture the 
functional dynamics of these regions.

However, CLAPE-SMB successfully predicted small 
molecule binding sites of IDPs with high accuracy. In 
the UniProtKB database, a protein is classified as an IDP 
if it contains at least one intrinsically disordered region 
(IDR). For our study, we randomly selected 526 experi-
mentally supported IDPs from the UniProtKB data-
base and annotated their small molecule binding sites 
as described in Fig.  2. After deduplication based on a 
cutoff of 50% sequence similarity between training sets 
of UniProtSMB and IDP dataset, we obtained 336 non-
redundant sequences. CLAPE-SMB was trained on Uni-
ProtSMB and then tested on this IDP dataset, achieving 
an MCC of 0.815. Despite the high MCC, further analysis 
revealed that almost all binding sites are located on non-
IDRs: only 5 out of 336 IDPs have small molecule bind-
ing sites on IDRs, which was not satisfactory. This also 
underscores the necessity for traditional experimental 
methods to precisely determine the structure of binding 
sites.

Therefore, we continued to verify whether CLAPE-
SMB can accurately predict binding sites of IDRs. We 
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identified 34 protein sequences with small molecule 
binding sites on IDRs in the UniProtKB database. These 
sequences are non-redundant and have less than 50% 
similarity to any sequence in the UniProtSMB training 

set. Using these 34 sequences as a test set, CLAPE-SMB 
achieved a high MCC of 0.730. Next, we performed 
two case studies of IDPs, i.e. bifunctional protein 
GlmU (GlmU, UniProtKB ID: A1TUE2) and cobalamin 

Fig. 8  Case study of binding site prediction for 1JKK_A, 2OAL_B, and 3O7B_A proteins. a-c Small molecule binding sites on 1JKK_A in a ground 
truth data, b CLAPE-SMB predictions, and c predicted by DeepProSite. d-f Small-molecule binding sites of 2OAL_B in (d) ground truth data 
and predicted by (e) CLAPE-SMB or (f) DeepProSite. g Putative small molecule binding pockets of 3O7B_A predicted by heuristic analysis. h Ground 
truth of small molecule binding sites on 3O7B_A. (i-j) Small-molecule binding sites of 3O7B_A predicted by (i) CLAPE-SMB and j DeepProSite. 
Magenta residues in (a, d, and h) indicate binding sites in ground truth data. Magenta residues in b, c, e, f, i, and j indicate correct predictions 
and green residues indicate false positive predictions. Orange sticks are small molecule ligands
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adenosyltransferase (CobO, UniProtKB ID: Q1LJ80) 
(Fig.  9). GlmU catalyzes the last two sequential reac-
tions in the de novo biosynthetic pathway for UDP-
N-acetylglucosamine [74]. The C-terminal domain is 
IDR, catalyzing the transfer of acetyl group from acetyl 
coenzyme A. CobO catalyzes the conversion of cob(II)

alamin to adenosylcob(III)alamin in the presence of 
ATP, which binds to the disordered N-terminal region 
of CobO [75]. Because most IDPs do not have avail-
able PDB structures, we used structures predicted by 
AlphaFold instead. The results showed that CLAPE-
SMB successfully identified the majority of small 

Fig. 9  Two case studies of IDPs: a A1TUE2 and b Q1LJ80. Yellow spheres represent IDRs, and gray surfaces represent non-IDRs. CLAPE-SMB 
accurately predicted most of small molecule binding sites (magenta residues) with a few false positive predictions (green residues). The structure 
and conformation around IDRs rarely form binding pockets, indicating a significant difference between AlphaFold predictions and the in vivo 
situation

Table 7  Computational efficiency comparison of CLAPE-SMB with other models on the UniProtSMB

CLAPE-SMB DeepProSite GraphBind P2Rank

GPU NVIDIA A100-PCIE-40 GB

CPU Intel(R) Xeon(R) Silver 4210R CPU @ 2.40 GHz

Data preparation time 0.91 s / sequence 2.56 s / sequence  ~ 4 min / sequence N/A

Training time  ~ 15 min / epoch  ~ 3 min / epoch  ~ 200 min / epoch N/A

Inference time 191 sequence / s 51 sequence / s  ~ 3 s / sequence  ~ 10 s / sequence
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molecule binding sites on IDRs. This work underscores 
the potential of sequence-based prediction models in 
accurately predicting small molecule binding sites in 
IDPs, facilitating further research and drug discovery.

Computational efficiency of CLAPE‑SMB
We evaluated the computational efficiency of CLAPE-
SMB and compared it with DeepProSite [22], Graph-
Bind [17], and P2Rank [12] across data preparation, 
training, and inference time (Table  7). These compari-
sons were conducted on an NVIDIA A100-PCIE-40GB 
GPU and an Intel Xeon Silver 4210R CPU. Specifically, 
data preparation and inference times were tested on the 
CPU, while training time was measured on the GPU. The 
result shows that while CLAPE-SMB required slightly 
longer training times (~ 15 min/epoch) compared to 
DeepProSite (~ 3 min/epoch), it demonstrated sig-
nificantly faster data preparation and inference speeds. 
CLAPE-SMB required only 0.91 s per sequence for data 
preparation, substantially less than DeepProSite (2.56 s/
sequence) and GraphBind (~ 4 min/sequence). In terms 
of inference, CLAPE-SMB achieved 191 sequences 
per second, considerably faster than DeepProSite (51 
sequences/second), GraphBind (~ 3 s/sequence), and 
P2Rank (~ 10 s/sequence). This highlights the compu-
tational efficiency of CLAPE-SMB, as it can make resi-
due-level binding site predictions from a 1D amino acid 
sequence within a second, emphasizing its potential for 
large-scale applications. This evaluation highlights the 
computational efficiency of CLAPE-SMB, which is valu-
able for high-throughput applications.

Discussion
To overcome challenges in the accurate prediction of 
protein-small molecule interactions that are ubiquitous 
in biological systems and essential for drug development 
and research, it is necessary to ensure that the extracted 
protein information is suitable as data input and the 
imbalanced data between small molecule binding sites 
and non-binding sites in protein sequences is properly 
handled. In our data, binding sites represented less than 
5% of the data (Table 1 and Supplementary Table 1). To 
address these challenges in our current approach, we 
leveraged ESM-2 to generate protein embeddings and 
employed contrastive learning to deal with the imbal-
anced data. Our CLAPE-SMB model demonstrates 
strong performance on both UniProtSMB and SJC test 
set, as well as the COACH420 benchmark set. In addi-
tion, our findings highlight the impact of dataset quality 
on model performance. To provide the highest possible 
quality input data, we assembled the UniProtSMB data-
set by merging binding sites of similar sequences, 
which resulted in markedly higher accuracy binding site 

prediction by CLAPE-SMB using the UniProtSMB com-
pared to that obtained with SJC and COACH420.

Protein language models are highly proficient in 
extracting accurate sequence information and thus 
show potential for a wide array of applications [76]. To 
assess the contribution of ESM-2 in the performance 
of CLAPE-SMB, we evaluated a simpler model using a 
single-layer MLP to process the protein embedding step 
in place of the 5-layer MLP. This simpler model also 
showed relatively strong performance on SJC dataset, 
with an MCC of 0.300 and an AUROC of 0.882 (Supple-
mentary Table 6). This strong performance despite using 
fewer layers illustrates the strong capability of ESM-2 to 
extract informative features from protein sequence rel-
evant to binding site prediction [23, 77, 78]. Intriguingly, 
we observed that hyperparameter margin was inconsist-
ent with the maximum Euclidean distance distribution of 
1,280-dimensional embeddings (Fig.  6d-e, Supplemen-
tary Fig. 5c-d). For instance, in the UniProtSMB training 
set, the distances between negative to positive residues, 
and positive to negative residues were distributed from 8 
to 15 and 9 to 16, respectively. However, the best margin 
selected after hyperparameter optimization was 5, much 
smaller than expected [21]. This discovery implied that 
certain dimensions within the 1,280-dimensional features 
embedded by ESM-2 might not obviously contribute to 
binding site prediction. Exploring these less informa-
tive dimensions could be a promising avenue for future 
research for better understanding ESM-2. Additionally, 
with the recent release of ESM-3 [79], incorporating 
this model presents a valuable opportunity for further 
improving predictive performance and enhancing our 
understanding of protein features.

An interesting question is whether the inclusion of 
sequences in ESM-2’s training set affects the performance 
of CLAPE-SMB. The esm2_t33_650M_UR50D model 
was trained on the UniRef50 dataset, which contained 
approximately 6.6 million protein sequences [23, 47]. 
Approximately 20%-40% of the sequences in our experi-
ments are new to the esm2_t33_650M_UR50D model 
(Supplementary Table  7). While we did not specifically 
exclude sequences from UniRef50 in our experiments, we 
did assess the model’s performance on the UniProtSMB 
dataset for sequences both included in and excluded 
from UniRef50. As shown in Supplementary Table 8, the 
model actually performed slightly better on sequences 
excluded from UniRef50, with higher MCC and AUROC 
values. Therefore, we believe that whether a sequence is 
part of ESM-2’s training set is not a significant factor in 
the model’s performance.

One limitation of our study is the potential presence of 
mislabeled data in both SJC and UniProtSMB. All pos-
sible mislabeled data can be divided into two categories: 
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binding sites marked as non-binding sites, and non-
binding sites marked as binding sites. In our study, those 
marked as binding sites in our dataset are unlikely to be 
false, as they are all collected from published literature. 
However, bona fide binding sites might be incorrectly 
labeled as non-binding residues due to inherent limita-
tions in our current knowledge regarding the full scope 
of all possible small-molecule interactions for any given 
protein. This situation may persist even with the merg-
ing approach we employed in compiling UniProtSMB. 
Therefore, some structurally plausible predicted bind-
ing sites but are labeled as non-binding sites in dataset 
could indicate previously undiscovered or unvalidated 
binding sites, potentially including novel drug targets. 
Experimental validation and subsequent dataset updates 
could lead to the identification of new drug targets and 
improve future model performance. Currently, CLAPE-
SMB predicts all potential small-molecule binding sites 
on a protein. Future work will focus on integrating infor-
mation for specific small molecules as an input condi-
tion, potentially by incorporating language models for 
SMILES strings or graph neural networks for structural 
formula processing to ultimately enable binding site for 
specific molecules.

Conclusion
We propose CLAPE-SMB, which integrates a pre-
trained protein language model with contrastive learn-
ing to overcome current challenges in predicting small 
molecule binding sites of proteins, and also guide drug 
development. On COACH420 benchmark test set, 
CLAPE-SMB outperformed other current methods. We 
integrated three benchmark datasets—sc-PDB, JOINED, 
and COACH420—into a new dataset, SJC, on which 
CLAPE-SMB performed well. We also constructed the 
UniProtSMB dataset, in which we merged multiple sites 
from similar proteins. CLAPE-SMB showed high accu-
racy on it as well. Analysis of composition and proper-
ties of amino acid residues, and case studies of DAPK1, 
RebH, and Nep1 are also done to provide extra proof to 
CLAPE-SMB.
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